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ABSTRACT 

Controlled frames in Hilbert spaces and 2-frames in 2-Hilbert spaces are studied, some results on them are presented. 
The controlled 2-frames in 2-Hilbert spaces is introduced. Some results on controlled 2-frames are established. 
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1.  INTRODUCTION 

The concept of frames in Hilbert spaces has been introduced by Duffin and Schaefer in 1952 to study some deep 
problems in nonharmonic Fourier series. Peter G. Casazza [2] presented a tutorial on frame theory and he suggested the 
major directions of research in frame theory. 

The concept of linear 2-normed spaces has been investigated by S.Gahler in 1965[5] and has been developed extensively 
in different subjects by many authors.    The concept of 2-frames for 2-inner product spaces was introduced by Ali Akbar 
Arefijammaal and Ghadir Sadeghi [1] and described some fundamental properties of them. Y.J.Cho, S.S.Dragomir, 
A.White and S.S.Kim[4] are presented some inequalities in 2-inner product spaces. Some results on 2-inner product 
spaces are described by H.Mazaherl and R.Kazemi[6]. Properties of bounded 2-linear operators from a 2-normed set into 
a 2-normed space are studied by Zofia Lewandowska[7]. Peter Balazs, Jean-Pierre Antoine and Anna Grybos[3] are 
developed controlled frames and they will shown that the controlled frames are equivalent to standared frames. 

In this paper controlled frames in Hilbert spaces and 2-frames in 2-Hilbert spaces are studied, some results on them are 
presented. The controlled 2-frames in    2-Hilbert spaces is introduced. Some results on controlled 2-frames are 
established. 

2.Preliminaries 

The following definitions from [2] are useful in our discussion. 

 Definition2.1. A sequence  
1iix of vectors in a Hilbert space X is called a frame if there exist constants 0 < A ≤ B 

<  such that 

A 
2

x  ≤  

2

1

,


i

ixx   ≤ B 
2

x   for all x  X. 

The above inequality is called the frame inequality. The numbers A and B are called  lower and upper frame bounds 
respectively. 

Definition2.2. A synthesis operator   T :  l2 X  is defined as ii xTe   where  ie  is an orthonormal basis for l2.  

Definition2.3. Let  
1iix  be a frame for X and  ie be an orthonormal basis for l2. Then, the analysis operator               

T


 : X  l2 is the adjoint of synthesis operator T and is defined as  




 
1

,
i

ii exxxT  for all x  X.  

Definition2.4. Let  
1iix  be a frame for the Hilbert space X.  A frame operator     S = T T


: X X is defined as  







1

,
i

ii xxxSx    for all x  X.     

Here we give the basic definitions of 2-normed spaces and 2-inner product spaces. 

Definition2.5. X be a real linear space of dimension greater than 1 and let .,.  be a real-valued function on XxX  

satisfying the following conditions. 

a)  0, yx
  

and 0, yx  if and only if  x and y are linearly dependent vectors. 

b) xyyx ,, 
   

Xyxforall ,  

c) yxyx ,,    for any real number  and Xyxforall ,  

 d) zyzxzyx ,,, 
  

Xzyxforall ,,
 

Then
  

.,.  is called 2-norm on X and  .,.,X  called a linear 2-normed space. 

Definition2.6. Let  .,.,X  be a 2-normed space and Xyx , , then x is said to be orthogonal to y if and only if there 

exists Xb such that for all scalar  , 0, bx and byxbx ,,  , in this case we write yx b . 
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Definition2.7. Let X be a linear space of dimension greater than 1 over the field      K(= R or C). Suppose that  ..,.  

is K-valued function on XxXxX which satisfies the following conditions. 

a)   0, zxx  and   0, zxx if and only if  x and z are linearly dependent. 

b)    xzzzxx ,,   

c)    zyxzxy ,,   

d)     Kforallzyxzyx   ,,  

e)      zyxzyxzyxx ,,, 2121   

Then  ..,.  is called a 2-inner product on X and  )..,(.,X  is called a 2- inner product space(or 2-pre Hilbert space). 

If  ,X  is an inner product space, then the standard 2-inner product space  ..,.
 
is defined on X by  

 
  yzzxzzyx

zzyz

zxyx
zyx ,,,,

,,

,,
,  Xzyforallx ,, . 

Let  )..,(.,X  be a 2-inner product space, we can define a 2-norm on XxX by  

 2

1

,, yxxyx  , for all  Xyx , . 

Let  )..,(.,X  be a 2-inner product space,
 

Xb and bXyx \,  . Then   0/,  byxyx b

. 

Using the above properties, we can prove the Cauchy-Schwartz  inequality   222
,,/, bybxbyx   

A 2-inner product space X is called a 2-Hilbert space if it is complete. 

Definition 2.8. Let X be a 2-inner product space, a sequence  
1nna of X is said to be convergent if there exists an 

element Xa  such that 0,  xaaLim nn  for all Xx . 

3. Controlled frames and 2-Frames 

The following definitions from [1] are useful in consequent sections.The set of all bounded linear operators with a bounded 

inverse from X to X is denoted by )(XGL . 

Definition 3.1. Let )(XGLC . A frame controlled by the operator C or C-controlled frame is a family of vectors 
 

 
1iix  such that there exist constants  clcl BA0

 
, satisfying 

XxforallxBCxxxxxA cl

i

iicl 




,,,
2

1

2
. 

Definition3.2. Let  
1iix  be a C-controlled frame for the Hilbert space X.   A controlled frame operator 

XXScl :  is defined as           





1

,
i

iicl CxxxxS  ,   for all x  X. 

Note that the operator clS is positive, therefore self adjoint. 

Proposition3.3. Let  
1iix  be a C-controlled frame in X. Then  

1iix  is a frame. Further 
 SCCS   and so 

.,,
11











i

ii

i

ii xCxxCxxx
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Proof. Let  
1iix  be a C-controlled frame in X. By using the definition and proposition (2.4) of [3] we have 

)(XGLScl  . 

Consider 




 
1

11 ,
i

iicl CxxxCxSC   =   
i

i

i xxx


1

,   = Sx  

Which shows that SSC cl 
1

, therefore
 

)(XGLS  , thus  
1iix  is a frame in X. 

Now 
  SCCSSSCS clcl )( .                                                                    (1)                                                        

Proposition3.4. Let )(XGLC  be a self- adjoint. The vectors  
1iix  is a frame controlled by C if and only if it is 

a frame for X,  C is positive and commutes with the frame operator S. 

Proof. Suppose  
1iix  is a C-controlled frame in X. From the proposition (3.3) we have  

1iix  is a frame in X. Since C 

is self adjoint, by using equation (1) we have SCCS  . We have 
1, SScl  are positive operators hence 

clcl SSSSC 11   is also positive. 

Conversely suppose  
1iix  is a frame in X by definition we have 

XxforallxBxxxxxA
i

ii 




,,,
2

1

2
 

Multiplying above equation by C , we get 

XxforallxCBxCxxxxCA
i

ii 




,,,
2

1

2
 

 By using C is self adjoint, the above equation becomes 

XxforallxBCxxxxxA
i

ii 




,,,
2

1

1

2

1
, where 11 BCBandACA   

Hence,  
1iix  is a C-controlled frame in X.                                                                                                                   

The definition of 2-frame from [1] as follows. 

Definition 3.5 Let  )..,(.,X  be a 2-Hilbert space and X . A sequence  
1iix of elements in X is called a           

2-frame associated to   if there exist 0 < A ≤ B < such that  

   XxforallxBxxxA
i

i 




2
2

1

2
,,,  . 

The above inequality is called the 2-frame inequality. The numbers A and B are called the lower and upper 2-frame 
bounds respectively.  

The following proposition [1] shows that in the standard 2- inner product spaces every frame is a 2-frame. 

Proposition 3.6. Let   ,X  be a Hilbert space and  
1iix  is a frame for H. Then, it is a 2-frame with the 

standard 2- inner product space on X. 

Proof: Suppose that  
1iix  is a frame for X with frame bounds A and B. 

Then  
2

1

,


i

ixx  = 

2

1

,,,,





i

ii xxxx    
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                                                = 

2

1

,,,





i

ii xxxx  =

2

1

,,





i

ixxx   

                                                 
2

, xxB 
                         

 

                                                 = B  22
,xx   = B  /, xx   =    B

2
,x

 

Similarly we can prove that A 
2

,x  
2

1

,


i

ixx  Hence  
1iix is a 2-frame for    2-Hilbert space.                       

Suppose  )..,(.,X
 
is a 2-Hilbert space and L the subspace generated with a fixed element  in  X. Let M be 

denote the algebraic complement of L in X. So we have XML   .We define the inner product 


.., on X as 

follows 


/,, zxzx  .  

A sequence  
1iix of elements in X is a 2-frame associated to  with frame bounds A and B, then the definition of          

2-frame can be written as   XxforallxBxxxA
i

i 




,,
2

2

1

2


. 

Definition 3.7. Let  
1iix be a 2-frame in X. Then, the 2-Synthesis operator  XlT 2:

 
is defined by 

  





1i

iii xccT . 

Definition 3.8. Let  
1iix be a 2-frame in X. Then, the 2-Analysis operator 

2: lXT 

  
is defined by 

  


 
1

/,)(
iixxxT  . 

Definition 3.9. Let  
1iix be a 2-frame associated to  with frame bounds A and B in a 2-Hilbert space X. A 2-frame 

operator  XXS :  is defined by  





1

/,
i

ii xxxxS 

 

.

     

Theorem 3.10. Suppose that 
1iix is a sequence in 2-Hilbert space X, with  






1

/,
i

ii xxxx   holds for all 

Xx if and only if 
1iix  is a 2-normalized tight frame for X. 

Proof: Since  
1iix  is a 2-normalized tight frame for X, for all Xx  

  
2

1

2
,, 






i

ixxx      /,/,,
1

2
xxxxx i

i

i






 

     







 



1

/,/,/,
i

ii xxxxxx 

 

  





1

/,
i

ii xxxx 
 

for all Xx .                                                                                                       

Theorem 3.11. Suppose that 
1iix is a 2-frame for Hilbert space X, and T is  co-isometry. Then  

1iiTx  is a 2- 

frame for X. 
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Proof: Since  
1iix  is a 2- frame for X, by Definition 3.1, we have 

  )(,,,,
2

2

1

2
XxxBxxxA

i

i 




                                                                                                        (2)

                                                        

Since XXT  :  is an operator, for all Hx , we have XxT 

 

 Therefore, the above equation (2) is true for XxT 

 

 
2

2

1

2

,,,  xTBxxTxTA
i

i






 
                                                 

  XxforallxTBTxxxTA
i

i  




  ,,,,
2

2

1

2

                                      

By using the fact that T is co-isometry, we have 

  XxforallxBTxxxA
i

i 




,,,,
2

2

1

2


 

Which shows that  
1iiTx  is a 2- frame for X.                                                                                                            

 
4.  Controlled 2-frames 

Throughout this section X is 2-Hilbert space. 

Definition 4.1. Let X be a 2-Hilbert space and )(XGLC . A sequence  
1iix  of elements in X is called a 

controlled 2-frame associated to X  or C-controlled         

 2-frame for X if there exist constants  clcl BA0  such that 

   XxforallxBCxxxxxA cl

i

iicl 




2

1

2
,/,,/,  . 

Proposition4.2. Let )(XGLC  be a self- adjoint and 
1iix  is a 2-frame for 2-Hilbert space X if and only if it is 

a controlled 2-frame for X. 

Proof. Suppose  
1iix  is a 2-frame for 2-Hilbert space X 

                                                  
   2

2

1

2
,,,  xBxxxA

i

i 




 

                                                 
    2

1

2
,,//,,  xBxxxxxA

i

ii 




 

                                                 
    2

1

2
,,//,,  xCBxxxCxxCA

i

ii 




 

                                                 
    2

1

2
,/,,/,  xCBxCxxxxCA i

i

i  




  
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    2

1

1

2

1 ,/,,/,  xBCxxxxxA i

i

i 




 

                                                  
  

1iix  is a controlled 2-frame for X.                                                                           
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