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ABSTRACT

This paper aims to establish limit theorems on the lag increments of a centered Gaussian process on a probability space
in a general form under consideration of some convenient different statements.
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1. INTRODUCTION

Limit theorems on the increments of Wiener processes and Gaussian processes have been investigated in various
directions by many authors [1], [2], [4], [6] and [7], etc. According to the previous results, we are interested specifically in
Choi, Y. K. et al. [4] whose results are the following limit theorem on the lag increments of a Gaussian process.

Theorem 1.1 ([4]).
Let {X(¢), 0 <¢ <0} be a centered Gaussian process on the probability space (€2, 7, P) with X (0)=0 and

stationary increments E[{X (¢)- X (5)}*]= 62( |t-s]), where G(¥) is a function of ¥ > 0. Then

‘X(T)—X(T—t) ‘ B

lim sup su 25
T%oopOStSpT d(T’[)
‘ ‘X(T)—X(T—S)‘
lim sup su =1, a.s.,
T =00 ()r<T O<s<t d(T’ t)
’ ‘X(s)—X(s—t)‘
lim sup sup =1, a.s.,
T =0 (et <T t<s<T d(T’t)
and
| | X(5)-X(s-B)|
lim sup sup sup =1, a.s.,

T =0 (<t <T ¢<s<T O<hs<t d(T,t)

where d(T',¢)=[2¢ (log(T "/ t)+logloge) ]2,
The main aim of this paper is to reformulate these previous results throughout studying the almost sure behaviour in a
general form using da(T,t) with O < ot <1 instead of d(T,t), where

d.(7,t)=[262(6)(log(T | t)+(1—a)log log T + o loglog£) ],

with O<a<l1, logt=log(max(¢,1)) and loglogt=Iloglog(max(t,e)). For some C,>0, let

o(t)=C, B, 0<p<1.

2. MAIN RESULTS

In this section we are going to restudy the results obtained in Theorem 1.1 and we give our main results regarding to

d (T,t) with o €]0, 1] .
Theorem 2.1
For a centered Gaussian process {-X (£), 0 <¢ <00} on the probability space (€2, F,P) with X(0)=0 and

stationary increments E[{X (£)- X (5)}]= o(|t-s|), where o(y) is afunction of ¥ >0, we have

. ‘X(T)—X(T—t)‘
lim sup sup =1, as., 1)
Ty O0<t<T d (T,t)
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‘X(T)—X(T—s)‘
su =1

lim sup 2.5, @
T =00 () <T O<s<t d (T,t)

_ ‘X(s)—X(S—f)‘

lim sup su =1, as, ©
T =0 (et <T t<s<T da(T,t)

and

) ‘X(s)—X(s—h)‘
lim sup sup sup =1
T =0 (0<t<T t<s<T 0<h<t d (T,t)

, a.s. 4)

Remark. Theorem 1.1 is immediate by putting OL = 1 in Theorem 2.1.

3. PROOF

Before proving Theorem 2.1, we shall first give the following lemmas. It is interesting to compare (1) with the law of the
iterated logarithm

x|

— = a.s
d (T,7)

lim sup
T —o

s Q)

D

Here (5) follows by setting &, = 7’ in the next Lemma 3.1.
Lemma 3.1 ([8]).

Let {X(¢), 0<¢ <0} be a centered Gaussian process with
2 23
o (h)y=E[{X(t+h)-X)}]=C,h = >0 for O<B<1
and a constant CO >0.Let 0< a, < T be afunction of 7" for which

(i) 4, is non-decreasing,

(i) 7"/ a, is non-decreasing.

Then
lim sup B, | X(T)-X(T —a,)|=1, as.,
T >
and
lim sup sup sup B, X(t+s)—X(t)‘:1, a.s.,
T 0<t£T7aT OSSSQT
where

B, =126%(a,)(log(T | a,)+loglogT)] "
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Lemma 3.2 ([3] and [5]).
Let {X(¢),—0<t <00} be an amost surely continuous Gaussian process with E{X(¢)}=0 and
E{ X (t+h)-X(t)}]= o’ (t), o(t)=t",(¢) for some [3>0, where G,(¢) is a non-decreasing function.

Then, for any € > O, there exist positive constants C= CS and 4_ such that

CcT 2
%
P{ sup sup X(S)—X(S—]])‘>VG(&)}S—CXP( )
0<s—h<T 0<h<a a 2+¢
for every positive real numbers v and 2> a.
Now, we can begin to prove the mentioned results of Theorem 2.1.
Proof of Theorem 2.1
Firstly, from Lemma 3.1 we have
| | Xy -xT-0)|_ | x(1)|
lim sup sup >lim sup ———=1, as., (6)
Ty OS<T d (T,t) T d,(T.T)
The result (1) follows from (6) when we establish that
) ’X(s)—X(s—b)‘
lim sup sup su <1, as. 7)

T >0 (0<¢<T r<s<T O<h<t d %)

Take 0>0 so that 1<2(1+8)20L/((2+8)92[3)=:1+28, for any small €>0. For n=1273,..., let
k=..,-2-1012,..., k,, where k,=[(n+1)/logb]. set 7, =e", tkzek , ke:[l/loge] and
k! =[(n+1-logn'")/log0].

When THSTSTHH,Wehave

X(s)— X(s—h) ‘X(s)—X(s—b)‘
sup sup su < su su sup su
O<r£T rSSSPT OShIS)t d (T,t) _oogkgku 0 <th; - tgsSYLZH OSIII;)L‘ d (T,t)
‘ X(s)= X (s —h) ‘
< sup sup su
—oogk<k,~10<s—h,s<T,,, 0<h<t, d (T, t,)
X(s)—X(s—h) ‘
Put A , = sup su , we find that
nk tssg" OSIIIS)I' d (T,t)
‘ X(s)= X (s —h)
sup sup su < su A . 8
0<th tSsSI;" OSbgt d (T,t) —ooﬁkgfn o ok ®
1+¢' : :
Let A = I>14& —-1=¢'>0. From Lemma 3.2, we have
(04
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X(s)—X(s—b)‘

P{A  21+e}=P[ sup sup
0<s—h,s<T,,  0<h<t, o(ty,y)

>(l+e)—=— () {2(log( ”)+a10glogT +(1-a)logt, TR

G k+1 A
1
<l exp (= +ey ) )2{2(10g(—ﬂ)+(1_oc) log7,, +a)logt, })
e 24+& o(t,) by
7,(ogT,)"™ (loge,)" 20" 4
C()( )
1

k+

Ly

ngff“wga>)ﬁh>

(“)( -

k+1 tk
Then,
T _(1+2£')(1—a) “(142¢
PA  s14ey <Oyt (logT)) = (loge,) 7. ©
k+1
Hence, for —OO<](<]f9,weobtain
T 4 N (1+2¢") (1-a)
Yo 2 PlA21+8<C YT 5 ()" (logT,)
—oo<k<ky —oo<k<ky k
T N (1+28)(1 a) (1+28)(1 a)
YD N ORI AR Wi WCO R AR
—o0<k<0 k
(1+2¢") (1-a) (1+2¢") (1-a)

a A, R é - e
12533 N IR SN | R

Then,

Do D> PlA, 21+ei<w (10)

—0<k<ky

For the case ke <k< ](H —1, we have, as in (9), the following inequality

T _(1+28) (1-0) A
PlA,, 21+8}SC(t—")"“ (logT,)  © )(logfk) s (12)
k
Note that, if ]( <]<<]<' then (tkﬂyL (61‘ “)7“ ( ””1/ )7“
(log7,,)"*
From (11), it follows that
A (1+2¢"y (1-a)/a
, . 0 (ogT) ,
e k) ) k), n - (1+2¢")
211:12k:k6+1P{Ank 21+ 8} SCZ,1:1Zk:ke+1 W (log [k)
(logT))

(x (1+2¢") (1-a) (1+2¢") (1-a)

—(1+
n

MR Y DAL

Then,

3513 page May 09, 2015



L ISSN 2347-1921

© k)
2n:12k:ke+1P{Ank Zl+g}<oo : (12)

For the case k,: <k< ](n and for 12 large enough, we have

1

THZ<t <0T

—Tk+1 n+l

k,—k,<(¢'log0) ' logn+2=: k.

Using (11) again, thus we can obtain
© Nk o Nk T,  \ (142¢) (1-a) ot ~(1+2¢)
n n n+1
Zn:l Zk:k;HP{Ank 21+ 8} <C ZM Zk=k,;+1( ¢ ) (log TH) (log tk“)
k+1

1
<C Z; (k, —k' —1)0" (1OgT”)<1+za ) (1-0)/ (log]_;?)—(1+28)

<C o H*(1+25')(1*01)/0t n*(“zg’)

n=1 2

0 —(1+¢")
S C 211:1 B § 2

© k,
Zn:] Zk:k,’JJrl P{AU[( Z 1 + 8} <00. (13)
Finally, merging (10), (12) and (13) together, we get

Z::lp{ sup Auk21+8}SZj=1 Z P{Au](21+8}

§ o k=ka —o<ksk,~1

Zijl Z P{Ank21+8}

—o0<k<ky

o i,
i Zn:l Zk=k9+1P{Ank > 1 + g}

© k-1
I Zn:l Zk:k”ﬁ-l P{AH]( 2 1+ 8} <00 .

By the Borel-Cantelli, the result (7) follows from (8).

The result (4) follows also from (7) if we show that

‘X(s)—X(s—h)‘ %

liminf sup sup sup

a.s. (14)
0<e<T t<s<T O<h<t d_(

’

T —>w

For n=123...  set7, =e" andlet 7' in [T, T, ] Then

n’

X(s)—X(s—b)‘ - w ‘X(s)—X(s—l)‘

su sup Ssu 2
0<rspT rSss% Oﬁbgt d (T,t) 1<s<r,  d (T, 1,1)
X(5)-X(s=D|  d(T,,,1)
= sup
1<s<T, d(T;wb da (Tn+1’1)
X(s)-X(s-1) n s

= su
1353%,1 o(l).[2n [n+l+oclog(n+1)
n

1/2

17[
n+1+olog(n+1)
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According to [4], the following result can be found

liminf B, >1. (15)
1n1—» 0
So, we have
n
[ 251, at n>w. (16)
n+1+alog(n+1)

Thus the result (14) follows from (15) and (16). Moreover, the results (2) and (3) follow immediately from (1) and (4).

4. CONCLUSION

Some results of limit theorems on the lag increments of a Gaussian process to a general case are developed under

consideration da(T,t) with O < oL < 1. These results can be considered as a generalization of some previous results

to Gaussian process.
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