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ABSTRACT 

In this paper we have studied the some curvature properties of a quarter-symmetric non metric connection of Kenmostu 
manifolds. We also studied the some properties of projective ricci tensor, pseudo projective curvature tensor and m-
projective curvature tensor. 
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1. INTRODUCTION  

In 1972,  K.  Kenmostu studided a class of contact Riemannian manifold and call it Kenmostu manifold[5]. He studied that 

if Kenmostu manifold satisfies the condition   0., RYXR , then it is a negative curvature -1, where R is the 

Riemannian curvature tensor of type (1, 3) and  YXR , denotes the derivation of the tensor algebra at each point of the 

tangent space. Further Kenmostu manifold is studied by Jun, De and Pathak[3], Yano and Imai[6], Singh and Pandey[10] , 
Tripathi[7] and many others. 

In 1975, Golab[12] introduced the quarter-symmetric linear connection on a differentiable manifold. Let T be the torsion 
tensor defined as 

                           
   YXXYYXT YX ,,   

A linear connection   in an n-dimensional differentiable manifold is said to be quarter-symmetric connection if its torsion 

tensor is defined by 

                          
      YXXYYXT  ,  

Where  is 1-form,  is tensor of type (1, 1) and X and Y is vector fields. 

A quarter-symmetric linear connection  is satisfies the condition  

                                
0 gX for all TMX   

then  is said to be quarter-symmetric non metric connection otherwise it is metric connection where TM is the lie algebra 

of vector field of manifold. The quarter-symmetric  non metric connection is studied by Prakash and Pandey[2], Prakash 
and Narain[1], Singh and Pandey[10], Yano and Imai[6], Biswas and De[11], Rastogi[14], Shukla and Jaiswal[8], Mishra 
and Pandey[9], Mkhopadhyay, Ray and Barua[13], Biwas and Sengupta[4] and many others. 

This paper is organized as follows: 

After the introduction, in section2 we have the brief introduction of Kenmostu manifold admitting the quarter-symmetric non 
metric connection. We studied the projective ricci tensor of quarter-symmetric non metric Kenmostu manifold in section3. 
We discuss the pseudo projective tensor and M-projective curvature in section4 and section5 respectively. At last in 
section6 we prove some results base on the some curvature tensor (concircular curvature and conharmonic curvature). 

2.  PRELIMINILIARIES 

Let M be an odd n-dimensional almost contact metric structure  g,,,  , where   is a tensor field of  1,1  type,   is 

1-form and g is the Riemannian metric satisfying the conditions:  

                                              XXX                                                                                                              (2.1) 

                                          XX 
                                                                                                                                (2.2)

 

                                        0X
                                                                                                                                (2.3)

 

                                          1
                                                                                                                                  (2.4)       

 

                                           0                                                                                                                                   (2.5) 

                                     1 nrank                                                                                                                            (2.6) 

                                      YXYXgYXg   ,,                                                                                              (2.7) 

For any vector fields X and Y on M. 

The fundamental 2-form  in an almost contact metric manifold is defined by 

                                     YXgYX ,,                                                                                                                    (2.8) 

It can be easily shown that 

                                 YXYX ,,                                                                                                                      (2.9) 
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An almost contact metric manifold is said to be a Kenmotsu manifold if 

                  
      YXgXYYX ,

                          
                                                                      (2.10) 

                            
  XXX                                                                                                                          (2.11) 

Where  is the Levi-Civita connection of g. 

Also in a Kenmotsu manifold the following relations hold: 

                                
       YXYXgYX   ,                                                                                               (2.12) 

                            
     XYYXYXR  ,,                                                                                                      (2.13) 

                                
     XnXS  1,                                                                                                              (2.14) 

                            
         YXnZYSZYS  1,,                                                                                      (2.15) 

                       
          ZYgXZXgYZYXR ,,,                                                                                   (2.16) 

Where R is curvature tensor and S is ricci tensor of the Kenmotsu manifold M.      

Hence, the quarter-symmetric non metric connection of Kenmotsu manifold is defined by[10]  

             YXgXYYY X ,X                                                                                                         (2.17)         

                                                                                                                                                                                                                                                   
Such that 

               
          YXgZZXgYZYgX ,,,                                                                                         (2.18) 

It also satisfies[10]:          

                          YXYX                                                                                                                             (2.19) 

                                 YXgYXYXXYYX ,                                                              (2.20) 

                           YZXXZYYZXgXZYgZYXRZYXR   ,,,,,,
                         

(2.21) 

                            ZYgnZYSZYS ,1,,                                                                                                     (2.22) 

                          1 nnrr                                                                                                                                   (2.23) 

                                0,,,,,,  YXZRXZYRZYXR                                                                                 (2.24) 

                             0,,  YZSZYS                                                                                                                    (2.25) 

Where R  and S are curvature tensor and ricci tensor of Kenmotsu manifold admitting the quarter-symmetric non metric 

connection respectively. 

3.  PROJECTIVE RICCI TENSOR 

Definition3.1: Let M be an odd n-dimensional Kenmotsu manifold with the quarter-symmetric non metric 

connection . The projective ricci tensor tensor of M with respect to quarter-symmetric non metric connection is 

defined by 

                        

 
 

 
 

 YXg
n

r
YXS

n

n
YXP ,

1
,

1
,ˆ





                                                                                  (3.1) 

By using (2.22) and (2.23), we get 

                         
   YXPYXP ,,


                                                                                                                              (3.2) 

Hence we state: 
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Theorem1: Projective ricci tensor of Kenmostu manifold with the Riemannian connection  is identical to the projective 

ricci tensor of Kenmostu manifold admitting the quarter-symmetric non metric connection . 

From (3.1), we have 

                          
    0,ˆ,ˆ  XYPYXP                                                                                                                      (3.3) 

From (3.3) we can state: 

Theorem2: Projective ricci tensor of Kenmostu manifold admitting the quarter-symmetric non metric connection is 

symmetric. 

Again if 0ˆ P , then we have 

                          

 
 

 YXg
n

r
YXS ,

1
,


                                                                                                                 (3.4) 

Therefore we can state: 

Theorem3: If projective ricci tensor is flat, then the Kenmostu manifold M admitting the quarter-symmetric non metric 

connection become the Einstein manifold.  

4.  PSEUDO PROJECTIVE CURVATURE TENSOR 

Definition4.1: Let M be an odd n-dimensional Kenmostu manifold with the quarter-symmetric non metric 

connection , then the pseudo projective curvature tensor of M with respect to quarter-symmetric non metric 

connection is defined by 

     

 

           YZXgXZYgb
n

a

n

r
YZXSXZYSbZYXRa

ZYXP

,,
)1(

,,,

,
~

















                                   

(4.1) 

Where a and b are constant, such that 0, ba  

By using (4.1), (2.21), (2.22) and (2.23), we have 

            

               

   
    YZXgXZYgb

n

a

n

r

YZXSXZYSbYZXXZYZYXRa

ZYXP

,,
11

,,,

),(
~

















                                         (4.2) 

Using (2.24) and (2.25) in (4.2), we have 

               
      0,

~
,

~
,

~
 YXZPXZYPZYXP                                                                                                  (4.3) 

 Hence we can state: 

Theorem 4: In Kenmostu manifold, admitting the quarter-symmetric non metric connection, the pseudo projective 

curvature tensor is cyclic.  

In (4.1) taking inner product with U and contracting with X and U, we get 

               

 

     
 

   ZYgnb
n

a

n

r
ZYSbnZYSa

ZYS

,1
1

,1,

,
~

















                                                                (4.4) 

If 0S  and 0r , then 0
~
S  

Now we can state: 
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Theorem5: In Kenmostu manifold with quarter-symmetric non metric connection, the ricci tensor of pseudo projective 

curvature is vanishes, if ricci tensor and scalar curvature of quarter-symmetric non metric Kenmostu manifold is vanishes. 

If pseudo projective curvature is flat, from (4.1) we have 

                 

          

 
        UYgZXgUXgZYgb

n

a

n

r

UYgZXSUXgZYSbUZYXRa

,,,,
1

,,,,,,,















                                                               (4.5) 

In (4.5), we put ieUX   and taking summation both sides we obtain 

                                

   ZYg
n

r
ZYS ,,                                                                                                                      (4.6) 

Hence from (4.6), we can state: 

Theorem6: If the pseudo projective curvature tensor of quarter-symmetric non metric Kenmostu manifold is flat then 

Kenmostu manifold become Einstein manifold.                                                               

5.  m-PROJECTIVE CURVATURE TENSOR 

Definition5.1: Let M be an odd n-dimensional Kenmostu manifold with the quarter-symmetric non metric connection , 

then the m-projective curvature tensor of M with respect to quarter-symmetric non metric connection is defined by 

   

 

 
 

        YQZXgXQZYgYZXSXZYS
n

ZYXR

ZYXW

,,,,
12

1
,

,








                                                (5.1) 

From (2.24), (2.25) and (5.1), we obtain 

            
      0,,,   YXZWXZYWZYXW                                                                                            (5.2) 

Hence we can state: 

Theorem7: In Kenmostu manifold admitting the quarter-symmetric non metric connection, m-projective curvature tensor is 

cyclic. 

If 0S , then from (5.1) we get 

                   
   ZYXRZYXW ,, 

                                                                                                                         (5.3) 

Colloary8: If ricci tensor of Kenmostu manifold with the quarter-symmetric non metric connection is vanishes then m-

projective curvature tensor and curvature tensor of quarter-symmetric non metric connection are identical. 

If 0W and taking inner product with U in (5.1) we obtain 

  

 
                ZXgUYSZYgUXSUYgZXSUXgZYS

n

UZYXRg

,,,,,,,,
1

1

,,






                                       (5.4) 

From (5.4), we have 

                   ZYg
n

r
ZYS ,,                                                                                                                                      (5.5) 

Therefore we can state: 

Theorem9: Let M be the Kenmostu manifold admitting the quarter-symmetric non metric connection. If m-projective 
curvature of M is flat then M becomes Einstein manifold. 

Again we take the inner product with U in (5.1) and put ieUX   , we get 
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   
 

      ZYgrZYSn
n

ZYSZYS ,,2
12

1
,, 




                                                                     (5.6) 

Theorem10: If M be a Kenmostu manifold admitting a quarter-symmetric non metric connection whose ricci tensor and 

scalar curvature both vanishes then the ricci tensor with respect to m-projective curvature also vanishes.  

6.   SOME CURVATURE PROPERTY 

Definition6.1: Let M be an odd n-dimensional Kenmostu manifold admitting the quarter-symmetric non metric 

connection . The concircular curvature tensor of M with respect to quarter-symmetric non metric connection is defined 

by 

                  

   
 

    YUXgXUYg
nn

r
UYXRUYXZ ,,

1
,, 


                                                              (6.1) 

   From (6.1), we can easily find 

                   
      0,,,  YXUZXUYZUYXZ                                                                                              (6.2) 

Hence we can say, 

Theorem11: The concircular curvature tensor of Kenmostu manifold M with respect to quarter-symmetric non metric 

connection is cyclic.   

Now if concircular curvature tensor is flat and taking inner product with respect to vector field V in (6.1), we obtain  

                                  

   ZYg
n

r
ZYS ,,   

Therefore we can state: 

Theorem12: Let M be the Kenmostu manifold admitting the quarter-symmetric non metric connection. If the concircular 

curvature tensor is flat then M gives the Einstein manifold. 

Definition6.2: Let M be an odd n-dimensional Kenmostu manifold admitting the quarter-symmetric non metric 

connection . The conharmonic curvature tensor of M with respect to quarter-symmetric non metric connection is defined 

by  

       

 

 
 

        QYZXgQXZYgYZXSXZYS
n

ZYXR

ZYXV

,,,,
2

1
,

,








                                           (6.3) 

From (6.3), we have 

               
      0,,,  YXZVXZYVZYXV                                                                                                   (6.4) 

Again we can state: 

Theorem13: The conharmonic curvature tensor of Kenmostu manifold M with respect to quarter-symmetric non metric 

connection is cyclic.  

If 0S , then from (6.3) we have 

                          ZYXRZYXV ,,                                                                                                                          (6.5) 

From (5.3) and (6.5), we obtain 

                           ZYXWZYXV ,,                                                                                                                      (6.6) 

Now from (6.6), we state: 

Theorem14: If ricci tensor of Kenmostu manifold with the quarter-symmetric non metric connection is vanishes then m-

projective curvature tensor and concircular curvature tensor of quarter-symmetric non metric connection are identical. 

 If conharmonic curvature tensor is flat and taking inner product with respect to vector field U in (6.3), we obtain 

                              0r                                                                                                                                                   (6.7) 
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Hence finally we can state: 

Theorem15: Let M be the Kenmostu manifold admitting the quarter-symmetric non metric connection. If the 

conharmonic curvature tensor of M is flat then scalar curvature of Kenmostu manifold admitting the quarter-symmetric non 
metric connection is vanishes. 
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