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ABSTRACT 

The effect of wall heat conduction on natural convection heat transfer in cavities has gained attention of many researchers 
in recent years due to its wide application areas in engineering such that building heating and cooling and thick 
enclosures, etc. 

In this work, we consider a two-dimensional numerical study of a rectangle cavity filled with an air with two vertical 
conductive walls of finite thickness. The enclosure is subjected to horizontal temperature gradient, the vertical boundaries 
are isothermal at different temperatures whereas the remaining walls are adiabatic. The theoretical study involved the 
numerical solution of the Navier-stokes and energy equations by using finite difference method. The stream-vorticity 
formulation was used in the mathematical model. The physical problem depends on five parameters: Rayleigh number 

(1000˂Ra˂1000000), the Prandtl number (Pr=0.7), the wall to fluid thermal conductivity ratio (0.1≤Kr≤10), solid  

to fluid thickness ratio (0.5≤L1/L2≤1.5), the ratio of (left or right) solid thickness to the height (D =
L1

H
=

0.5,0.6667,0.75) and the aspect ratio (H/L= 0.5,1,1.5). The main focus of the study is on examining the effect of 

conduction in the wall on the natural convection flow. The results are presented to show the effect of these parameters on 
the heat transfer and fluid flow characteristics. 
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conduction-convection heat transfer; finite thickness walls; rectangular enclosure; finite difference method; the ratio of (left 

or right) solid thickness to the height. 
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1.INTRODUCTION 
The effect of wall heat conduction on natural convection heat transfer in cavities has gained attention of many researchers 

in recent years due to its wide application areas in engineering such as building heating and cooling, thick walled 

enclosures, cooling of electronic equipments, internal combustion engines and solar collectors. Moreover, researchers 

have performed several numerical and experimental studies on natural convection to investigate the effect of wall heat 

conduction on heat transfer. 

The problem of natural convection flow in a square and rectangular enclosure with uniform temperature at vertical walls 

and insulated top and bottom walls has been the subject of many studies for example: Jones (1979). Effect of wall 

conductance on natural convection in differently oriented square cavities was studied by Kim and Viskanta (1984). Baytas 

et al. (2001) studied steady-state conjugate natural convection in a square cavity filled with a porous media. Yedder and 

Bilgen (1997) analyzed laminar natural convection in an inclined enclosure bounded by a solid wall with its outer boundary 

at constant temperature while the opposing side has a constant heat flux. Kimura, Tiwata, Okajima and Pop (1997) 

presented a review of conduction-convection conjugated natural convection from plates or bodies in a  fluid-saturated 

porous medium. The coupled heat transfers in vertical alveolar building envelopes formed by hollow clay tiles have been 

studied by Abdelbaki and Zrikem (1999). Kikuchi et al. (2004) numerically investigated the 2-D conduction effect of vertical 

walls on natural convection of sodium in a square enclosure and showed that non-uniform temperature distribution at fluid-

wall interface caused an enhancement in heat transfer for low conducting stainless steel wall.  

Steady conjugate natural-conduction heat transfer in a two-dimensional porous enclosure with finite wall thickness was 

studied numerically by Saeid (2007). Varol et al. (2008) studied a porous enclosure bounded by two solid massive walls 

from vertical sides at different thicknesses. Natural convection inside a two-dimensional cavity with a wavy right vertical 

wall has been studied by Dalal and Das (2008).Aminossadati and Ghasemi (2009) numerically studied natural convection 

in a partially heated enclosure from below and filled with different types of nanofluids and found  that at low Rayleigh 

numbers a 20% addition of these nanoparticles to pure water resulted in a 42.8% reduction of the heat source maximum 

temperature. In the study of Basac et al. (2009), heat flow patterns in the presence of natural convection within trapezoidal 

enclosures have been analyzed with heatlines concept.  

The aim of the present study is to investigate the effect of wall heat conduction on natural convection heat transfer in a 

rectangular cavity filled with an air with two vertical conductive walls of finite thickness.  

The governing equations for the problem which are continuity, momentum and energy equations are presented . The 

continuity and the momentum equations are transformed to the stream function and the vorticity equations . The boundary 

conditions for all dependent variables are also described. The set of governing equations are solved by finite difference 

method with the selected finite difference solution technique . 

The results will be illustrated for Rayleigh number(103 ≤ Ra ≤ 106),Prandtl number(Pr=0.7), thermal conductivity ratio 

(0.1 ≤ kr ≤ 10), solid to fluid thickness ratio L1 L2 = 0.5,1,1.5  ,the ratio of (left or right) solid thickness to the height 

(D =
L1

H
= 0.5,0.6667,0.75) and the aspect ratio (H/L= 0.5,1,1.5). 

2. PROBLEM FORMULATION AND GOVERNING EQUATIONS 

The physical problem is modelled as a two-dimensional rectangular enclosure with a horizontal length L and a height H. 

The left and right vertical walls have a thickness L1. The vertical walls of the enclosure are maintained at different Th       

(left wall) and Tc  (right wall) constant temperature such that Th  is greater than Tc Th > Tc , while the horizontal walls 

are insulated. The fluid part between two vertical walls is considered for air with Prandtl number (Pr=0.7) and for Rayleigh 

number changing from  103  to  106 . 

The following assumptions are made for the problem: 

(i) The flow is laminar and two-dimension. 

(ii) The fluid is Newtonian viscous, and incompressible. 

(iii) Fluid properties are constants except in the buoyancy term consideration. 

(iv) Viscous dissipation term is negligible. 
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(v) Heat flow by radiation is negligible. 

(vi) No internal heat source or heat sink is involved. 

(vii) The boussinesq approximation is invoked for the fluid properties to relate density changes to temperature changes. 

 

The governing equations for the problem can be written as follow: 

Fluid Part 

Continuity Equation  
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
=0    ………………….(1) 

Momentum Equation (x-direction) 

𝜕𝑢

𝜕𝑡
+𝑢

𝜕𝑢

𝜕𝑥
+𝑣

𝜕𝑢

𝜕𝑦
=−

1

𝜌

𝜕𝑝

𝜕𝑥
+𝜗 𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2    ………………….(2) 

Momentum Equation (y-direction) 

𝜕𝑣

𝜕𝑡
+𝑢

𝜕𝑣

𝜕𝑥
+𝑣

𝜕𝑣

𝜕𝑦
=−

1

𝜌

𝜕𝑝

𝜕𝑦
+𝜗 𝜕2𝑣

𝜕𝑥2+
𝜕2𝑣

𝜕𝑦2 +𝐹𝑦    ………………….(3) 

Energy Equation 

𝜕𝑇𝑓

𝜕𝑡
+ 𝑢

𝜕𝑇𝑓

𝜕𝑥
+ 𝑣

𝜕𝑇𝑓

𝜕𝑦
= 𝛼  

𝜕2𝑇𝑓

𝜕𝑥2 +
𝜕2𝑇𝑓

𝜕𝑦2     ………………….(4)  

NOMENCLATURE 
x    x-coordinate, (m) .                                   g   gravitational acceleration,  𝑚. 𝑠−2 . 
X   non-dimensional X-coordinate .                        L   length of the cavity , (m) .             
Y y-coordinates, (m). 𝐿1 thickness of the solid walls,(m).                                                                                Y  non-

dimensional Y-coordinate.            
𝐿1

𝐿
 non-dimensional wall thickness. 

u velocity component in x-direction, 𝑚. 𝑠−1 . T time, (s). 
U non-dimensional velocity component in X-direction.Greek symbols 

v  velocity component in y-direction,  𝑚. 𝑠−1 .     Ψ dimensionless stream function. 

V non-dimensional velocity component in Y-direction.   Ω dimensionless vorticity.       

𝑅𝑎  Rayleigh number,  𝑔𝛽 𝑇𝑕 − 𝑇𝑐 𝐿
3/𝜗𝛼 .𝜃 non-dimensional temperature . 

𝑃𝑟   Prandtl number,  𝜗/𝛼  .             α  effective thermal diffusivity, (𝑚2. 𝑠−1) .                                                              

P   non-dimensional pressure.                β  coefficient of thermal expansion, (𝐾−1).   

T  dimensional temperature, 𝐾 .               𝜗  kinematic viscosity (𝑚2 . 𝑠−1). 

𝑘𝑓    thermal conductivity of the fluid,  𝑊. 𝑚−1. 𝑘−1 .𝜌 density, (𝑘𝑔. 𝑚3). 

𝑘𝑠thermal conductivity of the wall, 𝑊. 𝑚−1. 𝑘−1  .𝜏  non-dimensional time.              

𝑘𝑟  thermal conductivity ratio, 𝑘𝑠/𝑘𝑓 .                                         Subscripts 

D the ratio of (left or right) solid thickness to the height(D=
𝐿1

𝐻
).    𝑐  cold. 

H  height of the cavity, (m) .                                                          𝑕  hot.                                            

𝐹𝑦  body force, (N) .                                                                       𝑓  fluid part. 

𝑁𝑢 local Nusselt number.                                                          𝑠  solid part.                                              

𝑁𝑢     average Nusselt number. 
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Solid Part 

Energy Equation  

𝜕𝑇𝑠

𝜕𝑡
= 𝛼  𝜕2𝑇𝑠

𝜕𝑥2 +𝜕2𝑇𝑠
𝜕𝑦2                            ………………….(5) 

The body force per unit mass due to buoyancy in the y-direction (Fy) can be obtained by the boussinesq approximation: 

𝜌 = 𝜌0 1 + 𝛽 𝑇 − 𝑇𝑐   …………………(6) 

Where (β) is the volume coefficient of thermal expansion and (ρ0) is the bulk fluid density .Thus, the body force (Fy) 

becomes: 

𝐹𝑦 = 𝑔𝛽 𝑇 − 𝑇𝑐       ………………….(7) 

Then, the y-momentum equation (3) becomes: 

𝜕𝑣

𝜕𝑡
+𝑢

𝜕𝑣

𝜕𝑥
+𝑣

𝜕𝑣

𝜕𝑦
=−

1

𝜌

𝜕𝑝

𝜕𝑦
+𝜗 𝜕2𝑣

𝜕𝑥2+
𝜕2𝑣

𝜕𝑦2 +𝑔𝛽 𝑇−𝑇𝑐       ………………….(8) 

 

 

 

 

 

 

 

 

 

 

Fig.1:Schematic diagram of the physical model and coordinate system 

2.1 Initial And Boundary Conditions  

The governing equations are subjected to the following  initial and boundary conditions: 

Initial Conditions  

𝑇 = 𝑇𝑐     ,   𝑢 = 𝑣 = 0     𝑎𝑡    𝑡 = 0    ………………….(9) 

Boundary Conditions𝑓𝑜𝑟  𝑡 > 0:                                                                                                      

𝑇 = 𝑇𝑕     ,   𝑢 = 𝑣 = 0     𝑎𝑡    𝑥 = 0    ,   0 < 𝑦 < 𝐻……………….(10a) 

𝐿1 
air 

H 

𝐿1 
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𝑇 = 𝑇𝑐     ,   𝑢 = 𝑣 = 0     𝑎𝑡𝑥 = 𝐿    ,   0 < 𝑦 < 𝐻………………(10b)  
𝜕𝑇

𝜕𝑦
= 0    ,   𝑢 =

𝑣 = 0     𝑎𝑡𝑦 = 0    ,   0 < 𝑥 < 𝐿………………(10c)  
𝜕𝑇

𝜕𝑦
= 0    ,   𝑢 = 𝑣 = 0     𝑎𝑡𝑦 =

𝐻    ,   0 < 𝑥 < 𝐿           ….…………..(10d) 𝑇𝑓 = 𝑇𝑠  , 𝐾𝑓
𝜕𝑇𝑓

𝜕𝑥
= 𝐾𝑠

𝜕𝑇𝑠

𝜕𝑥
𝑎𝑡𝑥 = 𝐿1𝑎𝑛𝑑𝑥 =

𝐿1 + 𝐿2  , 0 < 𝑦 < 𝐿   ..…………….(10e) 

2.2 Dimensionless Form Of The Governing Equations  
The governing equations are made dimensionless using the following non-dimensionalizing parameters: 

𝑋 =
𝑥

𝐿
 ,   𝑌 =

𝑦

𝐿
 , 𝑈 =

𝑢𝐿

𝛼
 , 𝑉 =

𝑣𝐿

𝛼
  , 𝜏 =

𝑡𝛼

𝐿2
   , 𝜃 =

𝑇 − 𝑇𝑐

𝑇𝑕 − 𝑇𝑐
 , 𝑃 =

𝑝𝐿2

𝜌𝛼2
 

The governing equations (1)-(8) reduce to non-dimensional form: 

𝜕𝑈

𝜕𝑋
 + 

𝜕𝑉

𝜕𝑌
=0                                 ...…………………….(11) 

𝜕𝑈

𝜕𝜏
+𝑈

𝜕𝑈

𝜕𝑋
+𝑉

𝜕𝑈

𝜕𝑌
=−

𝜕𝑃

𝜕𝑋
+𝑃𝑟 𝜕2𝑈

𝜕𝑋 2+
𝜕2𝑈

𝜕𝑌2                                ……………………….(12) 

𝜕𝑉

𝜕𝜏
+𝑈

𝜕𝑉

𝜕𝑋
+𝑉

𝜕𝑉

𝜕𝑌
=−

𝜕𝑃

𝜕𝑌
+𝑃𝑟 𝜕2𝑉

𝜕𝑋 2+
𝜕2𝑉

𝜕𝑌2 +𝑅𝑎𝑃𝑟𝜃                                ………………………(13) 

𝜕𝜃𝑓

𝜕𝜏
+ 𝑈

𝜕𝜃𝑓

𝜕𝑋
+ 𝑉

𝜕𝜃𝑓

𝜕𝑌
= 

𝜕2𝜃𝑓

𝜕𝑋 2 +
𝜕2𝜃𝑓

𝜕𝑌2                                 ………………………(14) 

𝜕𝜃𝑠
𝜕𝜏

 =𝛼∗ 
𝜕2𝜃𝑠
𝜕𝑋 2  + 

𝜕2𝜃𝑠
𝜕𝑌2     ………………..……..(15) 

Where:𝑃𝑟 =  
𝜗

𝛼
=

𝜇𝐶𝑝

𝐾
  is a prandtl number,Ra =  

g β (Th −Tc )L3

ϑα
 is a Rayleigh number and α∗ =

αs

αf
  is the diffusivity 

ratio, we take  α∗= 1. 

Normalized X and Y moment equations are combined together to eliminate the pressure terms, we shall define a 

dimensionless stream function Ψ and vorticity Ω as follow: 

𝑈 =
𝜕𝛹

𝜕𝑌
      ,    𝑉 = −

𝜕𝛺

𝜕𝑋
                                                                  ……………………….(16) 

and    

𝛺 =  
𝜕𝑉

𝜕𝑋
−

𝜕𝑈

𝜕𝑌
                                                                                   ……………………….(17) 

Eliminating the pressure terms in equations (12) and (13) by cross differentiation (differentiate equation (12) with respect 

to Y and equation (13) with respect to X). We can express the resulting equations in terms of dimensionless stream 

function, vorticity and the energy as: 

𝜕2𝛹

𝜕𝑋 2  + 
𝜕2𝛹

𝜕𝑌2    = −𝛺                                                                         ……………………….(18)  
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𝜕𝜃𝑠
𝜕𝜏

 =𝜕2𝜃𝑠
𝜕𝑋 2  + 

𝜕2𝜃𝑠
𝜕𝑌2                                                                             ………………………….(19) 

𝜕𝛺

𝜕𝜏
+ 

𝜕𝛹

𝜕𝑌  

𝜕𝛺

𝜕𝑋  
− 

𝜕𝛹

𝜕𝑋  

𝜕𝛺

𝜕𝑌  
=𝑃𝑟 

𝜕2𝛺

𝜕𝑋 2+
𝜕2𝛺

𝜕𝑌2  +𝑅𝑎 𝑃𝑟
𝜕𝜃𝑓

𝜕𝑋  
                                  …………………………..(20) 

𝜕𝜃𝑓

𝜕𝜏
+ 

𝜕𝛹

𝜕𝑌

𝜕𝜃𝑓

𝜕𝑋
−

𝜕𝛹

𝜕𝑋

𝜕𝜃𝑓

𝜕𝑌
= 

𝜕2𝜃𝑓

𝜕𝑋 2 +
𝜕2𝜃𝑓

𝜕𝑌2                                                   …………………………(21) 

2.3  Dimensionless Initial And Boundary Conditions  
The initial and boundary conditions (9) and (10) in the dimensionless form are given by : 

Dimensionless initial conditions 

𝜃𝑓 = 𝜃𝑠 =  𝑈 = 𝑉 = 𝛺 = 𝛹 = 0      𝑎𝑡𝜏 = 0                         …………………………(22) 

Dimensionless  boundary  conditions𝑓𝑜𝑟𝜏 > 0: 

𝜃 = 1    ,   𝑈 = 𝑉 = 𝛹 = 0     𝑎𝑡𝑋 = 0    ,   0 < 𝑌 <
𝐻

𝐿
         ………………………..(23a) 

𝜃 = 0    ,   𝑈 = 𝑉 = 𝛹 = 0     𝑎𝑡𝑋 = 1    ,   0 < 𝑌 <
𝐻

𝐿
         ………………………..(23b) 

𝜕𝜃

𝜕𝑌
= 0  , 𝑈 = 𝑉 = 𝛹 = 0 , 𝛺 = −

𝜕2𝛹

𝜕𝑌2
𝑎𝑡𝑌 = 0 , 0 < 𝑋 < 1    …………………….(23c) 

𝜕𝜃

𝜕𝑌
= 0  , 𝑈 = 𝑉 = 𝛹 = 0 , 𝛺 = −

𝜕2𝛹

𝜕𝑌2
𝑎𝑡𝑌 =

𝐻

𝐿
 , 0 < 𝑋 < 1   …………………….(23d) 

𝜃𝑓 = 𝜃𝑠  ,
𝜕𝜃𝑓

𝜕𝑋
= 𝐾𝑟

𝜕𝜃𝑠

𝜕𝑋
 , 𝑈 = 𝑉 = 𝛹 = 0 , 𝛺 = −

𝜕2𝛹

𝜕𝑋2 𝑎𝑡𝑋 =
𝐿1

𝐿
𝑎𝑛𝑑𝑋 =

𝐿1+𝐿2

𝐿
, 0 < 𝑌 <

𝐻

𝐿
 ..(23e) 

where   Kr =
Ks

Kf
is the thermal conductivity ratio. 

The physical quantities of interest in this problem are the local and average Nusselt numbers, defined respectively by: 

𝑁𝑢 = −  
𝜕𝜃

𝜕𝑋
 

𝑋=𝐿1
𝐿

,
𝐿1+𝐿2

𝐿

    ;       𝑁𝑢    =
1

 𝐻 𝐿  
 𝑁𝑢𝑑𝑦

𝐻 𝐿 

0
             …………………………(24) 

3. Solution Procedure  

 The governing dimensionless partial differential equations are discretized to a finite difference form, the entire domain is 

subdivided into a mesh system, size (n*m), ensuring that the boundaries lie on grid points. 

The appropriate finite difference scheme representations of the partial differential terms in the governing equations are 

cast and used to replace each of the terms. 

The algebraic equations obtained from finite difference for the stream function were solved by (Line Successive Relaxation 

) method, while those for vorticity and temperature were solved by (Alternating Direction Implicit (ADI) Method With 

Relaxation Parameter) in two time step  of ∆τ/2  for each direction.  

The solution of resulting equations was obtained using line-by-line method, which results a Tri-diagonal matrix (TDM) 

solved numerically using Tri-diagonal matrix algorithm (TDMA). The criterion for convergence is examined according to a 

realistic condition for each state variable at each node as:            
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 ∅𝑖,𝑗
𝑛𝑒𝑤 −∅𝑖,𝑗

𝑜𝑙𝑑  

 ∅𝑖,𝑗
𝑜𝑙𝑑  

≤ 10−5                                                                ………………………………(25)   

Where the subscripts i andj refer to a grid node, ∅ is a general dependent variable (θ , Ω  or Ψ). A computer programs 

in (Matlab) were built to execute the numerical algorithms which are mentioned above. 

4. Numerical validation  

In order to validate the numerical model a comparison was made with the results obtained by Belazizia, A., Benissaad, S. 

and Abboudi, S. (2012) for conjugate natural convection in a square enclosure with finite vertical wall thickness as shown 

in Fig.2 and Table 1. A good agreement between the obtained and reported results can be observed. 

 

 

 

 

 

 

 

 

 

 

(a)                                                  (b) 

Fig. 2 : Comparison of streamlines (top) and isotherms (bottom) at 𝑹𝒂 = 𝟏𝟎𝟓, 𝒌𝒓 = 𝟏 ,
𝑳𝟏

𝑯
= 𝟎. 𝟐                                                                                                                              

(a) present study , (b) numerical results of BELAZIZIA  (2012) 

 

Table 1:The comparison between the obtained numerical results and the solution of BELAZIZIA 

 

   

Ra 

 
Kr 

𝑵𝒖 

Results 

obtained by 

BELAZIZIA 

𝐍𝐮     

Present 

Study 

 

500 
0.1 

1 

`0.382 

1.03 

0.383 

1.01 

10 000 
0.1 

1 

0.41 

1.57 

0.41 

1.55 

100 000 
0.1 

1 

0.461 

2.35 

0.460 

2.31 

 

1000 0000 

 

0.1 

1 

0.516 

3.40 

0.571 

3.39 

-1.9267

-3.3718

-4.8168

-6.2619
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Fig. 3 : Isotherms (left) , Streamlines(right) at  Ra=1000 , kr=0.1 
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Fig. 4 : Isotherms (left) , Streamlines(right) at  Ra=100000 , kr=0.1 
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Fig. 5 : Isotherms (left) , Streamlines(right) at  Ra=1000 , kr=1 
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(c)L1/L2=1.5 , 𝑁𝑢    =1.0016,  𝛹𝑚𝑎𝑥  =0.0106 



                                                                                                  
                                                                     ISSN 2347-1921  
                                                       

3124 | P a g e                                                    F e b r u a r y  1 6 ,  2 0 1 5 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

 
 

 
 

Fig. 6 : Isotherms (left) , Streamlines(right) at  Ra=100000 , kr=1 
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5. Results and discussion 

The results are generated for different values of the governing parameters, which are the Rayleigh number 

(1000˂Ra˂1000000), the Prandtl number (Pr=0.7), the wall to fluid thermal conductivity ratio (0.1≤Kr≤10), (left or 

right) solid to fluid thickness ratio ( 0.5 ≤ L1/L2 ≤ 1.5 ), the ratio of height of the model to its length  

 H L = 0.5,1,1.5   and  the ratio of (left or right) solid thickness to the height  D =
L1

H
= 0.5 , 0.6667 , 0.75 . 

5.1 Effect of  ratio of the (left or right) solid to fluid thickness 

To show the effect of solid to fluid thickness ratio (L1/L2) on the thermal field and the circulation of the fluid in the 

enclosure, the isotherms and streamlines are presented in Figs. (3), (4), (5) and (6) for (Ra=1000,100000 , kr=0.1,1 

, H/L=1).As (L1/L2) increases, the average Nusselt number decreases, which indicates conduction domination heat 

transfer in the system. It can see also from streamlines, that the strength of the fluid circulation is increasing with the 

increase of (L1/L2) and leads to reduce the maximum values of the dimensionless stream function  Ψmax  .  

5.2 Effect of Rayleigh number (Ra) and thermal conductivity ratio (kr) 

For (
H

L
= 1 ,

L1

L2
= 1 , D =

1

3
), Figs. (7) and (8), show the effect of both Rayleigh number (Ra) and thermal conductivity 

ratio (kr), on fluid motion in the enclosure. For different values of (kr) and increasing of the values of (Ra), we show the 

enhancement in the heat transfer by natural convection and leads to increase the average Nusselt numbers, and the same 

property for different values of (Ra), the increase of (kr) also tend to increase of the average Nusselt numbers, this is 

due to the thermal field in the fluid part, where the temperature gradient in the horizontal direction is increasing with the 

increase in (kr) (i.e. good conductive wall). A comparison is made for three cases of thermal conductivity ratio (kr 

=0.1,1,10). For poor conductive wall (panel (a) kr=0.1) where the solid wall is insulation  material, the average Nusselt 

number have law values compare with those in panel (b) and (c). This is a logical result since reducing the thermal 

conductivity of the wall leads to the increase in thermal resistance of the overall system and therefore reducing the Nusselt 

number. Also the streamlines in Fig. (8), shows the relationship between thermal conductivity ratio (kr), Rayleigh number 

(Ra), and the maximum values of the dimensionless stream function  Ψmax  . In both cases, the increase of (kr) for 

different values of (Ra) tend to increase of Ψmax  , and the same conclusion for increase in (Ra) for different values of 

(kr). The circulation pattern is in clockwise direction, with flow upward at the hot left interface and downward at the less 

hot right interface. For all values of (Ra) and kr the flow is symmetric, whereas for (kr=10) and (Ra ≥ 105) where the 

interface temperature is not uniform, the flow is   asymmetric. 

5.3 Average and Local Nusselt number 

Fig.(9), shows the effect of the ratio of (left or right) solid thickness to height (D =
L1

H
) on the rate of heat transfer across 

the enclosure for the two cases of (Ra=1000 , 100000) and (kr = 0.1 , 1), We note that for (Ra=1000) and (kr = 

0.1 , 1) with increasing (D), the average Nusselt number is decreasing until (kr =1), the relationship becomes constant 

nearly, then when the values of (kr ˃1), the increasing of (D) tends to increase the values of average Nusselt number 

because the natural convection inside the fluid part is driven by the temperature difference between the left and right 

interfaces. This difference is lower for walls with poor thermal conductivity, it becomes more important with the increase of 

(kr), and lead to increase the average Nusselt number. When (Ra=100000) and for all values of (kr), we see the 

reverse relation between (D) and (Nu    ),that is, the increase of (D) corresponds the decrease of (Nu    ). 

Fig.(10), represents the relationship between (kr) and (Nu    ) at (Ra=1000) with difference values of (D) when the 

height to the length ratio (H/L=0.5). For cases of(D =
1

2
,

2

3
), the increase of (kr) results increase of (Nu    ) except when 

(D =
3

4
) for(kr ≤1), the relationship between(kr) and (Nu    ) remains as in previous cases,but when (kr ˃1), we note the 

change in relationship, (i.e. kr increasing→Nu     decreasing). 
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The variation of the local Nusselt number along the solid-fluid and fluid-solid layer interfaces (X =
L1

L
and X =

L1+L2

L
) are 

shown in Fig. (11) for constant (Ra=1000) and(D = 0.5). For the law values of (kr), the local Nusselt number have 

law values comparing with those at high values of (kr), and the difference among values of Local Nusselt numbers for 

(kr ≥ 1) is greater than for (kr < 1) as shown in Fig.(11). 

5.4  Interface temperature 

The variation of temperatures of left solid-fluid and right fluid-solid layer interfaces (X =
L1

L
 and X =

L1+L2

L
) are shown 

in Fig. (12) for different values of the ratio of (left or right) solid thickness to the height   D = 0.5,0.6667,0.75  at 

constant (kr =1) and (Ra=1000). It is observed that the temperature gradients with respect of Y-direction are 

decreasing with increasing of the values of (D) in both interfaces (X =
L1

L
) and  (X =

(L1+L2)

L
). There is a direct relation 

between (D =
L1

H
) and the solid to fluid thickness ratio  

L1
L2

  (i.e.  
L1
L2

   increases with increasing of (D) and vice versa), 

hence the increasing of (D) results to reduce the temperature difference between the  two interfaces and therefore 

reducing the average Nusselt number. 

 

 

 

 

 

(1):Kr=0.1(a) 𝑁𝑢    = 0.1456                 (b)𝑁𝑢    = 0.1456(c) 𝑁𝑢    =  0.1458   (d) 𝑁𝑢    =  0.148 

 

(2):Kr=1(a) 𝑁𝑢    = 1.0016    (b)  𝑁𝑢    = 1.0042 (c) 𝑁𝑢    =   1.0908   (d) 𝑁𝑢    =  1.2479 

 

 

 

 

 

 

(3):Kr=10(a) 𝑁𝑢    = 2.4852 (b)  𝑁𝑢    = 2.5322(c) 𝑁𝑢    = 3.6398  (d) 𝑁𝑢    =  5.6708 

Fig. 7 : isotherms for  H=L , L1/L2=1, L1/ H =0.333 ,Kr=0.1,1,10 : (a) Ra=1000,(b) Ra=10000, (c) Ra=100000 and (d) 
Ra=1000000 
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(1):Kr=0.1 (a)     𝛹𝑚𝑎𝑥  =0.0048            (b)     𝛹𝑚𝑎𝑥  =0.0481           (c)     𝛹𝑚𝑎𝑥  = 0.4542      (d)   𝛹𝑚𝑎𝑥  =2.0670 

(2):Kr=1(a)    𝛹𝑚𝑎𝑥  =0.0336              (b)   𝛹𝑚𝑎𝑥  =0.3325                   (c)    𝛹𝑚𝑎𝑥  = 2.2765           (d)    𝛹𝑚𝑎𝑥  = 6.1181 

(3):Kr=10(a)     𝛹𝑚𝑎𝑥  =0.0834      (b)   𝛹𝑚𝑎𝑥  =0.8253   (c)    𝛹𝑚𝑎𝑥  =5.6994    (d)     𝛹𝑚𝑎𝑥  =13.9477 

Fig. 8: streamlines for  H=L , L1/L2=1, L1/ H =0.333 ,Kr=0.1,1,10 : (a) Ra=1000,(b) Ra=10000, (c) Ra=100000 and (d) 
Ra=1000000 

 

 

 

 

 

 

 
 
 
 
 
 

Fig. 9: Variation of Nu     with D 
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Fig.10: Variation of Nu    with Kr at Ra = 1000 for difference value of D 

 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
Fig. 11: Local Nusselt number of (solid-fluid)(ــــــ) and (fluid–solid)(…) layer interfaces at: Ra = 1000 and D = 0.5 

 
 

 
 
 

Fig. 12 : Variation of(left solid–fluid\right fluid-solid) interface temperature at constant kr = 1 and Ra = 1000 
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6. Conclusion 

A numerical study was employed to analyze the flow and heat transfer of air filled rectangular enclosure sandwiched 

between  two equal- thickness walls. The vertical boundaries are isothermal at different temperatures whereas the 

horizontal boundaries are adiabatic. The governing parameters are the Rayleigh number (Ra), the Prandtl number (Pr), 

the solid to fluid thermal conductivity ratio (kr), solid to fluid thickness ratio (L1/L2) and the ratio of (left or right) solid 

thickness to the height ( D = 
L1

H
 ). The numerical results indicated that the effect of solid to fluid thickness ratio(L1/L2)on 

the thermal field and the circulation of the fluid in the enclosure such that if (L1/L2) increases, the average Nusselt 

number decreases, which indicates conduction domination heat transfer in the system. It can see also from streamlines, 

that the strength of the fluid circulation is increasing with the increase of (L1/L2) and leads to reduce the maximum 

values of the dimensionless stream function  Ψmax  . For different values of (kr), the increase of (Ra)lead to 

enhancement in the heat transfer by natural convection and increase the average Nusselt numbers, also we get the same 

property by increasing (kr)for different values of (Ra). At interfaces when (Ra=1000)  and the ratio of (left or right) solid 

thickness to the height (D =0.5), for law values of (kr) (poor conductive wall),the Local Nusselt numbers have law 

values comparing with those at high values of (kr). For (kr =1) and (Ra=1000), the temperature gradients with respect 

of Y-direction are decreasing with increasing of the values of (D) in both interfaces (X =
L1

L
) and  (X =

(L1+L2)

L
) and 

therefore reducing the average Nusselt numbers. 
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