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ABSTRACT 

The equation  aa  1
2
1  is used for a golden ratio family to calculate a for a range of values of a in the modular 

ring Z4.  The decimal part of a is then used for x in the infinite series  nx for which the associated sums are found. 

These lead to  a series of generalized Fibonacci sequences. 
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TYPE (METHOD/APPROACH) 

Different types of statistical means are outlined in order to provide a motivation to consider a generalization of the golden 
mean as a generator of generalized Fibonacci numbers.  
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1. INTRODUCTION 

Havil [4] after discussing the Pythagorean fascination with means describes the well-known means together with the 
„Greek Mean‟, summarised here as in Table 1: 

Table 1: Pythagorean means 
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Just as the geometric mean yields the irrational 2 when a = 1 and c = 2, so the same values in the Greek mean yield 

the golden ratio. Havil‟s work suggests scope for generalizations of the Greek mean just as there have been many types 
of generalizations of the other means, such as the superharmonic numbers [3], and contra-harmonic and Heron means 
[10]. 

The “golden ratio ... is associated with a mathematical problem that goes back at least as far as the Pythagorean school of 
mathematics in the sixth century BC. The problem is to find the proportions of a rectangle such that if we remove from it a 
square whose side has the same length as the shorter side of the rectangle, the rectangle that remains has the same 
proportions as the original rectangle” [11].  

More generally, for a odd the function 
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(1.1) 

yields a series of interesting numbers the dominant one being the Golden Ratio when a = 5 [6,7,8]. When the decimal part 

of a is substituted for x in the infinite series [1] 
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(1.2) 

a variety of functions of a is obtained and some examples are considered here. Equation (1.2) is intimately related to the 

Pythagorean problem above. 

2. Characteristics of a 

The characteristics of a depend on the class of a in modular rings [6]. For example, the modular ring Z4 (Table 2) has a 

values for a in classes  141 14 r  and  343 34 r . 
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Table 2:Classes and rows for Z4 

Row 

ri ↓ 

Class 

i  → 
40  41  42  43  

Comments 

0 0 1 2 3 irN i  4
 

1 4 5 6 7 
even 40 , 42  

2 8 9 10 11  nn NN 2, 40  

3 12 13 14 15 
odd 41 , 43 ; nN 2

41  

The set of 41a shows similar characteristics to the Golden Ratio φ5 in Table 3 where the square values of a are omitted 

since they have no decimal parts. 

Table 3: 41a  

 

  a a a
2 

a
-1  

  5 1.6180339 2.6180329 0.618034  

  13 2.3027756 5.3027756 0.4342585  

  17 2.5615528 6.5615527 0.3903882  

  21 2.7912878 7.7912878 0.3582575  

  29 3.1925824 10.1925824 0.3132261  

  33 3.3722813 11.3722813 0.2965351  

  37 3.5413812 12.5413812 0.2813621  

  41 3.7015621 13.7015621 0.2701562  

 

From Table 3, we see that 
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in which   indicates the floor function and because from Equation (1.1) 
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so that the decimal part will stay the same. 
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In a similar manner, when ,43a we have 

,34 3  ra   

and 

 22
2
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(2.3) 

with a different type of pattern . 
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in which    indicates the ceiling function.  Some examples are displayed in Table 4 where the squared functions are not 

unique in so far as the 0.5 can sometimes be added or subtracted to suit the above equations. 

Table 4: 43a  

  a a a
2
-0.5 a

2
+0.5 a

-1  

  3 1.3666025 1.3666025  0.7320508  

  7 1.8228756  3.8228756 0.5485798  

  11 2.1583123 4.1583123  0.4633249  

  15 2.4364916 5.4364916  0.4104262  

  19 2.6794494  7.6794494 0.3732110  

  23 2.8979157  7.8979157 0.34550756  

The inverse function has the decimal part of a present only for a = 5, the golden ratio. However,  12 3

1

3   , which 

follows from the structure of the function when expressed as integer part plus fractional part 
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that is, only when the integer part is unity and a = 5  We observe that for a = 3, 
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so that more generally 
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where k is a rational number. For instance, from Table 4: 
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When a is even, deviations are ±0.25 as in Table 4. 

3. a AND  nx  

If values of the fractional part of a (with a = )14 1 r  are substituted in the infinite series: 
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(3.1) 

then we get Table 5 in which the sum S in (3.1) is expressed as a function of a . 

Table 5: a = 14 1 r  

a < a  > S =  ( - < a>)
-1 

S = f( a ) 

5 0.6180339 2.6180339 15   

13 0.3027756 1.4342584 11

13   

17 0.5615528 2.2807763 1172
1   

21 0.7912878 4.7912878 221   

29 0.1925824 1.2385164 
5
3

295
1   

33 0.3722813 1.5930702 
4
3

334
1   

37 0.5413812 2.1804601 1373
1   

41 0.7015621 3.3507808 
2
3

412
1   

For the elements of 43 , however, the sums are generally only approximately a  (Table 6). 

Table 6: a = 34 3 r  

a < a  > S =  ( - < a>)
-1 

S = f( a ) 

3 0.3660254 1.5773502 342.333
13   

7 0.8228756 5.6457495 275

31   

11 0.1583123 1.1880891 505.0112
1   

15 0.4364916 1.7745964 97.74 15   

19 0.6794494 3.1196322 3.11920
33   

23 0.8979157 9.7958256 42 23   

From there one can pursue further „experimental mathematics‟ [2] to extend some of the ideas in this paper. 
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4. GENERALIZED FIBONACCI NUMBERS 

The golden ratio is related to Fibonacci numbers in a variety of ways [6,7]; for example, 

58lim 5
6 




n

n

n F

F
 

 

(4.1) 

 55 1  . 
(4.2) 

In this section we develop some generalized Fibonacci sequences associated analogously with other members of the 
golden ratio family.  These generalized Fibonacci sequences are not new in that each has been studied separately by 

other authors in its own right (Table 7) in which r1 is the row of a in 41 . 

Table 7: Generalized Fibonacci Numbers 

 
 a 

r1 1,2, 21211   uunuruu nnn  Sloane # [13] 

5 1 1,1,2,3,5,8,13,... A000045 

13 3 1,1,4,7,19,40,97,... A006130 

17 4 1,1,5,9,29,65,181,... A006131 

21 5 1,1,6,11,41,96,301,... A015440 

29 7 1,1,8,15,71,176,673,... A015442 

The sequences in Table 7 can obviously be extended indefinitely, but a less obvious extension is to study their 
intersections [5,14,15].  For example for a =17, r1 = 4, and the sequence is {1,1,5,9,29,65,181,441,1165,2929,7589,…}, 
and 
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which is outlined in Table 8. 
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 1 5 6765 1.6180339 1.6180339  

 2 9 349525 1.9999942 2.0000000  

 3 13 4875913 2.3027037 2.3037756  

 4 17 35877321 2.561213 2.5615528  

 5 21 179854741 2.7902858 2.7912878  

 

The first row is a particular case of the well-known result for the limit of the ratio of consecutive Fibonacci numbers, 

namely nn
n

FF 1lim 


equals the golden ratio [9]. 

5. FINAL COMMENTS 

The values 41a and 43a satisfy quadratic polynomials 

1

2 rxx   
(5.1) 

and 

 1222 3

2  rxx  
(5.2) 
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respectively. For example, when a = 15,   4364916.2151
2
1  is a zero of (5.2) when r3 = 3 which shows that the 

integer structure is so important.  We see this in Table 9 where the horizontal sequences may be represented by 

          ininiinin aFaFraFaF (,2 222
1

1     (5.3) 

in which 43ia and δ(j,k) is a divisor function defined for our purposes as: 
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Table 9: First 8 terms of sequences {Fn(ai)} 
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3 1 1/2 6 9 12 16 22 30 41 56 1.366 1.366 

7 2 3/2 6 11 20 35 65 116 212 386 1.821 1.823 

11 3 5/2 6 13 28 58 128 273 593 1273 2.147 2.158 

15 4 7/2 6 15 36 85 211 505 1240 3004 2.423 2.436 

19 5 9/2 6 17 44 116 314 836 2249 6011 2.673 2.679 

23 6 11/2 6 19 52 151 437 1262 3660 10601 2.897 2.898 

27 7 13/2 6 21 60 190 580 1815 5585 17376 3.111 3.098 

31 8 15/2 6 23 68 233 743 2483 8048 26663 3.313 3.284 

 

The vertical sequences also satisfy partial recurrence relations as the interested reader can readily verify. 

The infinite series used here are also commonly found in probability analyses such as rolling dice calculations. Somewhat 
similar approaches have been carried out for the roots of characteristic polynomials for linear recursive sequences of order 
greater than 2 such as [12]. 
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