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Introduction: 

Recently ,Bhaskar and Lakshmikantham [3]  introduced the concepts of  coupled fixed points and mixed monotone 
property  and illustrated these  results by proving the existence and uniqueness of the solution for a periodic boundary 
value problem. Later on  these results were extended and generalized by Sedghi et al. [7] , Fang [4] and  Xin-Qi Hu [5] etc. 

In the study of common fixed points of compatible mappings we often require assumption  

on completeness of the space or continuity of mappings involved besides some contractive condition but the study of fixed 
points of noncomapatible mappings can be extend to the class of non expansive or Lipschitz type mapping pairs even 
without assuming the continuity of the mappings involved or completeness of the space. Aamri and El Moutawakil [1] 
generalized the concepts of noncomapatibility by defining the notion of (E.A) property and proved common fixed point 
theorems under strict contractive condition. Although E.A property is generalization of the concept of non compatible maps 
yet it requires either completeness of the whole space or any of the range space or continuity of maps. But on contrary , 
the new notion of CLR(g)  property recently given by Sintunavarat and Kuman [8]does not impose such conditions. The 
importance of CLRg property ensures that one does not require the closeness of range subspaces. 

The intent of this paper is to establish the concept of E.A. property and (CLRg) property for coupled mappings and an 
affirmative answer  of question  arised by Rhoades[2] whether, by using the concept of noncomapatibility or its generalized 
notion, can we find equally interesting results in fuzzy metric space also ?  

So, our improvement in this paper is four fold as  

(i) Relaxed continuity  of maps completely 

(ii) Completeness of the whole  space  or any of its range space removed. 

(iii) Minimal type contractive condition used. 

(iv) The condition   lim ( , , ) 1t M x y t   is not used. 

(v) Weakened the concept of compatibility  by a more general concept of weak compatible.  

2. Definitions and Preliminaries 

Definition 2.1[9]: A fuzzy set A in X is a function with domain X and values in [0, 1]. 

Definition 2.2 [9]: A binary operation * : [0,1] × [0,1]→ [0,1] is a continuous t-norm if ([0,1], *) is a topological 

abelian monoid with unit 1 s.t. a * b ≤ c * d whenever a ≤ c and 

 b ≤ d , ∀ a, b, c, d ∈ [0,1]. Some examples are below: 

                       (i) *(a, b) = ab, 

                       (ii) *(a, b) = min.(a, b). 

Definition 2.3[5]: Let 
𝑠𝑢𝑝.

0 < 𝑡 < 1
∆(t, t) = 1. A t-norm ∆ is said to be of H-type if the family of functions  ∆𝑚(𝑡) 𝑚=1

∞  is 

equicontinuous at t = 1, where 

                       ∆1 𝑡  = t, ∆𝑚+1 𝑡  = t ∆ (∆𝑚 𝑡 ), m= 1, 2,….., t ∈ [0, 1]. A t-norm ∆ is a       H-type t-norm iff for any 𝜆 ∈ (0, 1), 
there exists 𝛿(𝜆) ∈ (0, 1) such that   ∆𝑚(𝑡) > (1-𝜆) for all m ∈ N, when t > (1-𝛿).  

The t-norm ∆𝑀 = min. is an example of t-norm of H-type. 

 Definition 2.4[9]:The 3-tuple (X, M, *) is called a fuzzy metric space if X is an arbitrary set, * is a continuous t-norm 

and M is a fuzzy set on X
2 × [0,∞) satisfying the following conditions: 

(FM-1) M(x, y, 0) > 0, 

(FM-2) M(x, y, t) = 1   iff x=y, 

(FM-3) M(x, y, t) = M(y, x, t), 

(FM-4) M(x, y, t) * M(y, z, s) ≤ M(x, z, t + s), 

(FM-5) M(x, y,  . ) : (0,∞) → [0,1] is continuous, for all x, y, z ∈ X and s, t > 0. 

We note that M(x, y, . ) is non-decreasing  for all x, y ∈ X. 

Definition 2.5[6]:  An element (x, y) ∈ X × X is called a 

(i) coupled fixed point of the mapping f: X × X → X if 

                                           f(x, y) = x ,      f(y, x) = y. 
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(ii) coupled coincidence point of the mappings f: X × X → X and g: X → X if 

                                          f(x, y) = g(x),    f(y, x) = g(y). 

(iii) common coupled fixed point of the mappings f: X × X → X and g: X → X if 

                                         x = f(x, y) = g(x),    y = f(y, x) = g(y). 

Definition 2.6[5]: An element x ∈ X is called a common fixed point of the mappings         

 f: X × X → X and g: X → X if 

                                         x = f(x, x) = g(x). 

Definition 2.7: Let A,B : X × X → X and  S , T : X → X  be four mappings. Then, the pair of maps (B, S) and (A, T) 

are said to have Common Coupled Coincidence Point if there exist a, b in X such that 

                     B(a, b) = S(a) = T(a) = A(a, b) and B(b, a) = S(b) = T(b) = A(b, a). 

Definition 2.8[3]:  The mappings f: X × X → X and g: X → X are said to be compatible if 

                              lim𝑛→∞𝑀(𝑔𝑓 𝑥𝑛 , 𝑦𝑛 , 𝑓 𝑔 𝑥𝑛 ,𝑔 𝑦𝑛  , 𝑡) = 1, 

                                  lim𝑛→∞𝑀(𝑔𝑓 𝑦𝑛 , 𝑥𝑛 ,𝑓 𝑔 𝑦𝑛 ,𝑔 𝑥𝑛  , 𝑡) = 1, 

for all t > 0 whenever {xn} and {yn} are sequences in X, such that 

          lim𝑛→∞ 𝑓(𝑥𝑛 , 𝑦𝑛) = lim𝑛→∞ 𝑔(𝑥𝑛) = x, lim𝑛→∞ 𝑓(𝑦𝑛 , 𝑥𝑛) = lim𝑛→∞𝑔(𝑦𝑛) = y, for all x, y ∈ X. 

Now we introduce the followings: 

Definition 2.9: The mappings f : X × X → X and g: X → X are called  weakly compatible maps if  

f(x, y) = g(x), f(y, x) = g(y) implies gf(x, y) = f(gx, gy), gf(y, x) = f(gy, gx), for all x, y in X. 

Now, we fuzzify the newly defined concepts of E.A Property introduced by Aamri and Moutawakil [1]  and (CLRg) property 
given by  Sintunavarat and Kuman [8]  for coupled maps as follows:  

Definition 2.10: Let (X, M, *)  be a FM space. Two maps f: X × X → X and g: X → X  are said to satisfy E.A. property 

if there exist sequences {xn} and {yn} in X such that  

lim ( ( , ) limn n n n nf x y gx x    and lim ( ( , ) limn n n n nf y x gy y   , for some x, y in X..  

Definition 2.11: Let (X, M, *) be  a FM space .Two maps f: X × X → X and g: X → X  are said to  satisfy CLRg 

property if there exists sequences {xn} and {yn} in X such that 

lim ( ( , ) lim ( )n n n n nf x y gx g p     and  lim ( ( , ) lim ( )n n n n nf y x gy g q   , for some p, q in X.  

Example 2.1: Let (X, M, *) be a fuzzy metric space, * being a continuous norm with                        X = [0, 1] .Define  

M(x, y, t) = 
𝑡

𝑡+ 𝑥−𝑦  
 for all x, y in X and t > 0. 

Also define the maps f: X × X → X and g: X → X by f(x, y) = 
𝑥 2

2
 + 

𝑦2

2
 and g(x) = 

𝑥

2
  respectively. Note that 0 is  the points of 

coincidence of f and g. It is clear that the pair (f, g) is weakly compatible on X .We next show that the pair (f, g) is not 
compatible. 

Consider the sequences {xn} = { 
1

2
 + 

1

𝑛
 } and {yn} = { 

1

2
 - 

1

𝑛
 }, then 

   2

1 1 1 1 1 1
, , , ( ) , ( )

4 4 2 4 2
n n n n n nf x y f y x g x g y

n n n
        

 

2

lim ( , , ( ), ) 1 ( )
1 1

2

n n n n

t
M f x y g x t g p

t
n n



 
 
   
  
  

, for any p . 
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 

2

lim ( , , ( ), ) 1 ( )
1 1

2

n n n n

t
M f y x g y t g q

t
n n



 
 
   
  
  

 , for any q. 

M(f(gxn, gyn), gf(xn, yn), t) = 
𝑡

𝑡+ 𝑓 𝑔𝑥𝑛 ,𝑔𝑦𝑛  − 𝑔𝑓(𝑥𝑛 ,𝑦𝑛 )  
 = 

𝑡

𝑡 + 
1

4
 (

1

 2
 +  

2

𝑛2 ) 
 ↛ 1 as n → ∞. 

Hence the pair (f, g) is not compatible satisfying E.A property but not CLRg. 

Example 2.2: Let (X, M, *) be a fuzzy metric space, * being a continuous norm with                        X = R. Define  M(x, 

y, t) = 
𝑡

𝑡+ 𝑥−𝑦  
 for all x, y in X and t > 0. Define mappings  

f: X × X → X and g: X → X  by f(x, y) = x - y and g(x) = 2x for all x, y in X and consider the sequences
1

{ }nx
n

 and

1
{ },ny

n
  then

2 2 1
( , ) , ( ) lim ( ( , ), ( ), ) 1 ( )

2
n n n n n n nf x y g x M f x y g x t g

n n
    

2 2 1
( , ) , ( ) lim ( ( , ), ( ), ) 1 ( )

2
n n n n n n nf y x g y M f y x g y t g

n n
        

therefore, f and g satisfy  both the. properties E.A  and  CLRg  

Remark 2.1: From above examples we can say  that 

(1)    Weak compatibility does not imply compatibility 

(2) E.A does not imply (CLRg). 

(3) E.A and (CLRg) does not imply compatibility. 

(4)  In the next example, we show that the maps satisfying (CLRg) property need not be continuous, i.e. 
continuity is not the necessary condition for  maps to satisfy (CLRg) property. 

Example 2.3: Let (X, M, *) be a fuzzy metric space, * being a continuous norm with                        X = [0, ∞).Define  M(x, y, 

t) = 
𝑡

𝑡+ 𝑥−𝑦  
 for all x, y in X and t > 0.Define mappings  

f: X × X → X and g: X → X  as follows 

            f(x, y) =  
𝑥 + 𝑦   𝑖𝑓 𝑥 ∈  0, 1 , 𝑦 ∈ 𝑋

    
𝑥+𝑦

2
   𝑖𝑓 𝑥 ∈  1,∞ ,𝑦 ∈ 𝑋

      and g(x) =  
1 + 𝑥   𝑖𝑓 𝑥 ∈  0, 1 

    
𝑥

2
        𝑖𝑓 𝑥 ∈  1,∞ 

  

We consider the sequences {xn} = { 
1

𝑛
 } and {yn} = {1 + 

1

𝑛
 }.Then, 

   
1 1 2 1 1 1 1

, ( ,1 ) 1 , , (1 , )
2

1 1 1 1 1
( ) ( ) 1 , ( ) (1 )

2 2

n n n n

n n

f x y f f y x f
n n n n n n

g x g g y g
n n n n

       

      

 

  lim , , ( ), 1 (0)n n n nM f x y g x t g    and   lim , , ( ), 1n n n nM f y x g y t  (0)g  

therefore, the maps f and g satisfy (CLRg) property but the maps are not continuous. 

3. Main Results 

Proposition  3.1: Let (X, M, *) be a  Fuzzy Metric Space, * being continuous t-norm of H- 

type with  , , 0,1a b ab a b    . Let A  : X × X → X and S  : X → X  be compatible  mappings such that 

( , )A x y Sx   and  ( , )A y x Sy  for some x,y in X , then   

( , )) ( , ) ( , )AA x y A Sx Sy SSx SA x y    and  ( , )) ( , ) ( , )AA y x A Sy Sx SSy SA y x    
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Proof : Let  nx  and  ny  be the sequences in X such that  nx x   and    , 1,2,3,.............ny y n   and 

( , )A x y Sx , ( , )A y x Sy  so  ( , ),n n nA x y Sx Sx  and  ( , ),n n nA y x Sy Sy . Also the maps A,S  are 

compatible , so 

lim ( ( , ), ( , ), ) 1n n n n nM A Sx Sy SA x y t   and  lim ( ( , ), ( , ), ) 1n n n n nM A Sy Sx SA y x t   

( ( , ), , ) ( ( , ), ( , ), )M A Sx Sy SSx t M A Sx Sy SA x y t  

                               lim ( ( , ), ( , ), ) 1n n n n nM A Sx Sy SA x y t   

Thus , ( , )A Sx Sy SSx , similarly ( , ) ( , )SA x y AA x y . But  ( , )A x y Sx , hence  

( , )) ( , ) ( , )AA x y A Sx Sy SSx SA x y   , 

Similarly we can  have  ( , )) ( , ) ( , )AA y x A Sy Sx SSy SA y x    

Now, we prove the following result for quadruple maps. 

Theorem 3.2: Let (X, M, *) be a  Fuzzy Metric Space, * being continuous t-norm of H-type with 

 , , 0,1a b ab a b    . Let A, B : X × X → X and S , T : X → X  be four mappings satisfying  following conditions: 

(3.1) The pairs (A, S)  and   (B, T) satisfy  CLR(g) property 

(3.2)  ( ( , ), ( , ), )) { ( , , ), ( ( , ), , ), ( ( , ), , )}M A x y B u v kt Min M Sx Tu t M A x y Sx t M B u v Tu t  

, , , , 0,0 1,x y u v X t k    
      where   : 0,1 0,1   is a continuous  functions  such that  

(1) 1, ( )t t     for  0 1.t   Then
 

(i) A  and  S have  point  of coincidence. 

(ii)  B  and T  have  point of coincidence. 

Moreover, if the pairs (A, S) and (B, T) are weakly compatible, then there exists unique x in X such that A(x, x) = T(x) = 
B(x, x) = S(x) = x. 

Proof: Since  the pairs (A, S)  and  (B, T)  satisfy  CLRg property, there exist sequences {xn},  {yn}  /nx  and  /ny  in X 

such that  lim𝑛→∞ 𝐴(𝑥𝑛 , 𝑦𝑛) = lim
𝑛→∞

 S(xn) = Sa, 

 lim𝑛→∞ 𝐴(𝑦𝑛 , 𝑥𝑛)= lim
𝑛→∞

 S(yn) = Sb  and lim𝑛→∞ 𝐵(
/

nx ,
/

ny ) = lim
𝑛→∞

 T(
/

nx ) = Ta/, lim𝑛→∞ 𝐵(
/

ny ,
/

nx )= lim
𝑛→∞

 T(
/

ny ) = Tb/ ,  

for some  a, b, a/ , b/ in X 

Step 1: We now show that the pairs (A, S) and (B, T)  have common coupled coincidence point.   We first show that Sa = 
Ta/.Using (3.2), we have , 

 ( ( , ), ( , ), )) { ( , , ), ( ( , ), , ), ( ( , ), , )}n n n n n n n n n n n nM A x y B x y kt Min M Sx Tx t M A x y Sx t M B x y Tx t  

Taking ,n  we get 
/ /( , , ) { ( , , ),1,1}M Sa Ta kt Min M Sa Ta t      

i.e  
/ / /( , , ) ( , , )M Sa Ta kt M Sa Ta t Sa Ta    , similarly we can have Sb = Tb/. 

Also , 
/ / / / / /( ( , ), ( , ), )) { ( , , ), ( ( , ), , ), ( ( , ), , )}n n n n n n n n n n n nM A y x B x y kt Min M Sy Tx t M A y x Sy t M B x y Tx t      i.e  

/ / /( , , ) ( , , )M Sb Ta kt M Sb Ta t Sb Ta    

Hence  
/ /Sb Ta Sa Tb   . Now, for all t > 0, using condition (3.2), we have 

/ / / / / /( ( , ), ( , ), )) { ( , , ), ( ( , ), , ), ( ( , ), , )}n n n n n nM A x y B a b kt Min M Sx Ta t M A x y Sx t M B a b Ta t              
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 Taking ,n  we get , 
/ / / /( , ( , ), ) ( , ( , ), )M Sa B a b kt M Sa B a b t  

which implies that Sa = B(
/ /,a b ). Similarly, we can get that Sb = B(

/ /,b a ). 

In a similar fashion , we can have  Ta/ = A(a, b) and Tb/ = A(b, a). 

Thus, B(
/ /,a b ) = Sa = Ta/ = A(a, b) and B(

/ /,b a ) = Sb = Tb/ = A(b, a). Thus the pairs (A,S) and  (B,T)  have  common 

coincidence points. 

 Let  Sa  = A(a, b) = B(
/ /,a b )  = Ta/ = x and  Sb  = A(b, a) = B(

/ /,b a ) =  Tb/ = y. Since  (A,S) and  (B,T) are  weakly 

compatible , so  

( , ) ( , ) ( , )Sx SA a b A Sa Sb A x y    and  ( , ) ( , ) ( , )Sy SA b a A Sb Sa A y x   . 

/ / / /( , ) ( , ) ( , )Tx TB a b B Ta Tb B x y    and  
/ / / /( , ) ( , ) ( , )Ty TB b a B Tb Ta B y x   .  

Step 2: We next show that x = y . From (3.2) ,  

/ /( , , ) ( ( , ), ( , ), )M x y kt M A a b B a b kt  

                   =
/ / / /{ ( , , ), ( ( , ), , ), ( ( , ), , )} 1Min M Sa Ta t M A a b Ta t M B a b Ta t     

Thus , x = y .   

Step 3:   Now , we prove that  Sx = Tx, using  (3.2)  again 

  ( , , ) ( , , ) ( ( , ), ( , ), )M Sx Tx kt M Sx Ty kt M A x y B y x kt   

                                                   { ( , , ), ( ( , ), , ), ( ( , ) , )}Min M Sx Ty t M A x y Sx t M B y x Ty t  

                                                   =  { ( , , ), ( ( , ), , ), ( ( , ) , )}Min M Sx Tx t M A x y Sx t M B y x Ty t  

i.e  ( , , ) ( , , )M Sx Tx kt M Sx Ty t Sx Tx Ty    .  

Step 4: Lastly , we prove that Sx = x 

( , , ) ( , , ) ( ( , ), ( , ), )M Sx x kt M Sx y kt M A x y B x y kt   

                                               { ( , , ), ( ( , ), , ), ( ( , ), , )}Min M Sx Tx t M A x y Sx t M B x y Tx t  

Hence   ( , ) ( , )x Sx Tx A x x B x x    . This shows that A, B, S, T have a common fixed point and uniqueness of x 

follows easily from (3.2). 

Corollary 3.1 : Let (X, M, *) be a Fuzzy Metric Space, * being continuous t-norm of H-type 

with  , , 0,1a b ab a b    . Let A , B : X × X → X and S , T : X → X  be four mappings 

satisfying  following conditions: 

(3.3) The pairs (A, S)  and   (B, T) satisfy  CLR(g) property 

 ( ( , ), ( , ), )) { ( , , ), ( ( , ), , ), ( ( , ), , )}M A x y B u v kt Min M Sy Tv t M A y x Sy t M B v u Tv t  

, , , , 0,0 1,x y u v X t k           where   : 0,1 0,1   is a continuous  functions  such that  

(1) 1, ( )t t     for  0 1.t   Then 

(iii) A  and  S have  point  of coincidence. 

(iv)  B  and T  have  point of coincidence. 

Moreover  if the pairs (A, S) and (B, T) are compatible, then there exists unique x in X such 
that A(x, x) = T(x) = B(x, x) = S(x) = x. 
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Corollary 3.2:  Let (X, M, *) be a Fuzzy Metric Space, * being continuous t-norm of H-type with 

 , , 0,1a b ab a b    . Let A , B : X × X → X and S , T : X → X  be four mappings satisfying  following conditions: 

(3.4) The pairs (A, S)  and   (B, T) satisfy  CLR(g) property 

(3.5) ( ( , ), ( , ), )) { ( , , ) ( ( , ), , ) ( ( , ), , )}M A x y B u v kt M Sx Tu t M A x y Sx t M B u v Tu t    

, , , , 0,0 1,x y u v X t k    
      where   : 0,1 0,1   is a continuous  functions  such that  

(1) 1, ( )t t     for  0 1.t   Then
 

(v) A  and  S have  point  of coincidence. 

(vi)  B  and T  have  point of coincidence. 

Moreover  if the pairs (A, S) and (B, T) are  compatible, then there exists unique x in X such that A(x, x) = T(x) = B(x, x) = 
S(x) = x. 

4. An Application 

Corollary 3.3; Let (X, M, *) be a Fuzzy Metric Space, * being continuous t-norm of H-type 

with  , , 0,1a b ab a b    . Let A , B : X × X → X and S , T : X → X  be four mappings 

satisfying  following conditions: 

(3.6) The pairs (A, S)  and   (B, T) satisfy (E.A) property 

(3.7) A(X × X) ⊆ T(X), B(X × X) ⊆ S(X), 

(3.8) S(X)  and T(X)  are  closed subsets of X. 

(3.9) ( ( , ), ( , ), )) { ( , , ) ( ( , ), , ) ( ( , ), , )}M A x y B u v kt M Sx Tu t M A x y Sx t M B u v Tu t    

  , , , , 0,0 1,x y u v X t k    
      where   : 0,1 0,1   is a continuous  functions  such that  

(1) 1, ( )t t     for  0 1.t   Then
 

(vii) A  and  S have  point  of coincidence. 

(viii)  B  and T  have  point of coincidence. 

Moreover  if the pairs (A, S) and (B, T) are compatible, then there exists unique x in X such that A(x, x) = T(x) = B(x, x) = 
S(x) = x. 

Next, we give an example in support of our  theorem 3.2 

.Example 3.1: Let X = [-2, 2], a * b = ab for all a, b 𝜖  [0, 1] and
, 0

( , , )

0, 0

t
t

t x yM x y t

t

 
 

   
  

. Then (X, M, *) is 

a Fuzzy Metric space. Define the mappings 

, :A B X X X   and  , :S T X X   as follows 

 , 0,2 ,
( , )

1,

x y x y X
A x y

otherwise

    
  
  

  and  
 , 0,2 ,

( , )
2,

x y x y X
B x y

otherwise

    
  
  

 

 
 , 0,2 ,

( )
1,

x x y X
S x

otherwise

   
  
  

  and  
 2 , 0,2 ,

( )
2,

x x y X
T x

otherwise

    
  

    

Consider the sequences 

/ /1 1 1 1
, , 1 , 1 ,n n n nx y x y n N

n n n n

       
              
       

 , then the pairs (A,S) and  (B,T) are   weakly 

compatible  and  we see 
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/ /

/ /

1 1 1
lim ( , ) lim ( , ) lim ( ) 0

1 1 1
lim ( , ) lim ( , , ) lim ( ) 0

1 1 1
lim ( , ) lim (1 ,1 ) lim (1 ) 2

1 1 1
lim ( ( , ) lim (1 ,1 ) lim (1 ) 2

n n n n n

n n n n n

n n n n n

n n n n n

A x y A S
n n n

A y x A t S
n n n

B x y B T
n n n

M B y x B T
n n n

  

  

  

  

   

    

     

     

 

So, all the conditions of our theorem  are satisfied . Thus A,B,S and T  have a unique common coupled fixed point in X. 
Indeed, x = 0 is the unique common fixed point which is also a point of discontinuity. 

Remark: Our work sets analogues, unifies, generalizes, extends and improves several well  known results existing in 

literature as the notion of weak compatible is more general than commuting, weakly commuting and compatible maps. Our 
theorems 3.1, 3.2 and 3.3 have been proved by assuming much weaker condition than in analogous results. The results 
concerning commuting, weakly commuting and compatible maps being extendable in the spirit of our theorems, can be 
extended verbatim by simply using wider class of weak compatibly in place of commuting, weakly commuting and 
compatibility maps. Moreover, our results don’t need the maps to be continuous and hence provides an affirmative answer 
of Rhoade’s problem. 
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