## On a two (nonlocal) point boundary value problem of arbitrary (fractional) orders integro-differential equation

A.M.A. El-Sayed<br>Faculty of Science, Alexandria University<br>O.E.Tantawy<br>Faculty of Science, Zagazig University W.A.Hamed * Faculty of Science, Zagazig University Email_wisamahmed32@gmail.com *

## ABSTRACT

Here we study the existence of solutions $y \in C[0,1]$ or $y \in L^{1}[0,1]$ of the functional integral equation
$y(t)=f\left(t, \int_{0}^{1} k(t, s) I^{1-\alpha} y(s) d s\right.$.
As an application we study the existence of solution of a two (nonlocal) point boundary value problem of arbitrary (fractional) orders integrao-differential equation.

KEYWORDS: Fractional integro-differential equation, nonlocal point boundary value problem, fixed point theorem.

## Council for Innovative Research

## Peer Review Research Publishing System

Journal: JOURNAL of ADVANCES IN MATHEMATICS
Vol .11, No. 2
, editorjam@gmail.comwww.cirjam.com

## 1 . Introduction

Let $\alpha \in(0,1]$. Consider the two (nonlocal) point boundary value problem
$x^{\prime}(t)=f\left(t, \int_{0}^{1} k(t, s) D^{\alpha} x(s) d s, \quad t \in(0,1)\right.$
$x(T)=\gamma x(\xi), \quad \tau \in[0,1) \quad, \quad \xi \in(0,1], \gamma \neq 1$.
The existence of solution $x \in C[0,1]$ or $x \in A C[0,1]$ of the problem (1) - (2)are studied.
Where $\mathrm{D}^{\alpha}$ is the coputo derivative of fractional order.

## 2 .Functional integral equation

Let $y=\frac{d x}{d t}$, in (1), then
$\mathrm{x}(\mathrm{t})=\mathrm{x}(0)+\int_{0}^{\mathrm{t}} \mathrm{y}(\mathrm{s}) \mathrm{ds}$
(3)
where y is the solution of the functional integral equation
$y(t)=f\left(t, \int_{0}^{1} k(t, s) I^{1-\alpha} y(s) d s\right.$
(4)

Using (2) we can get
$x(T)=x(0)+\int_{0}^{T} y(s) d s$
and
$x(\xi)=x(0)+\int_{0}^{\xi} y(s) d s$,
$x(0)+\int_{0}^{T} y(s) d s=\gamma x(0)+\gamma \int_{0}^{\xi} y(s) d s$
and we obtain
$x(0)=\frac{Y}{1-Y} \int_{0}^{\xi} y(s) d s-\frac{1}{1-Y} \int_{0}^{T} y(s) d s$,
then
$x(\mathrm{t})=\frac{Y}{1-Y} \int_{0}^{\xi} y(s) d s-\frac{1}{1-Y} \int_{0}^{T} y(s) d s+\int_{0}^{t} y(s) d s$
(5)

### 2.1.Existence results

Consider the following tow sequences of assumptions
(i) $f: I=[0,1] \times R \rightarrow R$ is continuous and satisfies the Lipschitz condition
$|f(t, x)-f(t, y)| \leq L|x-y|, \forall t \in I, \quad x, y \in R$
(ii) $k: I \times I \rightarrow R$ is continuous in $t \in I$ for every $s \in I$ and measurable in $s \in I$ for all $t \in I$ such that
$\sup _{t \in I} \int_{0}^{1}|k(t, s)| d s \leq M$
And
( $\mathrm{i}^{*}$ ) $\mathrm{f}: \mathrm{I} \times \mathrm{R} \rightarrow \mathrm{R}$ is measurable and satisfies the Lipschitz condition
$|f(t, x)-f(t, y)| \leq L|x-y|, \forall t \in I, \quad x, y \in R$
and
$\int_{0}^{1}|f(t, 0)| d t \leq r$
(ii*) $k: I \times I \rightarrow R$ is continuous in $t \in I$ for every $s \in I$ and measurable in $s \in I$ for all $t \in I$ such that $\sup _{s \in I} \int_{0}^{1}|k(t, s)| d t \leq M$

Theorem 2.1: Let the assumptions (i) and (ii) be satisfied. If $\frac{\mathrm{LM}}{\Gamma(2-a)} \leq 1$, then the integral
Equation (4) has a unique solution $y \in C[0,1]$
Proof.Define the operator $F$ which is associated with the integral equation (4) by
$F y(t)=f\left(t, \int_{0}^{1} k(t, s) I^{1-\alpha} y(s) d s \quad, t \in I\right.$
The operator $F$ maps $C[0,1]$ in to it self, for this let $y \in C[0,1], t_{1}, t_{2} \in I, t_{1}<t_{2}$ and $\left|t_{2}-t_{1}\right| \leq \delta$,
then

$$
\begin{aligned}
& \left|F y\left(t_{2}\right)-F y\left(t_{1}\right)\right| \\
& =\mid \mathrm{f}\left(\mathrm{t}_{2}, \int_{0}^{1} \mathrm{k}\left(\mathrm{t}_{2}, \mathrm{~s}\right) \mathrm{I}^{1-\alpha} \mathrm{y}(\mathrm{~s}) \mathrm{d} s-\mathrm{f}\left(\mathrm{t}_{1}, \int_{0}^{1} \mathrm{k}\left(\mathrm{t}_{1}, \mathrm{~s}\right) \mathrm{I}^{1-\alpha} \mathrm{y}(\mathrm{~s}) \mathrm{ds} \mid\right.\right. \\
& =\left|f\left(t_{2}, \int_{0}^{1} k\left(t_{2}, s\right) \int_{0}^{s} \frac{(s-\theta)^{-\alpha}}{\Gamma(1-\alpha)} y(\theta) d \theta d s\right)-f\left(t_{1}, \int_{0}^{1} k\left(t_{1}, s\right) \int_{0}^{s} \frac{(s-\theta)^{-\alpha}}{\Gamma(1-\alpha)} y(\theta) d \theta d s\right)\right| \\
& \leq\left|\mathrm{f}\left(\mathrm{t}_{2}, \int_{0}^{1} \mathrm{k}\left(\mathrm{t}_{2}, \mathrm{~s}\right) \int_{0}^{\mathrm{s}} \frac{(\mathrm{~s}-\theta)^{-\alpha}}{\Gamma(1-\alpha)} \mathrm{y}(\theta) \mathrm{d} \theta \mathrm{ds}\right)-\mathrm{f}\left(\mathrm{t}_{1}, \int_{0}^{1} \mathrm{k}\left(\mathrm{t}_{2}, \mathrm{~s}\right) \int_{0}^{\mathrm{s}} \frac{(\mathrm{~s}-\theta)^{-\alpha}}{\Gamma(1-\alpha)} \mathrm{y}(\theta) \mathrm{d} \theta \mathrm{ds}\right)\right| \\
& +\left|\mathrm{f}\left(\mathrm{t}_{1}, \int_{0}^{1} \mathrm{k}\left(\mathrm{t}_{2}, \mathrm{~s}\right) \int_{0}^{\mathrm{s}} \frac{(\mathrm{~s}-\theta)^{-\alpha}}{\Gamma(1-\alpha)} \mathrm{y}(\theta) \mathrm{d} \theta \mathrm{ds}\right)-\mathrm{f}\left(\mathrm{t}_{1}, \int_{0}^{1} \mathrm{k}\left(\mathrm{t}_{1}, \mathrm{~s}\right) \int_{0}^{\mathrm{s}} \frac{(\mathrm{~s}-\theta)^{-\alpha}}{\Gamma(1-\alpha)} \mathrm{y}(\theta) \mathrm{d} \theta \mathrm{ds}\right)\right| \\
& \leq\left|\mathrm{f}\left(\mathrm{t}_{2}, \int_{0}^{1} \mathrm{k}\left(\mathrm{t}_{2}, \mathrm{~s}\right) \int_{0}^{\mathrm{s}} \frac{(\mathrm{~s}-\theta)^{-\alpha}}{\Gamma(1-\alpha)} \mathrm{y}(\theta) \mathrm{d} \theta \mathrm{ds}\right)-\mathrm{f}\left(\mathrm{t}_{1}, \int_{0}^{1} \mathrm{k}\left(\mathrm{t}_{2}, \mathrm{~s}\right) \int_{0}^{\mathrm{s}} \frac{(\mathrm{~s}-\theta)^{-\alpha}}{\Gamma(1-\alpha)} \mathrm{y}(\theta) \mathrm{d} \theta \mathrm{ds}\right)\right| \\
& +\mathrm{L}\left|\left(\int_{0}^{1} \mathrm{k}\left(\mathrm{t}_{2}, \mathrm{~s}\right) \int_{0}^{\mathrm{s}} \frac{(\mathrm{~s}-\theta)^{-\alpha}}{\Gamma(1-\alpha)} \mathrm{y}(\theta) \mathrm{d} \theta \mathrm{ds}\right)-\left(\int_{0}^{1} \mathrm{k}\left(\mathrm{t}_{1}, \mathrm{~s}\right) \int_{0}^{\mathrm{s}} \frac{(\mathrm{~s}-\theta)^{-\alpha}}{\Gamma(1-\alpha)} \mathrm{y}(\theta) \mathrm{d} \theta \mathrm{ds}\right)\right| \\
& \leq\left|\mathrm{f}\left(\mathrm{t}_{2}, \int_{0}^{1} \mathrm{k}\left(\mathrm{t}_{2}, \mathrm{~s}\right) \int_{0}^{\mathrm{s}} \frac{(\mathrm{~s}-\theta)^{-\alpha}}{\Gamma(1-\alpha)} \mathrm{y}(\theta) \mathrm{d} \theta \mathrm{ds}\right)-\mathrm{f}\left(\mathrm{t}_{1}, \int_{0}^{1} \mathrm{k}\left(\mathrm{t}_{2}, \mathrm{~s}\right) \int_{0}^{s} \frac{(\mathrm{~s}-\theta)^{-\alpha}}{\Gamma(1-\alpha)} \mathrm{y}(\theta) \mathrm{d} \theta \mathrm{ds}\right)\right|
\end{aligned}
$$

$$
\left.+\mathrm{L}\|y\| \int_{0}^{1}\left|k\left(t_{2}, s\right)-k\left(t_{1}, s\right)\right| \int_{0}^{s} \frac{(s-\theta)^{-\alpha}}{\Gamma(1-\alpha)} y(\theta) d \theta \right\rvert\, d s
$$

This prove that $\mathrm{F}: \mathrm{C}[0,1] \rightarrow \mathrm{C}[0,1]$.
Now to prove that $F$ is a contraction we have following, let $x_{1}, x_{2} \in C[0,1]$, then

$$
\begin{aligned}
& \left|\mathrm{Fx}_{2}(\mathrm{t})-\mathrm{F} x_{1}(\mathrm{t})\right| \\
& =\mid f\left(\mathrm{t}, \int_{0}^{1} \mathrm{k}(\mathrm{t}, \mathrm{~s}) I^{1-\alpha_{x_{2}}}(\mathrm{t}) \mathrm{ds}-\mathrm{f}\left(\mathrm{t}_{1}, \int_{0}^{1} \mathrm{k}\left(\mathrm{t}_{1}, s\right) I^{1-\alpha_{x_{1}}}(\mathrm{t}) \mathrm{ds} \mid\right.\right.
\end{aligned}
$$

$=\left|f\left(t, \int_{0}^{1} k(t, s) \int_{0}^{s} \frac{(s-\theta)^{-\alpha}}{\Gamma(1-\alpha)^{2}} x_{2}(\theta) d \theta d s\right)-f\left(t_{1}, \int_{0}^{1} k\left(t_{1}, s\right) \int_{0}^{s} \frac{(s-\theta)^{-\alpha}}{\Gamma(1-\alpha)^{2}} x_{1}(\theta) d \theta d s\right)\right|$
$\leq L\left|\int_{0}^{1} k(t, s) \int_{0}^{s} \frac{(s-\theta)^{-\alpha}}{\Gamma(1-\alpha)^{2}} x_{2}(\theta) d \theta d s-\int_{0}^{1} k\left(t_{1}, s\right) \int_{0}^{s} \frac{(s-\theta)^{-\alpha}}{\Gamma(1-\alpha)} x_{1}(\theta) d \theta d s\right|$
$\leq \mathrm{L}\left\|\mathrm{x}_{2}-\mathrm{x}_{1}\right\| \int_{0}^{1}|\mathrm{k}(\mathrm{t}, \mathrm{s})| \frac{\mathrm{S}^{1-\alpha}}{\Gamma(2-\alpha)} \mathrm{ds}$
$\leq \mathrm{LM}\left\|\mathrm{x}_{2}-\mathrm{x}_{1}\right\| \frac{1}{\Gamma(2-\alpha)}$
$\leq \frac{L M}{\Gamma(2-\alpha)}\left\|x_{2}-x_{1}\right\|$,
Then
$\left\|\mathrm{Fx}_{2}(\mathrm{t})-\mathrm{Fx}_{1}(\mathrm{t})\right\| \leq \frac{\mathrm{LM}}{\Gamma(2-\alpha)}\left\|\mathrm{x}_{2}-\mathrm{x}_{1}\right\|$
If $\frac{\mathrm{LM}}{\Gamma(2-\alpha)} \leq 1$, then F is a contraction and by using Banach fixed point theorem [8] there exists a unique
Solution $\mathrm{y} \in \mathrm{C}[0,1]$ of the integral equation (4)
Now for the existence of solution of (4) in $\mathrm{L}^{1}[0,1]$ we shall use the second sequence of assumptions and we have the following theorem.

Theorem 2.2: Let the assumptions ( $\mathrm{i}^{*}$ )-(ii*) be satisfied, then the integral equation (4) has a unique solution
$y \in L^{1}[0,1]$
Proof.Define the operator $G$ associated with the integral equation (4) by
$G y(t)=f\left(t, \int_{0}^{1} k(t, s) I^{1-\alpha} y(s) d s \quad, t \in I\right.$
The operator $G$ maps $L^{1}[0,1]$ in to it self, for this let $y \in L^{1}[0,1]$, then
$|G y(t)|=\mid f\left(t, \int_{0}^{1} k(t, s) I^{1-a} y(s) d s \mid\right.$
From the assumption ( $\mathrm{i}^{*}$ ) we deduce that
$|f(\mathrm{t}, \mathrm{y})|-|\mathrm{f}(\mathrm{t}, 0)| \leq|\mathrm{f}(\mathrm{t}, \mathrm{y})-\mathrm{f}(\mathrm{t}, 0)| \leq \mathrm{L}|\mathrm{y}|$
which implies that
$|\mathrm{f}(\mathrm{t}, \mathrm{y})| \leq \mathrm{L}|\mathrm{y}|+|\mathrm{f}(\mathrm{t}, 0)|$,
Then
$\leq \mathrm{L}\left|\int_{0}^{1} \mathrm{k}(\mathrm{t}, \mathrm{s}) \int_{0}^{\mathrm{s}} \frac{(\mathrm{s}-\theta)^{-\alpha}}{\Gamma(1-\alpha)} y(\theta) \mathrm{d} \theta \mathrm{ds}\right|+|f(\mathrm{t}, 0)|$.
By integrating we obtain
$\int_{0}^{1}|G y(t)| d t \leq \int_{0}^{1} L\left|\int_{0}^{1} k(t, s) \int_{0}^{s} \frac{(s-\theta)^{-\alpha}}{\Gamma(1-\alpha)} y(\theta) d \theta d s\right| d t+\int_{0}^{1}|f(t, 0)| d t$
$\leq \mathrm{L} \int_{0}^{1}|\mathrm{k}(\mathrm{t}, \mathrm{s})|\left|\int_{0}^{1} \int_{0}^{\mathrm{s}} \frac{(\mathrm{s}-\theta)^{-\alpha}}{\Gamma(1-\alpha)} y(\theta) \mathrm{d} \theta \mathrm{ds}\right| \mathrm{dt}+\int_{0}^{1}|\mathrm{f}(\mathrm{t}, 0)| \mathrm{dt}$
$\leq \mathrm{L} \int_{0}^{1}|\mathrm{k}(\mathrm{t}, \mathrm{s})| \mathrm{dt}\left|\int_{0}^{1} \int_{0}^{\mathrm{s}} \frac{(\mathrm{s}-\theta)^{-\alpha}}{\Gamma(1-\alpha)} y(\theta) \mathrm{d} \theta \mathrm{ds}\right|+\mathrm{r}$
$\leq \mathrm{LM}\left|\int_{0}^{1} \int_{0}^{s} \frac{(s-\theta)^{-\alpha}}{\Gamma(1-\alpha)} y(\theta) \mathrm{d} \theta \mathrm{ds}\right|+r$
$\leq \mathrm{LM}\left|\int_{0}^{1}\left(\int_{\theta}^{1} \frac{(s-\theta)^{-\alpha}}{\Gamma(1-\alpha)} y(\theta) \mathrm{ds}\right) \mathrm{d} \theta\right|+\mathrm{r}$
$\leq \operatorname{LM} \int_{0}^{1}|y(\theta)| \frac{(1-\theta)^{1-\alpha}}{\Gamma(2-\alpha)} d \theta+r$
$\leq L M\|y\| \frac{1}{\Gamma(2-\alpha)}+r$
this proves that $\mathrm{G}: \mathrm{L}^{1}[0,1] \rightarrow \mathrm{L}^{1}[0,1]$,
Now to prove that $G$ is a contraction we have the following, let $x_{1}, x_{2} \in L^{1}[0,1]$, then $\left|G x_{2}(t)-G x_{1}(t)\right|=\mid f\left(t, \int_{0}^{1} k(t, s) I^{1-a} x_{2}(t) d s-f\left(t_{1}, \int_{0}^{1} k\left(t_{1}, s\right) I^{1-a} x_{1}(t) d s \mid\right.\right.$
$=\left|f\left(t, \int_{0}^{1} k(t, s) \int_{0}^{s} \frac{(s-\theta)^{-\alpha}}{\Gamma(1-\alpha)^{2}} x_{2}(\theta) d \theta d s\right)-f\left(t_{1}, \int_{0}^{1} k\left(t_{1}, s\right) \int_{0}^{s} \frac{(s-\theta)^{-\alpha}}{\Gamma(1-\alpha)^{2}} x_{1}(\theta) d \theta d s\right)\right|$
$\leq L\left|\int_{0}^{1} k(t, s) \int_{0}^{s} \frac{(s-\theta)^{-\alpha}}{\Gamma(1-\alpha)} x_{2}(\theta) d \theta d s-\int_{0}^{1} k\left(t_{1}, s\right) \int_{0}^{s} \frac{(s-\theta)^{-\alpha}}{\Gamma(1-\alpha)} x_{1}(\theta) d \theta d s\right|$,
and
$\int_{0}^{1}\left|G x_{2}(t)-G x_{1}(t)\right| d t \leq \int_{0}^{1} L\left|\int_{0}^{1} k(t, s) \int_{0}^{s} \frac{(s-\theta)^{-\alpha}}{\Gamma(1-\alpha)^{2}} x_{2}(\theta) d \theta d s-\int_{0}^{1} k\left(t_{1}, s\right) \int_{0}^{s} \frac{(s-\theta)^{-\alpha}}{\Gamma(1-\alpha)^{2}} x_{1}(\theta) d \theta d s\right| d t$
$\leq \mathrm{L} \int_{0}^{1}|\mathrm{k}(\mathrm{t}, \mathrm{s})| \mathrm{dt}\left|\int_{0}^{1} \int_{0}^{\mathrm{s}} \frac{(\mathrm{s}-\theta)^{-\alpha}}{\Gamma(1-\alpha)} \mathrm{x}_{2}(\theta) \mathrm{d} \theta \mathrm{ds}-\int_{0}^{1} \int_{0}^{\mathrm{s}} \frac{(\mathrm{s}-\theta)^{-\alpha}}{\Gamma(1-\alpha)} \mathrm{x}_{1}(\theta) \mathrm{d} \theta \mathrm{ds}\right|$
$\leq \mathrm{LM}\left|\int_{0}^{1} \int_{\theta}^{1} \frac{(s-\theta)^{-\alpha}}{\Gamma(1-\alpha)} x_{2}(\theta) \mathrm{d} s \mathrm{~d} \theta-\int_{0}^{1} \int_{\theta}^{1} \frac{(s-\theta)^{-\alpha}}{\Gamma(1-\alpha)^{2}} x_{1}(\theta) \operatorname{dsd} \theta\right|$
$\leq L M\left|\int_{0}^{1} \frac{(1-\theta)^{1-\alpha}}{\Gamma(2-\alpha)} x_{2}(\theta) d \theta-\int_{0}^{1} \frac{(1-\theta)^{1-\alpha}}{\Gamma(2-\alpha)} x_{1}(\theta) d \theta\right|$
$\leq \mathrm{LM} \frac{(1-\theta)^{1-\alpha}}{\Gamma(2-\alpha)} \int_{0}^{1}\left|\mathrm{x}_{2}(\theta)-\mathrm{x}_{1}(\theta)\right| \mathrm{d} \theta$
$\leq \frac{L M}{\Gamma(2-\alpha)}\left\|x_{2}-x_{1}\right\|$,
then

$$
\left\|G x_{2}(t)-G x_{1}(t)\right\| \leq \frac{L M}{\Gamma(2-\alpha)}\left\|x_{2}-x_{1}\right\|
$$

If $\frac{\mathrm{LM}}{\Gamma(2-\alpha)} \leq 1$, then G is a contraction and by using Banach fixed point theorem [8] there exists a unique
Solution $y \in L^{1}[0,1]$ of the integral equation (4).

## 2.2 .Boundary value problem

Now we study the existence of solution of the problem (1) - (2)
Theorem 2.3: Let the assumptions of Theorem 2.1 be satisfies, then the nonlocal boundary value problem (1) - (2) has a unique solution $x \in C[0,1]$.

Proof:. From Theorem 2.1, there exists a unique solution $y \in C[0,1]$ satisfying the integral equation (4), then there exists a unique solution $x \in C[0,1]$ of the problems (1)-(2)given by (5).

Theorem 2.4: Let the assumptions of Theorem 2.2 be satisfies, then the nonlocal boundary value problem (1) - (2) has a unique solution $x \in A C[0,1]$.
Proof: .From Theorem 2.2, there exists a unique solution $y \in L^{1}[0,1]$ satisfying the integral equation (4), then there exists a unique solution $x \in A C[0,1]$ of the problems (1)-(2)given by (5).

## References

[1] Argyros, I. K. 20(1992) .On a class of quadratic integral equations with perturbations Funct. Approx. 51-63
[2]Banas, J. and.Sadarangani, K. 38 (2003). Solutions of Some Functional-Integral Equations in BanachAlgebra,Mathematical and Computer Modelling , 245-250.
[3] Banas , J. Lecko,M. El-Sayed,W. G. 227 (1998), Eixstence of Some quadratic Integral
.Equations J. Math. Anal. App, 276-279
[4]Banas. J. Martinon, A. 47 (2004), Monotonic solutions of a quadratic integral equation of Volterra type, Comput. Math.Appl. 271-279.
[5] Boucherif A. and RaduPrecup, (2003) On the nonlocal IVP for first order differential equation,fixed point theory,Vol. 4, No.2, 205-212
[6] El-Sayed, A. M. A. Hamdallah E. M. and Elkadeky, Kh. w, (2011), Internal nonlocal and integral condition problems of the differentail equation, J. Nonlinear Sci. Appl.,Vol. 4, No. 3, 193-199.
[7] EL-Sayed, A. M. A. Hashem, H. H. G. 25 (2008). Integrable and continuous solutions of a nonlinear quadratic integral equation Electronic Journal of Qualitative Theory of Differential Equations.1-10
[8] Goebel, K. and Kirk, W. A. (1990). Topics in Metric Fixed point theory Cambridge University Press, Cambridge.
[9] Kolmogorov A. N. and Fomin, S. V. (1975). Introductory Real Analysis Dover Publ. Inc
[10] Miller, K.S. and Ross, B. (1993). An Introduction to the fractional calculus and Fractional Differential Equation, John Wiley, New York.
[11] Podlubny, I. (1999). Fractional Differentail Equations, Acad. press, San Diego-New York-London.
[12] Samko, S. Kilbas, A. and Marichev, O. L. (1993). Fractional Integrals and Derivatives, Gordon and Breach Science Publisher.

