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ABSTRACT: 

 In this paper, an attempt has been made to study the algebraic nature of an anti (Q, L)-fuzzy subhemirings of a hemi ring. 
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INTRODUCTION  

There are many concepts of universal algebras generalizing an associative ring (R; +; .). Some of them, in particular, 
about near rings and several kinds of semirings have been proved very useful. Semirings (also called half rings) are 
algebras (R; + ;.) which share the same properties as a ring excepting that (R; +) is assumed to be a semi group rather 
than a commutative group. Semi rings appear in a natural manner in some applications the theory of automata and formal 
languages. An algebra (R; +;.) is said to be a semi ring (R; +) and (R; .) are semi groups satisfying a.(b+c)=a.b+a.c  and 
(b+c).a=b.a+c.a for all a,b and c in R. A semiring R is said to be additively commutative if a+b=b+a for all a, b and c in R. 
A semiring R may have an identity 1, defined by 1.a=a=a.1 and a zero 0, defined by 0+a=a=a+0 and a.0=0=0.a for all a in 
R. A semiring R is said to be a hemi ring if it is additively commutative with zero. After the introduction of fuzzy sets by 
L.A.Zadeh [12], several researchers explored the generalization of the concept of fuzzy sets. The notion of anti left h-
ideals in hemi ring was introduced by Akram.M and K.H.Dar [1].The notion of homomorphism and anti-homomorphism of 
fuzzy and anti-fuzzy ideal of a ring was introduced by N.Palaniappan & K.Arjunan [6].Osman Kanzanci, Sultan Yamark 
and Serife Yilmaz in [13] introduced the notion of intuitionistic Q-fuzzification    of N-subgroups (sub near-rings) in a near–
ring and investigated some related properties. A.Solairaju and R.Nagarajan have given a new structure in the construction 
of Q-fuzzy groups and subgroups [14] and [15]. In this paper are to be introduced some theorems in (Q,L)-fuzzy 
subhemirings of a hemiring. 

1. PRELIMINARIES 

1.1 Definition: Let X be a non-empty set and L= (L,  0 and greastest element 1. 

1.2 Definition: Let X be a non-empty set and Q be a non-empty set. A (Q, L)--fuzzy subset A of X is 

function  

1.3 Definition:Let (R,+, .) be a hemiring. A (Q,L)-fuzzy subset A of R is said to be an anti (Q,L)-fuzzy subhemiring of 

R if it satisfies the following conditions: 

(i)  

(ii)  , for all x and y in R, and q in Q. 

1.4 Definition: Let A and B be (Q, L)-fuzzy subsets of sets G and H respectively. The anti-product of A and B 

denoted by AxB is defined as AxB= , where 

. 

1.5 Definition: Let A be a (Q,L)-fuzzy subset in a set S, the anti-strongest relation (Q,L)-fuzzy relation on S, that is a 

(Q,L)- fuzzy relation on A is V given by for all x and y in S and q in Q. 

1.6 Definition: Let (R, +,) and (  be any two hemirings. Let  be any function and A be an anti (Q, L)-

fuzzy subhemiring in R, V be an anti (Q, L)-fuzzy subhemiring in , defined by  for all x 

in R and y  in  and q in Q. Then A is called a preimage of V under f and is denoted by  

1.7 Definition: Let A be an anti (Q, L)-fuzzy subhemiring of a hemiring (R, +, .) and a in R then the pseudo anti (Q, 

L)-fuzzy coset  is defined by , for every x in R, q in Q and for some p in P. 

2. PROPERTIES OF ANTI (Q, L)-FUZZY SUBHEMIRINGS OF A HEMIRING 

2.1 Theorem: Union of any two anti (Q,L)-fuzzy subhemiring of a hemiring R is an anti (Q,L)-fuzzy subhemiring of R. 

Proof: Let A and B be any two anti (Q, L)-fuzzy subhemirings of a hemiring R and x and y in R. Let A 

=  and B =  and also  Let  

,where Now, 

.Therefore, 

, for all x and y in R and q in Q. And.  

Therefore, , for 

all x and y in R and q in Q. Therefore C is an anti (Q, L)-fuzzy subhemiring of a hemiring R.
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2.2 Theorem: The Union of a family of anti (Q,L)-fuzzy subhemiring of hemiring R is an anti (Q,L)-fuzzy 

subhemiring of R. 

Proof: It is trivial. 

2.3 Theorem: If A and B are two anti (Q,L)-fuzzy subhemirings of the hemirings  respectively,then anti 

product AXB is an anti (Q,L)-fuzzy subhemiring of  . 

Proof: Let A and B be two anti (Q,L)- fuzzy subhemirings of the hemirings  respectively. Let  be in 

 be in   Then (( , ), q) and   (( , ),q) are in .Now, 

. 

Therefore, Also,

. 

Therefore, .Hence AXB is an anti (Q,L)-fuzzy subhemiring 

of a hemiring . 

2.4 Theorem: Let A be a (Q, L)-fuzzy subset of a hemiring R and V be the anti-strongest fuzzy relation of R. Then A 

is an anti (Q, L)-fuzzy subhemiring of R if and only if V is an anti (Q, L)-fuzzy subhemiring of RxR. 

Proof: Suppose that A is an anti (Q,L)-fuzzy subhemiring of a hemiring R. Then for any 

and are  in   R x R .  We  have  

  

 for all X and Y in R x R and q in Q. Therefore, , for all X and Y in R x R and   q in Q. This 

proves that V is an anti (Q, L)-fuzzy subhemiring of a hemiring of R x R. Conversely   assume  that   V is an anti (Q, L) - 
fuzzy   subhemiring    of    a    hemiring    of    R x R ,   then   for   any    and     are   in    R x R 

we   have  

,  

for all  

. If ,  we get 

 for all .Therefore A is an anti(Q,L)-fuzzy subhemiring of R. 

2.5 Theorem: If A is an anti (Q,L)-fuzzy subhemiring of a hemiring (R, +, .) if and only 

if  ,  for all x and y in R. 

Proof: It is trivial. 

2.6 Theorem: If A is an anti (Q,L)-fuzzy subhemiring of a hemiring (R, +, .),then  is either 

empty or is a subhemiring of R. 

Proof: It is trivial. 

2.7 Theorem: Let A is an anti (Q,L)-fuzzy subhemiring of a hemiring (R, +, .).If , then either 

 or  , for all x and y in R. 

Proof: It is trivial. 

2.8 Theorem: Let A is an anti (Q,L)-fuzzy subhemiring of a hemiring (R, +, .),then the pseudo anti (Q,L)-fuzzy 

coset  is anti (Q,L)-fuzzy subhemiring of a hemiring R, for every a in R. 

Proof: Let A is an anti (Q,L)-fuzzy subhemiring of a hemiring R. For every x and y in R, we have 
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Therefore,

Now,
 

 

Therefore,   is an anti (Q,L)-fuzzy subhemiring of a hemiring 

R . 

2.9 Theorem: Let (R, +,.) and ( , +, .) be any two hemirings. The homomorphic image of an anti (Q, L)-fuzzy 

subhemiring of R is an anti (Q, L)-fuzzy subhemiring of  

Proof: Let  be a homomorphism.Then ,  Let V= f(A), 

where A is an anti (Q,L) fuzzy  subhemiring   of R.  

,which  implies that   Again,  

, which   implies that  Hence V is an anti (Q,L)-fuzzy subhemiring of  

hemiring . 

2.10 Theorem: Let (R, +, .) and ( , +,.) be any two hemirings. The homomorphic preimage of an anti (Q, L)-fuzzy 

subhemiring of  is an anti (Q, L)-fuzzy subhemiring of R  

Proof: Let  be a homomorphism.Then, Let V= 

f(A) where V is an anti (Q,L) fuzzy subhemiring of   

which implies   that  

 

 which   implies that . Hence A is an anti (Q, L)-fuzzy subhemiring of hemiring R. 

2.11 Theorem: Let (R, +, .) and ( , +, .) be any two hemirings. The anti-homomorphic image of an anti (Q,L)-fuzzy 

subhemiring of R is an anti (Q,L)-fuzzy subhemiring of  

Proof: Let  be a anti- homomorphism.Then,  

 Let V= f(A)   where   A  is   an  anti (Q,L)- fuzzy subhemiring of R. 

, which implies that 

 Again,
 

 

 which implies that  Hence V is an anti (Q, L)-fuzzy subhemiring of  hemiring 

. 

2.12 Theorem: Let (R, +,.) and ( , +, .) be any two hemirings. The anti-homomorphic preimage of an anti (Q, L)-

fuzzy subhemiring of is an anti (Q,L)-fuzzy subhemiring of R  

Proof: Let  x Then 

,which   implies   that   

Again, ,  

which implies that . Hence A is an anti (Q, L)-fuzzy subhemiring of hemiring R. 

In the following Theorem  is the composition operation of functions: 

2.13 Theorem: Let A be an anti (Q, L)-fuzzy subhemiring of hemiring H and f is an isomorphism from a hemiring R 

onto H. Then A  f is an anti (Q, L)-fuzzy subhemiring of R. 

Proof:  
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  which   implies   that   And,  

, 

.Therefore A f is an anti(Q, L)-fuzzy subhemiring of 

hemiring R. 

2.14 Theorem: Let A be an anti (Q, L)-fuzzy subhemiring of hemiring H and f is an anti- isomorphism from a hemiring 

R onto H. Then A  f is an anti (Q,L)-fuzzy subhemiring of R. 

Proof: Let x   

  

 which implies that 

. Therefore A f is an anti (Q, L)-fuzzy subhemiring of hemiring R. 
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