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ABSTRACT 

The regional exponential reduced observability concept in the presence for linear dynamical systems is addressed for a 
class of distributed parameter systems governed by strongly continuous semi group in Hilbert space. Thus, theexistence 
of necessary and sufficient conditions is established for regional exponential reduced estimator in parabolic infinite 
dimensional systems. More precisely, the introduced approach is developed by using the decomposed system and 
reduced system in connection with various new concepts of (stability, detectability, estimator, observability and strategic 
sensors).Finally, we alsoshow that there exists a dynamical systemfor two-phase exchange system described by the 
coupled parabolic equations is not exponentially reduced observable in usual sense, but it may be regionally exponentially 
reduced observable. 
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1. NTRODUCTION 

One of the most important concepts in infinite dimensional systems analysis is observability concept. Many researches of 
these concept included the notion of exponential observer( estimator), where Luenberger introduced this notion for finite 
dimensional systems [22], and has been generalized to infinite dimensional systems described by strongly continuous 
linear semi-group operators by Gressang and Lamont [20]. The purpose of an exponential estimator is to provide an 
exponential state estimation for the considered system state [16]. New concept of regional analysis for a class of 
distributed parameter systems was extended by Al-Saphory and El Jai et al. as in ref.s [1-7, 18, 16, 25-29]. Various 

asymptotic characterizations have been established and explored in connection with sensors structures [1, 6]. In this 
paper, we introduce and study the notion of exponential regional reduced state observability in a given region 𝜔 of the 

domain  Ω. Thus the developed approach is an extension of previous works to the regional case as in [2]. Moreover the 

relationship between this notion, regional detectability and strategic sensors are studied and discussed. The main reason 
behind the study of this notion (reduced observability), there exist some problem in the real world cannot observe the 
system state in the whole domain, but in a part of this domain. The scenario described by (Figure 1) below, one is 
interested in estimating the state in the green zone rather than in the entire space [12]. This problem falls into a class of 
so-called regional observation and estimation problem introduced by Al-Saphory and El-Jai and their workers as in [1-7, 
25-29]. 

 

Fig. 1: Zone control 𝓡 with fixed and mobile sensors 

This paper is organized as follows. Section 2 is devoted to the introduction of regional exponential detectability and 
considered system with 𝜔𝐸-detectability and 𝜔-observability. We study the links of this notion with the regional exponential 

observability and strategic sensors. In Section 3, we study a regional exponential observability through the  relations 
between 𝜔𝐸-estimator reconstruction method and 𝜔𝐸- observability. In section 4 we introduce regional exponential 

reduced observability notion for a distributed parameter system in terms of regional exponential reduced detectability and 
reduced strategic sensors. In the last section, we illustrate applications with different domains and circular strategic 
sensors of two-phase exchange systems. 

2. REGIONAL EXPONENTIAL DETECTABILITY  

The detectability is in some sense a dual notion of stabilizability [15]. This notion was considered and studied in the whole 
domainΩ.  

2.1Considered Systems 

Let  Ω  be a bounded and open subset of𝑅𝑛 , with boundary 𝜕Ω. Let 0, 𝑇 ,𝑇 > 0 a time measurement interval and 𝜔 be a 

non-empty given subregion ofΩ. We denote 𝒬 = Ω × (0, ∞)and Θ = 𝜕Ω ×  0,∞ . Let 𝑋, 𝑈, and 𝒪be separable Hilbert 

spaces, where 𝑋 is the state space, 𝑈 the control space and 𝒪 the observation space. We consider 𝑋 = 𝐿2 Ω , 𝑈 =
𝐿2(0, ∞,𝑅𝑝) and𝒪 = 𝐿2 0,∞, 𝑅𝑞  where𝑝 and 𝑞 hold for the number of actuators and sensors [17]. The considered 

distributed parameter systems are described by the following parabolic equations 

 

𝜕𝑥

𝜕𝑡
 𝜉, 𝑡 = 𝐴𝑥 𝜉, 𝑡 + 𝐵𝑢 𝑡                                           𝒬

𝑥 𝜂, 𝑡 = 0                                                                         Θ

𝑥 𝜉, 0 = 𝑥0 𝜉                                                                  Ω

       (1)augmented with the output function 

𝑦 . , 𝑡 = 𝐶𝑥 . , 𝑡                        (2) 

where𝐴  is a second-order linear differential operator, which generates a strongly continuous semigroup (𝑆𝐴 𝑡 )𝑡≥0 on the 

Hilbert space 𝑋 = 𝐿2 Ω , and is self-adjoint with compact resolvent. The operators 𝐵 ∈ ℒ(𝑅𝑃 , 𝑋) and 𝐶 ∈ ℒ(𝑋, 𝑅𝑞) depend 
on the structures of actuators and sensors [17] see (Figure 2).  
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Fig. 2: The domain of 𝛀, the sub-region 𝝎, various sensors locations. 

That means, in the case of pointwise (internal or boundary) and boundary zone sensors (actuators), we have 𝐵 ∉ ℒ(𝑅𝑃 , 𝑋) 

and 𝐶 ∉ ℒ(𝑋, 𝑅𝑞)  [12, 22]. Thus, the system (1) has a unique solution given by 

𝑥 𝜉, 𝑡 = 𝑆𝐴 𝑡 𝑥0 𝜉 +  𝑆𝐴 𝑡 − 𝜏 𝐵𝑢 𝜏 𝑑𝜏
𝑡

0
.                             (3) 

The problem is that how to give an approach which enable to estimate the system state in a sub-region 𝜔. The regional 
exponential reduced estimator is defined when the output give a part of the state vector in this region. 

2.2 Definitions and Characterizations 

We extend some definitions and characterizations in the Hilbert space𝐿2 Ω  as ref.s [15, 19]. 

Definition 2.1:The semi-group (𝑆𝐴(𝑡))𝑡≥0 is said to be exponential stable on Ω or (Ω𝐸-stable) if there exist two positive 

constants 𝑀and 𝛼 such that 

 𝑆𝐴(𝑡) 𝐿2 Ω ≤ 𝑀𝑒−𝛼𝑡  ;   𝑡 ≥ 0                      (4) 

If (𝑆𝐴(𝑡))𝑡≥0 is an Ω𝐸-stable semi-group, then for all𝑥0 .  ∈ 𝑋, the solution of the associated autonomous system satisfies 

 

 𝑥(. , 𝑡) 𝐿2 Ω =  𝑆𝐴 𝑡 𝑥0(. ) 𝐿2 Ω ≤ 𝑀𝑒−𝛼𝑡 𝑥0(. ) 𝐿2 Ω  

 

and therefore 

 

lim
𝑡→∞

 𝑥(. , 𝑡) 𝐿2 Ω = lim
𝑡→∞

 𝑆𝐴(𝑡)𝑥0(. ) 𝐿2 Ω = 0. 

 

we shall consider the following usual definition of stability. 

Definition 2.2: The system (1) is said to be Ω𝐸-stable if the operator 𝐴 generates a semi-group which is Ω𝐸-stable. 

Definition 2.3: The system (1) together with the output (2) is said to be detectable on Ω if there exists an operator 

𝐻 ∶  𝑅𝑞 → 𝐿2 Ω  such that (𝐴 − 𝐻𝐶) generates a strongly continuous semi-group (𝑆𝐴(𝑡))𝑡≥0 which is Ω𝐸-stable. 

Thus, if a system is (Ω𝐸-detectable), then it is possible to construct an exponential Ω-estimator for the system state [9].  

Remark 2.4: In this paper, we only need the relation (4) to be true on a given subdomain  𝜔 ⊂ Ω, i.e., if we consider a 

subdomain 𝜔 of the domain Ω and let 𝜒𝜔  be the function defined by 

 

𝜒𝜔 : 𝐿2(Ω) → 𝐿2(𝜔)         (5) 

𝑥 → 𝜒𝜔𝑥 = 𝑥|𝜔  

where𝑥|𝜔  is the restriction of 𝑥 to 𝜔. Thus 

 

 𝜒𝜔𝑆𝐴(𝑡) ℒ(𝐿2 𝜔 ,   𝐿2 Ω ) ≤ 𝑀𝑒−𝛼𝑡  ;   𝑡 ≥ 0.(6) 

 

and then 

 

lim
𝑡→∞

 𝑥(. , 𝑡) 𝐿2 𝜔 = 0. 

 

We may refer to this as regional exponential stability (or 𝜔𝐸-stability), which is the equivalent for the considered class of 

systems to the exponential stability. 

Definition 2.5: The system (1) is said to be regionally 𝜔𝐸-stable if the operator 𝐴 generates a semi-group which is 

regional exponential stable (or 𝜔𝐸-stable). 

In this section, we shall extend the definition of detectability by using equation (5) to the regional case by considering 𝜔 as 

subregion of Ω. 
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Definition 2.6: The system (1)-(2) is said to be 𝜔𝐸-detectable if there exists an operator 𝐻𝜔 ∶  𝑅𝑞 → 𝐿2 𝜔 such 

that 𝐴 − 𝐻𝜔𝐶 generates a strongly continuous semi-group(𝑆𝐻𝜔
(𝑡))𝑡≥0, which is 𝜔𝐸-stable. 

The main reason for introducing the concept of 𝜔𝐸-detectability is the possibility of constructing an 𝜔𝐸-estimator for the 

state of system (1). 

2.3  𝝎𝑬-Detectability and𝝎-Observability 

It has been shown that a system which is exactly observable is detectable [16]. For linear systems, we recall the 𝜔𝐸-

observability [2]. Now consider the autonomous system of (1) by the following form 

 

𝜕𝑥

𝜕𝑡
 𝜉, 𝑡 = 𝐴𝑥 𝜉, 𝑡                                           𝒬

𝑥 𝜂, 𝑡 = 0                                                         Θ

𝑥 𝜉, 0 = 𝑥0 𝜉                                                  Ω

            (7) 

where𝑥 . ,0  is supposed to be unknown. The knowledge of 𝑥 . ,0  allows one to observe the state 𝑥 𝑡, 0  at any time 𝑡. 
Measurements are obtained by the output function (2). The solution of the system (6) is given by: 

𝑥 . , 𝑡 = 𝑆𝐴 𝑡 𝑥 . ,0 .              (8) 

Now define the operator: 

𝐾 ∶ 𝑥 ∈ 𝑋 → 𝐾𝑥 = 𝐶𝑆𝐴 𝑡 𝑥 ∈ 𝒪,                           (9) 

then𝑦 . , 𝑡 = 𝐾 𝑡 𝑥0 . ,0 . We denote by 𝐾∗: 𝒪 → 𝑋 the adjoint of 𝐾, and then, it is given by 

𝐾∗𝑦∗ =  𝑆∗
𝐴

𝑡

0
 𝑠 𝐶∗𝑦∗𝑑𝑠                              (10) 

 The system (6)-(2) is said to be exactly 𝜔-observable if 

 

Im𝜒𝜔𝐾∗ = 𝐿2(𝜔) 

 The system (6)-(2) is said to be weakly 𝜔-observable if 

 

Im 𝜒𝜔𝐾∗           = 𝐿2(𝜔). 

 If the system (6)-(2( is weakly 𝜔-observable, then 𝑥 . ,0  is given by 

 

𝑥0 = (𝐾∗𝐾)−1𝐾∗𝑦 = 𝐾†𝑦, 

where𝐾† is the pseudo-inverse of the operator 𝐾 [15, 25]. These definitions have been extended to regional boundary 

case for parabolic, hyperbolicas in [26-28] linear, semi-linear and nonlinear [10-11, 29]. However, we can introduce the 
following important result. 

Corollary 2.7: If the system (1)-(2) is exactly 𝜔-observable, then it is 𝜔𝐸-detectable. This result allows 

∃𝛾 > 0 such that  𝜒𝜔𝑥 𝐿2(𝜔) ≤ 𝛾 𝐶𝑆 .  𝑥0 𝐿2(0,∞ ,𝒪), ∀𝑥 ∈ 𝐿2 𝜔 .(11) 

Proof: We conclude the proof of this corollary from the results on observability considering 𝜒𝜔𝐾∗[14]. We have the 

following forms: 

(a) 𝐼𝑚 𝐹 ⊂ 𝐼𝑚 𝐺 

(b) There exist 𝛾 > 0 such that  𝐹∗𝑥∗ 𝑃∗ ≤ 𝛾 𝐺∗𝑥∗ 𝑈∗ , ∀𝑥∗ ∈ 𝑉∗. 

From the right hand said of this relation ∃ 𝑀, 𝛼 > 0 with 𝛾 < 𝑀 such that  

𝛾 𝐺∗𝑥∗ 𝑈∗ ≤ 𝑀𝑒−𝛼𝑡 𝑥∗ 𝑈∗ 

where𝑃,𝑈 and 𝑉 be Banach reflexive space and 𝐹 ∈ 𝐿 𝑃, 𝑉 , 𝐺 ∈ 𝐿 𝑈,𝑉 . 

Now, Let 𝑃 = 𝑉 = 𝐿2 𝜔 , 𝑈 = 0, 𝐹 = 𝐼 to 𝐿2(𝜔) and 𝐺 = 𝑆𝐴
∗(. ) 𝜒𝜔

∗ 𝐶∗ where 𝑆𝐴(. ) is a strongly continuous semi group 

generates by 𝐴, witch is 𝜔𝐸-stable then, it is 𝜔𝐸-detectable∎. 

As in El Jai and Pritchard [17], we will develop a characterization result that links the 𝜔𝐸-detectability in terms of sensors 

structures. So, we recall some definitions related to sensors. 

 A sensor is defined by any couple  𝐷,𝑓  where 𝐷 a non-empty closed subset of Ω, is the spatial support of the sensor, 

and 𝑓 ∈ 𝐿2(𝐷) defines the spatial distribution of the sensing measurements on 𝐷. 

 



                                                                     ISSN 2347-1921                                                           

5062 | P a g e                                                   S e p t e m b e r  1 1 ,  2 0 1 5  

 

In the case of a pointwise sensor, 𝐷 is reduced to a point {𝑏} and 𝑓 = 𝛿 . −𝑏 , where 𝐷 is the Dirac mass 

concentrated in 𝑏. Depending on the choice of the parameters 𝐷 and 𝑓 we have various types of sensors, the output 
function (2) may be written in the form 

𝑦 𝑡 =  𝐷𝑥 𝜉, 𝑡 𝑓(𝜉)𝑑𝜉 (zone case) 

𝑦 𝑡 =  Ω𝑥 𝜉, 𝑡 𝛿(𝜉 − 𝑏)𝑑𝜉 = 𝑥(𝑏, 𝑡) (pointwise case) 

In the case of boundary measurements (pointwise or zone) the support of sensors 𝐷 is subset of 𝜕Ω. Then, the output 

function (2) given by 

𝑦 𝑡 =  Ω

𝜕𝑥

𝜕𝜈
 𝜉, 𝑡 𝛿(𝜉 − 𝑏)𝑑𝜉 (Boundary pointwise case)     (12) 

Now in the case where the zone measurements, with 𝐷 = 𝛤 ⊂ 𝜕Ω and 𝑓 ∈ 𝐿2 𝛤 . Then, the output function (2) given by 

𝑦 𝑡 =  Γ

𝜕𝑥

𝜕𝜈
 𝜉, 𝑡 𝑓(𝜉)𝑑𝜉   (boundary zone case)              (13) 

 The sensors (zone or pointwise) (𝐷𝑖 ,𝑓𝑖)1≤𝑖≤𝑞  are said to be 𝜔 -strategic sensors if the system (1)-(2) is weakly 𝜔-

observable. 

Let us consider the set (𝜑𝑛𝑗 ) of orthonormal functions in 𝐿2 𝜔  associated with the eigenvalues 𝜆𝑛  of multiplicity 𝑟𝑛   [15] 

and suppose that the system (1) has 𝐽 unstable modes. We have the following characterization of 𝜔𝐸-detectability in the 

terms of the structure sensors. 

Proposition 2.8: Suppose that there are 𝑞 zone sensors(𝐷𝑖 ,𝑓𝑖)1≤𝑖≤𝑞 . If 

(1) 𝑞 ≥ 𝑟. 

(2) 𝑅𝑎𝑛𝑘 𝐺𝑛 = 𝑟𝑛 , ∀𝑛, 𝑛 = 1, … , 𝐽 

with𝐺 =  𝐺𝑛 𝑖𝑗 =   𝜑𝑗𝑘 ,𝑓𝑖 𝐿2 𝐷𝑖 
  wheresup𝑛𝑟𝑛 = 𝑟 < ∞and𝑗 = 1, … , 𝑟𝑛 . 

Then the system (1)-(2) is 𝜔𝐸-detectable. 

Proof:by the result on observability considering 𝜒𝜔𝐾∗[14], we can proof this theorem. We see that if the system is satisfy 

the condition (2) above. Since 𝑅𝑎𝑛𝑘 𝐺𝑛 = 𝑟𝑛 , therefore, the sensor of the system (1)-(2) is strategic sensor, and this system 

(1)-(2) is weakly 𝜔-observable, then it's exactly 𝜔-observable, finally we have the system (1)-(2) is 𝜔𝐸-detectable. 

3. REGIONAL EXPONENTIAL OBSERVABILITY 

In this section, we give an approach which allows constructing an 𝜔-estimator of𝑇 𝑥 𝜉, 𝑡 . This method avoids the 

calculation of the inverse operators, and the consideration of the initial state [18]. It enables to observe the current state in 
𝜔 without needing the effect of the initial state of the original system. 

3.1𝝎𝑬-Estimator Reconstruction Method 

 We consider the system and the output specified by the following form: 

 
 
 

 
 

𝜕𝑥

𝜕𝑡
 𝜉, 𝑡 = 𝐴𝑥 𝜉, 𝑡 + 𝐵𝑢 𝑡                                           𝒬

𝑥 𝜂, 𝑡 = 0                                                                         Θ

𝑥 𝜉, 0 = 𝑥0 𝜉                                                                  Ω

𝑦 . , 𝑡 = 𝐶𝑥 . , 𝑡 𝒬

   (14) 

Let 𝜔 ⊂ Ω be a given subdomain (region) of Ω and assume that for  𝑇 ∈ ℒ(𝐿2 Ω ), and 𝑇 = 𝜒𝜔𝑇 (where 𝜒𝜔  is defined in (5)) 
there exists a system with state 𝑧(. , 𝑡) such that 

𝑧 𝜉, 𝑡 = 𝑇 𝑥 𝜉, 𝑡 .                                                      (15) 

Thus, if we can build a system which is an exponential estimator for 𝑧 𝜉, 𝑡 , then it will also be an exponential estimator for 

𝑇 𝑥 . , 𝑡 , that is to say an exponential estimator to the restriction of 𝑇𝑥 . , 𝑡  to the region 𝜔. The equations (2)-(15) give 

 
𝑦
𝑧
 =  

𝐶
𝑇 
 𝑥.                                            (16) 

If we assume that there exist two linear bounded operators 𝑅 and 𝑆, where 𝑅: ℝ → 𝐿2 𝜔  and 𝑆: 𝐿2 𝜔 → 𝐿2 𝜔 , such that 

𝑅𝐶 + 𝑆𝑇 = 𝐼, then by deriving 𝑧 𝜉, 𝑡  we have 

𝜕𝑧

𝜕𝑡
 𝜉, 𝑡 = 𝑇 

𝜕𝑥

𝜕𝑡
 𝜉, 𝑡 = 𝑇 𝐴𝑥 𝜉, 𝑡 + 𝑇 𝐵𝑢 𝑡  

= 𝑇 𝐴𝑆𝑧 𝜉, 𝑡 + 𝑇 𝐴𝑅𝑦 . , 𝑡 + 𝑇 𝐵𝑢 𝑡 . 

Consider now the system (which is destined to be the maximal 𝜔𝐸-estimator for 𝑧) 



                                                                     ISSN 2347-1921                                                           

5063 | P a g e                                                   S e p t e m b e r  1 1 ,  2 0 1 5  

 

 

𝜕𝑧 

𝜕𝑡
 𝜉, 𝑡 = 𝐹𝜔𝑧  𝜉, 𝑡 + 𝐺𝜔𝑢 𝑡 + 𝐻𝜔𝑦 . , 𝑡              𝒬

𝑧  𝜂, 𝑡 = 0                                                                        Θ

𝑧  𝜉, 0 = 𝑧 0 𝜉                                                                 Ω

       (17) 

where𝐹𝜔  generates a strongly continuous semi-group (𝑆𝐹𝜔 (𝑡))𝑡≥0 , which is regionally exponentially stable on 𝑋 = 𝐿2 𝜔 , 

i.e.,∃𝑀𝐹𝜔 , 𝛼𝐹𝜔 > 0, such that  

 𝜒𝜔𝑆𝐹𝜔 (. ) 
𝐿2(𝜔)

≤ 𝑀𝐹𝜔 𝑒
−𝛼𝐹𝜔 𝑡 , ∀𝑡 ≥ 0.(18) 

and𝐺𝜔 ∈ ℒ(𝑅𝑝 , 𝐿2(𝜔)) and 𝐻𝜔 ∈ ℒ 𝑅𝑞 , 𝐿2 𝜔  . The solution of (17) is given by 

𝑧  . , 𝑡 = 𝑆𝐹𝜔
 𝑡 𝑧 0 .  +  𝑆𝐹𝜔

 𝑡 − 𝜏 [𝐺𝜔𝑢 𝜏 + 𝐻𝜔𝑦(. , 𝜏)]𝑑𝜏
𝑡

0
  (19) 

3.2𝝎𝑬- Observability 

In this case, we consider𝑇 = 𝐼, and 𝑋 = 𝑍, so the operator equation 𝑇 𝐴 − 𝐹𝜔𝑇 = 𝐻𝜔𝐶 of the 𝜔-observable reduces to 
𝐹𝜔 = 𝐴 − 𝐻𝜔𝐶, where 𝐴 and 𝐶 are known. Thus, the operator 𝐻𝜔  must be determined such that the operator 𝐹𝜔  is 𝜔𝐸-

stable. For the system (14), consider the dynamic system 

 

𝜕𝑧 

𝜕𝑡
 𝜉, 𝑡 = 𝐴𝑧  𝜉, 𝑡 + 𝐵𝑢 𝑡 + 𝐻𝜔(𝑦 . , 𝑡 − 𝐶𝑧  𝜉, 𝑡 )  𝒬

𝑧  𝜂, 𝑡 = 0                                                                                 Θ

𝑧  𝜉, 0 = 0                                                                                 Ω

   (20) 

Thus, a sufficient condition for existence of 𝜔𝐸-estimator is formulated in the following proposition. 

Proposition 3.1: Suppose that the system (1)-(2) is 𝜔𝐸-detectable,and then the dynamical system (20) achieve the 

𝜔𝐸-observability for the system (1)-(2), i.e. 

lim
𝑡→∞

 𝑥 𝜉, 𝑡 − 𝑧  𝜉, 𝑡  𝐿2(𝜔 ) = 0. 

Proof:By the same way with minor modifications as in ref. R. Al-Saphory [2] we can prove the proposition 3.1 in different 

case of sensors (zone, pointwise) internal or boundary. 

4. REGIONAL REDUCED EXPONENTIAL OBSERVABILITY 

In this section we need some of additional assumptions, concerning the semigroup, its infinitesimal generator, and the 

observation space, under which condition can be given a regional reduced estimator for the state system (1)-(2).  

4.1 General Decomposed System 

Now, under the assumption of strongly continuous semigroup we have the system (1)-(2) is reduced as in the additional 
assumptions allow a decomposition of (1) to a form of the stabilizing operator 𝐻. These assumptions are as follows. 

(1) 𝐴 has a pure point spectrum, denoted by 𝜎 𝐴 . 

(2) 𝑆𝐴(𝑡) is a compact operator for some 𝑡 > 0 

(3) For 𝛿 > 0, 𝜎 𝐴  the spectrum of 𝐴 contained in the closed half plane  𝜆: 𝑅𝑒 𝜆 ≥ −𝛿 . 

(4) The subspace associated with each finite dimensional point of 𝜎 𝐴  in the half plane  𝜆: 𝑅𝑒 𝜆 ≥ −𝛿 . 

(5) 𝒪is finite dimensional. 

These five assumptions are strong. The Hille-Yosida theorem implies that the set of spectral point of 𝐴 lying in the half 

plane  𝜆: 𝑅𝑒 𝜆 ≥ −𝛿  forms a bounded spectral set. Denote this spectral set by 𝜎 𝐴1 . Using the spectral set 𝜎 𝐴1 , a 

reduced form of (1) can be derived. Denote 𝜎 𝐴 − 𝜎 𝐴1  by 𝜎 𝐴2 . As 𝐴 is a closed operator with nonempty resolvent set, 

operational calculus can be used to completely reduce the operator 𝐴 in terms of the spectral sets 𝜎 𝐴1  and 𝜎 𝐴2  [20]. 

𝜎 𝐴1 and 𝜎 𝐴2  determine subspaces 𝑋1 and 𝑋2, 

𝑋 = 𝑋1⨁𝑋2 ,                     (21) 

and projections 𝐸1: 𝑋 → 𝑋1 , 𝐸2: 𝑋 → 𝑋2 ,  such that 

𝐸1𝐴𝑥 = 𝐴𝐸1𝑥 

𝐸2𝐴𝑥 = 𝐴𝐸2𝑥 

Defining 𝐴1𝑥 = 𝐴𝐸1𝑥,   𝐷 𝐴1 = 𝐷(𝐴) ∩ 𝑋1 

and𝐴2𝑥 = 𝐴𝐸2𝑥,   𝐷 𝐴2 = 𝐷(𝐴) ∩ 𝑋2 

the operator 𝐴 can be represented by 

𝐴𝑥 =  
𝐴1 0
0 𝐴2

  
𝑥1

𝑥2
 and𝐵 =  

𝐵1

𝐵2
                        (22) 



                                                                     ISSN 2347-1921                                                           

5064 | P a g e                                                   S e p t e m b e r  1 1 ,  2 0 1 5  

 

Where 𝑥 = 𝑥1 + 𝑥2 , 

𝑥 ∈ 𝐷 𝐴 ,𝑥1 ∈ 𝐷 𝐴1 , 𝑥2 ∈ 𝐷 𝐴2 , 𝐵1 ∈ ℒ(𝑅𝑃 , 𝑋1)and𝐵2 ∈ ℒ(𝑅𝑃 , 𝑋2) 

as𝐷 𝐴  is dense in 𝑋, 𝐷 𝐴1  is dense in 𝑋1 , and 𝐷 𝐴2  is dense in 𝑋2. 

𝐴1and𝐴2 are closed operators as 𝐴 is closed operator. If 𝐴 is the infinitesimal generator of a strongly continuous 

semigroup, then the Hille-Yosida theorem shows that both 𝐴1 and 𝐴2 are infinitesimal generators. Using the decomposition 

of 𝑋 and 𝐴 given by (21)-(22), and then (1)-(2) can be rewritten in the following forms [20] 

 

𝜕𝑥1

𝜕𝑡
 𝜉, 𝑡 = 𝐴1𝑥1 𝜉, 𝑡 + 𝐸1𝐵1𝑢 𝑡            𝒬

𝑥1 𝜂, 𝑡 = 0                                                    Θ

𝑥1 𝜉, 0 = 𝑥10
 𝜉                                           Ω

                  (23) 

and 

 

𝜕𝑥2

𝜕𝑡
 𝜉, 𝑡 = 𝐴2𝑥2 𝜉, 𝑡 + 𝐸2𝐵2𝑢 𝑡          𝒬

𝑥2 𝜂, 𝑡 = 0                                                    Θ 

𝑥2 𝜉, 0 = 𝑥20
 𝜉                                           Ω 

        (24) 

 

Augmented with the output function 

 

𝑦 . , 𝑡 = 𝐶𝑥1 𝜉, 𝑡 (25) 

Equations (24)-(25) are called the reduced form of (1)-(2). 

Since 𝐴1 is the restriction of 𝐴 to 𝑋1 , and 𝐷 𝐴1 = 𝐷 𝐴 ∩ 𝑋1 , the spectrum of 𝐴1 is 𝜎 𝐴1  [21]. As the points of 𝜎 𝐴1  are 

isolated, each point by itself is a spectral set, and the spectral sets so formed are pairwise disjoint. Thus a projection 𝐸𝑖𝑗  

and subspace 𝑋𝑖𝑗  can be associated with each point 𝜆𝑗 ∈ 𝜎 𝐴1 , and the subspace 𝑋1 completely reduced to  

𝑋1 = 𝑋11⨁ 𝑋12 ⨁  …  ⨁ 𝑋𝑖𝑛  

where𝑛 is the number of points in 𝜎 𝐴1 . Each 𝑋𝑖𝑗  is finite dimensional by assumption, hence 𝑋1 is finite dimensional, and 

𝐴1 is a bounded operator. Then choosing bases for 𝑋1 and 𝒪, (24) can be represented as a linear constant coefficient 

ordinary differential equation, and 𝐶 restricted to 𝑋1 can be expressed as a matrix. 

In terms of the finite dimensional bases for 𝑋1 and 𝒪, the homogeneous equations corresponding to (24)-(25) are  

 

𝜕𝑥1

𝜕𝑡
 𝜉, 𝑡 = 𝐴1𝑥1 𝜉, 𝑡 

𝑥1 𝜉, 0 = 𝑥10
 𝜉 

                                      (26) 

 

𝜕𝑥2

𝜕𝑡
 𝜉, 𝑡 = 𝐴2𝑥2 𝜉, 𝑡 

𝑥2 𝜉, 0 = 𝑥20
 𝜉 

         (27) 

𝑦 . , 𝑡 = 𝐶𝑥1 𝜉, 𝑡     (28) 

Where𝛤 is the coordinate space associated with the basis for𝑋1, and 𝐶: 𝑋1 → 𝒪 in terms of the bases of 𝑋1 and 𝒪. 

An estimate will now be made of the solutions of (28). A having a pure point spectrum implies that 𝐴2 has a pure point 
spectrum, while 𝑆𝐴2

(𝑡) being a compact operator for some 𝑡 > 0 implies that 𝑆𝐴2
(𝑡) is a compact operator. As 𝑆𝐴2

(𝑡) is a 

compact operator, its spectrum consists of only point spectrum, denoted by 𝒫𝜎(𝑆𝐴2
(𝑡))  is given by 

𝑒𝒫𝜎 𝐴2 𝑡  , as 𝑅𝑒 𝜎 𝐴2 ≤ −𝛿,    𝑒𝒫𝜎 𝐴2 𝑡 ≤ 𝑒−𝛿𝑡  

Then the spectral radius of 𝑆𝐴2
(𝑡) satisfies  

𝑟𝜎(𝑆𝐴2
 𝑡 ) ≤ 𝑒−𝛿𝑡 . 

using a lemma of Hale [18]. For any 𝛾 > 0 there exists an 𝑀(𝛾) ≥ 1 such that  

 𝑆𝐴2
(𝑡)𝑥20

 ≤ 𝑀(𝑥1)𝑒(−𝛿+𝑥1)𝑡 𝑥20
  

for all 𝑡 ≥ 0 and 𝑥20
∈ 𝑋2. Thus, (27) is exponentially stable. 

4.2 General Reduced System 

In the case where the output function (2) gives information about a part of the state vector 𝑥 𝜉, 𝑡 , it is necessary to define 

an exponential estimator enables to construct the unknown part of the state. Consider now 𝑋 = 𝑋1⨁𝑋2 where 𝑋1 and 𝑋2 

are subspaces of 𝑋. Under the hypothesis of subsection 4.1, the system (1) can be decomposed [16, 20] by 
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𝐴 =  
𝐴11 𝐴12

𝐴21 𝐴22
 ,    𝑥 =  

𝑥1

𝑥2
 ,     𝐵 =  

𝐵1

𝐵2
  

where 𝑥1 ∈ 𝑋1,𝑥2 ∈ 𝑋2,𝐵1 ∈ ℒ(𝑋1 , 𝑈)and 𝐵2 ∈ ℒ(𝑋2, 𝑈). Using the decomposition above, the system (1) can be written by 

the form 

 

𝜕𝑥1

𝜕𝑡
 𝜉, 𝑡 = 𝐴11𝑥1 𝜉, 𝑡 + 𝐴12𝑥2 𝜉, 𝑡 + 𝐵1𝑢 𝑡            𝒬

𝑥1 𝜂, 𝑡 = 0                                                                            Θ

𝑥1 𝜉, 0 = 𝑥01 𝜉                                                                   Ω

     (29) 

 

and 

 

 

𝜕𝑥2

𝜕𝑡
 𝜉, 𝑡 = 𝐴21𝑥1 𝜉, 𝑡 + 𝐴22𝑥2 𝜉, 𝑡 + 𝐵2𝑢 𝑡            𝒬

𝑥2 𝜂, 𝑡 = 0                                                                            Θ

𝑥2 𝜉, 0 = 𝑥20
 𝜉                                                                   Ω

   (30) 

 

augmented with the output function 

 

𝑦 . , 𝑡 = 𝐶𝑥1 𝜉, 𝑡      (31) 

where 𝑥 𝜉, 𝑡 = 𝑥1 𝜉, 𝑡 ⨁ 𝑥2(𝜉, 𝑡). The problem consists in constructing a regional exponential estimator that enables one 

to estimate the unknown part𝑥2(𝜉, 𝑡) equivalently; the problem is reduced to define the dynamical system for (31). Thus, 

equations (30)-(31) allow the following system: 

 

𝜕𝑎

𝜕𝑡
 𝜉, 𝑡 = 𝐴22𝑎 𝜉, 𝑡 + [𝐵2𝑢 𝑡 + 𝐴21𝑦 . , 𝑡 ]   𝒬

𝑎 𝜂, 𝑡 = 0                                                                   Θ

𝑎 𝜉, 0 = 𝑎0 𝜉                                                           Ω

         (32) 

with the output function 

𝑦  . , 𝑡 = 𝐴12𝑎(. , 𝑡)           (33) 

where the state 𝑎 in system (32) plays the role of the state 𝑥2 in system (30). 

4.3 Regional Reduced Observability and𝝎𝑬𝓡-Detectability  

As in previous section 2 we can extend these results to the case of regional reduced ordered system for regional 
observability and𝜔𝐸-detectability. In this case, the equation (8) it can be given by define the following operator  

𝒦: 𝑥2 ∈ 𝑋2 → 𝒦𝑥2 = 𝐴12𝑆𝐴22
 𝑡 𝑥2 ∈ 𝒪, then𝑦 . , 𝑡 = 𝒦 𝑡 𝑥20

 .  , with the adjoint 𝒦∗: 𝒪 → 𝑋2 such that  

𝒦∗𝑦∗ . , 𝑡 =  𝑆∗(𝑠)
𝑡

0
𝐴12

∗ 𝑦∗ . , 𝑠 𝑑𝑠. 

Let 𝜔 ⊂ Ω and 𝜒𝜔 :𝐿2 Ω → 𝐿2 𝜔 = 𝑋2 ,𝑥2 → 𝜒𝜔 = 𝑥2|𝜔
 

where𝑥2|𝜔
 is the restriction of the state 𝑥2 to 𝜔. 

Definition 4.1: The system (32)-(33) is called exactly regionally reduced-observable (or exactly 𝜔-observable) if 

Im𝜒𝜔𝒦∗ = 𝐿2 𝜔 = 𝑋2 

Definition 4.2: The system (32)-(33) is called weakly regionally reduced-observable (or weakly 𝜔-observable) if 

 

Im𝜒𝜔𝒦∗           = 𝐿2 𝜔 = 𝑋2 

 

Definition 4.3: The suite of sensors (zone or pointwise) (𝐷𝑖 ,𝑓𝑖)1≤𝑖≤𝑞  are called regional reduced strategic sensors (or 

𝜔- strategic sensors if the system (32)-(33) is weakly 𝜔-observable. 

 

Definition 4.4: The semi-group (𝑆𝐴22
(𝑡))𝑡≥0 is said to be exponential reduced stable (or Ω𝐸-stable) if ∃ 𝑀, 𝛼 > 0 such 

that 
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 𝑆𝐴22
(𝑡) 

𝐿2 Ω 
≤ 𝑀𝐴22

𝑒−𝛼𝐴22 (𝑡), 𝑡 ≥ 0           (34) 

Definition 4.5: Let (𝑆𝐴22
(𝑡))𝑡≥0 is an Ω𝐸-stable semi-group, then ∀𝑥2 ∈ 𝑋2 the solution of the associated autonomous 

system satisfies: 

 𝑥2(. , 𝑡) 𝐿2 Ω =  𝑆𝐴22
 𝑡 𝑥20

(. ) 
𝐿2 Ω 

≤  𝑀𝐴22
𝑒−𝛼𝐴22 (𝑡) 𝑥20

(. ) 
𝐿2 Ω 

 

and therefore 

lim
𝑡→∞

 𝑥2(. , 𝑡) 𝐿2 Ω = lim
𝑡→∞

 𝑆𝐴22
 𝑡 𝑥20

(. ) 
𝐿2 Ω 

= 0 

Definition 4.6: The system (32) is said to be Ω𝐸-stable if the operator 𝐴22 generates a semi-group which is Ω𝐸-

stable. 

Definition 4.7: The system (32)-(33) is said to be exponential reduced detectable on Ω (or Ω𝐸-detectable) if there 

exists an operator ℋ: 𝑅𝑞 → 𝐿2 Ω  such that (𝐴22 − ℋ𝐶) generates a strongly continuous semi-group (𝑆𝐴22
(𝑡))𝑡≥0 which is 

Ω𝐸-stable. 

Remark 4.8: The relation (34) is true on a given subdomain 𝜔 ⊂ Ω, i.e. 

 𝜒𝜔𝑆𝐴22
(𝑡) 

ℒ(𝐿2 𝜔 , 𝐿2 Ω  )
≤ 𝑀𝐴22

𝑒−𝛼𝐴22 (𝑡), 𝑡 ≥ 0        (35) 

and then 

lim
𝑡→∞

 𝑥2(. , 𝑡) 𝐿2 𝜔 = 0 

We refer to this as regional exponential reduced stability (or 𝜔𝐸-stability). 

Definition 4.9: The system (32) The system is said to be regional exponential reduced stability (or 𝜔𝐸-stable) if the 

operator A22 generates a semi-group which is 𝜔𝐸 -stable. 

In this section, we shall extend the definition of Ω𝐸-detectable (35) to the regional case by considering 𝜔 as subregion of 

Ω. 

Definition 4.10: The system (32)-(33) is said to be regional exponential reduced detectable (or 𝜔𝐸-detectable) if 

there exists an operator ℋ𝜔 : 𝑅𝑞 → 𝐿2 𝜔  such that (A22 −  ℋ𝜔 A12)generates a strongly continuous semi-group (𝑆A22
(𝑡))𝑡≥0 , 

which is 𝜔𝐸-stable. 

From proposition 3.1, we have the dynamical system for (32)-(33) may be given by 

 
 
 

 
 

𝜕𝑧 

𝜕𝑡
 𝜉, 𝑡 = 𝐴22𝑧  𝜉, 𝑡 + [𝐵2𝑢 𝑡 + 𝐴21𝑦 . , 𝑡 ] +

              ℋ𝜔 [𝑦  . , 𝑡 − 𝐴12𝑧  𝜉, 𝑡 ]                           𝒬

𝑧  𝜂, 𝑡   = 0                                                               Θ

𝑧  𝜉, 0   =  𝑧 0 𝜉                                                       Ω

      (36) 

where(𝐴22 − ℋ𝜔𝐴12) generates a strongly continuous semi-group (𝑆𝐴22
(𝑡))𝑡≥0 which is 𝜔𝐸-stable on the Hilbert 

space𝑋2 ⊂ 𝑋 = 𝐿2 Ω , (𝐵2 − ℋ𝜔𝐵1) ∈ 𝐿 𝑅𝑝 , 𝑋2 and (𝐴22ℋ𝜔 − ℋ𝜔𝐴12ℋ𝜔−ℋ𝜔𝐴11 + 𝐴21) ∈ 𝐿 𝑅𝑞 ,𝑋2  [7].  

The importance of reduced ω𝐸-detectability is possible to define a reduced 𝜔𝐸-estimator for system state may be given 

by the following important result: 

Theorem 4.11: If there are 𝑞 sensors (𝐷𝑖 ,𝑓𝑖)1≤𝑖≤𝑞  and the spectrum of 𝐴22 contains 𝐽 eigenvalues with non-negative 

real parts. The system (32)-(33) is 𝜔𝐸-detectable iff 

1. 𝑞 ≥ 𝑚2 

2. Rank 𝐺2𝑖
= 𝑚2𝑖

, ∀𝑖, 𝑖 = 1, … , 𝐽 with 

𝐺2 = 𝐺2𝑖𝑗
=  

 𝜑𝑗  .  , 𝑓𝑖(. ) 𝐿2 𝐷𝑖 
,     for zone sensors          

𝜑𝑗  𝑏𝑖 ,                          for pointwise sensors
  

wheresup 𝑚2𝑖
= 𝑚2 < ∞ and 𝑗 = 1,… , ∞. 

Proof: The proof is developed to the case of zone sensors in the following stapes: 

 

1) The system (32) can be decomposed by the projections 𝒫 and 𝐼 − 𝒫, on two parts, unstable and stable under the 
assumptions of section 4.2, where 𝒫 and (𝐼 − 𝒫) are play the role of projection as 𝐸1 , 𝐸2in section 4.1. The state 

vector may be given by  

𝑥2 𝜉, t =  𝑥21
 𝜉, t 𝑥22

 𝜉, t  
𝑡𝑟
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where𝑥21
 𝜉, t  is the state component of the unstable part of system (32), may be written in the form 

 

𝜕𝑥21

𝜕𝑡
 𝜉, 𝑡 = 𝐴221𝑥21

 𝜉, 𝑡 + 𝒫 𝐴211𝑥11
 𝜉, 𝑡 + 𝐵2𝑢 𝑡    𝒬

𝑥21
 𝜂, 𝑡 = 0                                                                                 Θ

𝑥21
 𝜉, 0 = 𝑥210

 𝜉                                                                      Ω

 (37) 

and𝑥22
 𝜉, t  is the component state of the stable part of system (32), given by  

 

𝜕𝑥22

𝜕𝑡
 𝜉, 𝑡 = 𝐴222

𝑥22
 𝜉, 𝑡 + (𝐼 − 𝒫) 𝐴212

𝑥12
 𝜉, 𝑡 + 𝐵2𝑢 𝑡    𝒬

𝑥22
 𝜂, 𝑡 = 0                                                                                             Θ

𝑥22
 𝜉, 0 = 𝑥220

 𝜉                                                                                  Ω

 (38) 

The operator 𝐴221is represented by a matrix of order   𝑚2𝑖

𝐽
𝑖=1 ,  𝑚2𝑖

𝐽
𝑖=1   given by 

𝐴221 = diag 𝜆21
,… , 𝜆21

, … , 𝜆2𝐽
, … , 𝜆2𝐽

 and 

𝒫𝐵2 =  𝐺21

𝑡𝑟 , 𝐺22

𝑡𝑟 , … , 𝐺2𝐽

𝑡𝑟   

From condition (2) of this theorem, then the suite of sensors (𝐷𝑖 , 𝑓𝑖)1≤𝑖≤𝑞  is 𝜔-strategic for the unstable part of the 

system (32), the subsystem (37) is weakly regionally reduced-observable in 𝜔 (or weakly 𝜔-observable) and since it 

is finite dimensional, then it is exactly regionally reduced-observable in 𝜔 (or exactly 𝜔-observable). 

Therefore it is 𝜔𝐸-detectable, and hence there exists an operator ℋ𝜔
1  such that (𝐴221 − ℋ𝜔

1𝐴121) which satisfies the 

following:  

∃𝑀𝜔
1 ,𝛼𝜔

1 > 0 such that  𝑒(𝐴22 1−ℋ𝜔
1𝐴12 1)𝑡 

𝐿2 𝜔 
≤ 𝑀𝜔

1 𝑒−𝛼𝜔
1 (𝑡) 

and we have  

 𝑥21
 𝜉, 𝑡  

𝐿2 𝜔 
≤ 𝑀𝜔

1 𝑒−𝛼𝜔
1 (𝑡) 𝒫𝑥20

 .   
𝐿2 𝜔 

 

Since the semi-group generated by the operator 𝐴22 2 is 𝜔𝐸-stable, 

∃𝑀𝜔
2 , 𝛼𝜔

2 > 0 such that  

 𝑥22
 𝜉, 𝑡  

𝐿2 𝜔 
≤ 𝑀𝜔

2 𝑒−𝛼𝜔
2 (𝑡) (𝐼 − 𝒫)𝑥20

 .   
𝐿2 𝜔 

 

+  𝑀𝜔
2 𝑒−𝛼𝜔

2 (𝑡−𝜏) (𝐼 − 𝒫)𝑥20
 .   

𝐿2 𝜔 
 𝑢(𝜏) 𝑑𝜏

𝑡

0

 

and therefore 𝑥2 𝜉, t → 0 when 𝑡 → ∞. Thus, the system (32)-(33) is 𝜔𝐸-detectable. 

 

2) If the system (32)-(33) is 𝜔𝐸-detectable, then 

∃ ℋ𝜔 ∈ ℒ 𝐿2 0,∞, 𝑅𝑞 , 𝐿2 𝜔  such that (𝐴22 − ℋ𝜔𝐴12) generates an 𝜔𝐸-stable, strongly continuous semi-group 

 (𝑆𝐴22
(𝑡))𝑡≥0 on the space 𝐿2 𝜔  which satisfies the follwing 

∃ 𝑀𝜔 ,𝛼𝜔 > 0such that  

 𝜒𝜔𝑆𝐴22
(𝑡) 

𝐿2 𝜔 
≤ 𝑀𝜔𝑒−𝛼𝜔 (𝑡) 

Thus the unstable subsystem (37) is 𝜔𝐸-detectable. Since this subsystem is of finite dimensional, then it is exactly 

𝜔-observable. Therefore (37) is weakly 𝜔-observable and hence it is reduced 𝜔-strategic, i.e.  

 𝒦𝜒𝜔
∗ 𝑥2

∗ . , 𝑡 = 0 ⟹ 𝑥2
∗(. , 𝑡) = 0 . For 𝑥2

∗ . , 𝑡 ∈ 𝐿2 𝜔 we have  

𝒦𝜒𝜔
∗ 𝑥2

∗ . , 𝑡 = ( 𝑒𝜆𝑗 𝑡 𝜑𝑗 (. ), 𝑥2
∗(. , 𝑡) 𝐿2 𝜔  𝜑𝑗 (. ), 𝑓𝑖(. ) 𝐿2 Ω 

𝐽

𝑗 =1

)1≤𝑖≤𝑞  

If the unstable system (37) is not 𝜔-strategic, ∃𝑥2
∗ . , 𝑡 ∈ 𝐿2 𝜔  such that 𝒦𝜒𝜔

∗ 𝑥2
∗ . , 𝑡 = 0 this leads to  

  𝜑𝑗 (. ), 𝑥2
∗(. , 𝑡) 𝐿2 𝜔  𝜑𝑗 (. ), 𝑓𝑖(. ) 𝐿2 Ω 

𝐽

𝑗 =1

= 0 

the state vectors 𝑥2𝑖
 may be given by 

𝑥2𝑖
 . , 𝑡 =   𝜑1(. ), 𝑥2

∗(. , 𝑡) 𝐿2 𝜔  𝜑𝑗 (. ), 𝑥2
∗(. , 𝑡) 𝐿2 𝜔  

𝑡𝑟
≠ 0 



                                                                     ISSN 2347-1921                                                           

5068 | P a g e                                                   S e p t e m b e r  1 1 ,  2 0 1 5  

 

we then obtain𝐺2𝑖𝑥2𝑖
= 0,∀𝑖, 𝑖 = 1,… , 𝐽and therefore 𝑅𝑎𝑛𝑘 𝐺2𝑖

≠ 𝑚2𝑖
. 

Here, we construct the 𝜔𝐸-estimator for parabolic distributed parameter system (1), we need to present the following 

remakes 

Remark 4.12: Now, choose the following decomposition: 

𝑧 =  
𝑧 1
𝑧 2

 =  
𝑦

𝜑 + ℋ𝜔𝑦  

which estimates exponentially the state vector 

𝑥 =  
𝑥1

𝑥2
  

Then, the dynamical system (36) is given by the following system:  

 
  
 

  
 

𝜕  𝜑

𝜕𝑡
 𝜉, 𝑡 = (𝐴22 − ℋ𝜔𝐴12) 𝜑 𝜉, 𝑡 

+[ 𝐴22ℋ𝜔 − ℋ𝜔𝐴12ℋ𝜔−ℋ𝜔𝐴11 + 𝐴21]

        𝑦 𝜉, 𝑡 + [𝐵2 − ℋ𝜔𝐵1]𝑢 𝑡                        𝒬

𝜑 𝜂, 𝑡   = 0                                                          Θ

𝜑 𝜉, 0   =  𝜑0 𝜉                                                 Ω

           (39) 

which defines an 𝜔𝐸-estimator for 𝑇𝜔𝑥2 𝜉, 𝑡  if  

1. lim𝑡→∞ 𝜑 𝜉, 𝑡 − 𝑇𝜔𝑥2 𝜉, 𝑡  𝐿2 𝜔 = 0 

2. 𝑇𝜔 : 𝐷(𝐴22) → 𝐷(𝐴22 − ℋ𝜔𝐴12)where𝑇𝜔 = 𝜒𝜔𝑇 and 𝜑 𝜉, 𝑡  is the solution of system (39). 

 

Remark 4.13: the dynamical system (39) observes the regional reduced state of the system (1) if the following 

conditions satisfy: 

1. ∃𝐿 ∈ 𝐿 𝒪, 𝐿2 𝜔  and 𝑀 ∈ 𝐿 𝐿2 𝜔   such that: 

𝐿 𝐴12 + 𝑀𝑇𝜔 = 𝐼𝜔  

2. 𝑇𝜔𝐴22 − (𝐴22 − ℋ𝜔𝐴12)𝑇𝜔 = ℋ𝜔 A12and (𝐵2 − ℋ𝜔𝐵1) = 𝑇𝜔𝐵2 

3. The system (39) defines an 𝜔𝐸-estimator for the system (1). 

4. If 𝑋 = 𝑋2and 𝑇𝜔 = 𝐼𝜔  then, in the above case, we have  

𝐴22 −  𝐴22 − ℋ𝜔 A12 = ℋ𝜔A12  

Remark 4.14: the system (1) is 𝜔𝐸-observable if there exists an 𝜔𝐸-estimators (39) which estimate the regional 

exponential reduced state of this system. 

Now, we present the sufficient condition of the regional exponential reduced observability notion as in the following main 
result. 

Theorem 4.15: If the system (32)-(33), is 𝜔𝐸-detectable, then it is 𝜔𝐸-observable by the dynamical system (39), that 

means                                                                                                                     

lim
𝑡→∞

  𝜑 𝜉, t + ℋ𝜔𝑦 𝜉, t  − 𝑥2 𝜉, t  
𝐿2 𝜔 

= 0, 

Proof: The solution of the dynamical system (36) is given by                                

𝑧  𝜉, 𝑡 = 𝑆ℋ𝜔
 𝑡 𝑧 0 𝜉 +  𝑆ℋ𝜔

 𝑡 − 𝜏 [𝐵2𝑢 𝜏 
𝑡

0

 

+𝐴21𝑦 𝜉, 𝜏 + ℋ𝜔𝑦  𝜉, 𝜏 ]𝑑𝜏      (40) 

From the equations (32) and (33), we have  

𝑦  𝜉, 𝑡 = 𝐴12𝑎 . , 𝑡 =
𝜕𝑥1

𝜕𝑡
 𝜉, 𝑡 − 𝐴11𝑥1 𝜉, 𝑡 − 𝐵1𝑢 𝑡    (41) 

By using (41) and (40), we obtain  

𝑧  𝜉, 𝑡 = 𝑆𝐻𝜔
 𝑡 𝑧 0 .  +  𝑆ℋ𝜔

 𝑡 − 𝜏 ℋ𝜔

𝜕𝑥1

𝜕𝑡
 𝜉, 𝜏 𝑑𝜏

𝑡

0

 

+  𝑆ℋ𝜔
 𝑡 − 𝜏 

𝑡

0

[𝐵2𝑢 𝜏 + 𝐴21𝑦 𝜉, 𝜏  
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−ℋ𝜔𝐴11𝑥1 . , 𝜏 − ℋ𝜔𝐵1𝑢 𝜏 ]𝑑𝜏.                   (42) 

and we can get                                                                                                                   

 𝑆𝐻𝜔
 𝑡 − 𝜏 ℋ𝜔

𝜕𝑥1

𝜕𝑡
 𝜉, 𝜏 𝑑𝜏 =

𝑡

0

ℋ𝜔𝑥1 . , 𝑡 − 𝑆𝐻𝜔
 𝑡 ℋ𝜔𝑥01

 .   

                             + (𝐴22 − ℋ𝜔𝐴12)  𝑆ℋ𝜔
 𝑡 − 𝜏 

𝑡

0
ℋ𝜔𝑥1 . , 𝜏 𝑑𝜏(43)  

Using Bochnerintegrability properties and closeness of (𝐴22 − ℋ𝜔A12), the equation (43) becomes   

 𝑆ℋ𝜔
 𝑡 − 𝜏 ℋ𝜔

𝜕𝑥1

𝜕𝑡
 𝜉, 𝜏 𝑑𝜏 =

𝑡

0

ℋ𝜔𝑥1 . , 𝑡 − 𝑆ℋ𝜔
 𝑡 ℋ𝜔𝑥01

(. ) 

+( 𝑆ℋ𝜔
 𝑡 − 𝜏 

𝑡

0
(𝐴22 − ℋ𝜔𝐴12)ℋ𝜔𝑥1 𝜉, 𝜏 𝑑𝜏 (44) 

Substituting (44) into (42), we have 

𝑧  . , 𝑡 = 𝑆𝐻𝜔
 𝑡 𝑧 0 .  − 𝑆𝐻𝜔

 𝑡 𝐻𝜔𝑥01
 .  + 𝐻𝜔𝑥1 . , 𝑡  

+  𝑆𝐻𝜔
 𝑡 − 𝜏 

𝑡

0
 𝐴22𝐻𝜔 − 𝐻𝜔A12𝐻𝜔 − 𝐻𝜔A11 + A21 𝑥1 . , 𝜏 𝑑𝜏 +  𝑆𝐻𝜔

 𝑡 − 𝜏 [𝐵2 − 𝐻𝜔B1]𝑢(𝜏)𝑑𝜏.
𝑡

0
(45) 

Setting 𝜑 . , 𝑡 = 𝑧  . , 𝑡 − ℋ𝜔𝑦 . , 𝑡 ,with 𝜑0 . ,0 = 𝑧 0(. ) − ℋ𝜔𝑥01
 .  , where𝑦0 .  = 𝑥01

 .  . Now, assume that (A22ℋ𝜔 −

ℋ𝜔A12ℋ𝜔 − ℋ𝜔 A11A21)and (𝐵2 − ℋ𝜔𝐵1) are bounded operators , the equation (45) can be differentiated to yield the 

following system  

 
 
 

 
 
𝜕𝜑

𝜕𝑡
 𝜉, 𝑡 = (𝐴22 − ℋ𝜔𝐴12)𝜑 𝜉, 𝑡 + (𝐴22ℋ𝜔 − ℋ𝜔𝐴12ℋ𝜔

               −ℋ𝜔𝐴11 + 𝐴21)𝑦 . , 𝑡 + (𝐵2 − ℋ𝜔𝐵1)𝑢 𝑡 𝒬

𝜑 𝜂, 𝑡   = 0                                                                              Θ

𝜑 𝜉, 0   =  𝜑0 𝜉                                                                     Ω

  

and therefore  

𝜕𝑧

𝜕𝑡
 𝜉, 𝑡 −

𝜕𝑥2

𝜕𝑡
 𝜉, 𝑡 = (𝜑 𝜉, 𝑡 + ℋ𝜔𝑦 𝜉, 𝑡 − 𝑥2 𝜉, 𝑡  

= (A22𝑧  𝜉, 𝑡 + 𝐵2𝑢 𝑡 + 𝐴21𝑦 . , 𝑡 + ℋ𝜔(𝑦  𝜉, 𝑡  

−𝐴12𝑧 ) 𝜉, 𝑡 − 𝐴21𝑥1 𝜉, 𝑡 − 𝐴22𝑥2 𝜉, 𝑡 − 𝐵2𝑢 𝑡  

= (𝐴22 − ℋ𝜔𝐴12)( 𝑧  𝜉, 𝑡 − 𝑥2 𝜉, 𝑡 )(46) 

From the relation  

 𝜒𝜔𝑆𝐴22
 𝑡 𝑥20

(. ) 
𝐿2 𝜔 

≤ 𝑀𝐴22
𝑒−𝛼𝐴22 (𝑡) 𝑥20

(. ) 
𝐿2 𝜔 

 

we obtain 

∥ 𝑧  . , 𝑡 − 𝑥2 . , 𝑡 ∥𝐿2 𝜔 ≤ ∥ 𝜒𝜔𝑆ℋ𝜔
 𝑡 ∥𝐿2 𝜔 ∥ 𝑧  . ,0 − 𝑥2 . ,0 ∥𝐿2 𝜔  

≤ 𝑀ℋ𝜔𝑒−𝛼𝐻𝜔 𝑡 ∥ 𝑧  . ,0 − 𝑥2 . ,0 ∥𝐿2 𝜔 → 0 as 𝑡 → ∞   (47) 

where the component 𝑧  𝜉, 𝑡  is an exponentially estimator of 𝑥2. then, we have the system (36) is a 𝜔𝐸-observable for the 

system (32)-(33). 

From the previous theorem 4.15, we can deduce the following definition which characterizes another new strategic sensor:  

Definition 4.16: A sensors is𝜔𝐸-strategic sensor if the corresponding systemis𝜔𝐸-observable. 

5. APPLICATIONS TO EXCHANGE SYSTEMS  

Consider the case of two-phase exchange system described by the following coupled parabolic equations: 

 

 
 
 

 
 

𝜕𝑥1

𝜕𝑡
 𝜉1, 𝜉2, 𝑡 = 𝛼

𝜕2𝑥1

𝜕𝜉2
 𝜉1, 𝜉2, 𝑡 + 𝛽 𝑥1 𝜉1 , 𝜉2 , 𝑡 − 𝑥2 𝜉1 , 𝜉2 , 𝑡  𝒬

𝜕𝑥2

𝜕𝑡
 𝜉1, 𝜉2, 𝑡 = 𝛾

𝜕2𝑥2

𝜕𝜉2
 𝜉1, 𝜉2, 𝑡 + 𝛽 𝑥2 𝜉1, 𝜉2, 𝑡 − 𝑥1 𝜉1 , 𝜉2, 𝑡  𝒬

𝑥1 𝜉1 , 𝜉2, 0 = 𝑥01
 𝜉1, 𝜉2 , 𝑥2 𝜉1, 𝜉2, 0 = 𝑥02

 𝜉1 , 𝜉2 Ω

𝑥1 𝜂1 , 𝜂2 , 𝑡 = 0,   𝑥2 𝜂1 ,𝜂2 , 𝑡 = 0                                                        Θ

 (48) 

and consider Ω =  0,1 × (0,1) with subregion 𝜔 =  𝛼1 , 𝛽1 ×  𝛼2, 𝛽2 ⊂ Ω. Suppose that it is possible to measure the 

states 𝑥1 . , 𝑡 , by using 𝑞 zone sensors(𝐷𝑖 , 𝑓𝑖)1≤𝑖≤𝑞 . The output function (2) is given by 
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𝑦 𝑡 = C𝑥1 . , 𝑡  

=   𝐷1
𝑥1 𝜉, 𝑡 𝑓1 𝜉 𝑑𝜉 …   𝐷𝑞

𝑥1 𝜉, 𝑡 𝑓𝑞 𝜉 𝑑𝜉 
𝑡𝑟

. 

Now, the problem is to estimate exponentially 𝑥2 𝜉, 𝑡 . 

Let us consider 

 

𝜕𝑥

𝜕𝑡
=  

𝜕𝑥1

𝜕𝑡
𝜕𝑥2

𝜕𝑡

 =  
𝐴11 𝐴12

𝐴21 𝐴22
  

𝑥1

𝑥2
              (49) 

where 

𝐴11 = 𝛼
𝜕2𝑥1

𝜕𝜉2
 𝜉1, 𝜉2, 𝑡 + 𝛽, 𝐴22 = 𝛾

𝜕2𝑥2

𝜕𝜉2
 𝜉1 , 𝜉2, 𝑡 + 𝛽 

and𝐴12 = 𝐴21 = −𝛽𝐼. 

From theorem 4.11, we can construct regional reduced estimator for system (48) if the sensors (𝐷𝑖 ,𝑓𝑖)1≤𝑖≤𝑞  are 𝜔-strategic 

for the unstable part of the subsystem 

 

 
 
 

 
 

𝜕𝑥1

𝜕𝑡
 𝜉1, 𝜉2, 𝑡 = 𝛾

𝜕2𝑥1

𝜕𝜉2
 𝜉1, 𝜉2, 𝑡 + 𝛽(𝑥1 𝜉1 , 𝜉2 , 𝑡 

−𝑥2 𝜉1, 𝜉2, 𝑡 )                                                        𝒬

𝑥1 𝜉1 , 𝜉2, 0 = 𝑥01
 𝜉1, 𝜉2                                                               Ω                           

𝑥1 𝜂1 , 𝜂2 , 𝑡 = 0                                                                               Θ

   (50) 

 

where that 𝛾 = 0.1 and 𝛽 = 1. If we choose the sensors(𝐷𝑖 , 𝑓𝑖)1≤𝑖≤𝑞  such that 

𝑦 𝑡 =   𝐷1
𝑥1 𝜉1 , 𝜉2, 𝑡 𝑓1 𝜉1, 𝜉2 𝑑𝜉1𝑑𝜉2 …   𝐷𝑞

𝑥1 𝜉1, 𝜉2, 𝑡 𝑓𝑞 𝜉1 , 𝜉2 𝑑𝜉1𝑑𝜉2 
𝑡𝑟

≠ 0, 

then, there exists ℋ𝜔 ∈ ℒ(𝑅𝑞 , 𝐿2 𝜔 ) such that the operator (𝐴22 − ℋ𝜔𝐴12) generates a strongly continuous stable semi-

group on the space 𝐿2 𝜔 . Thus we have  

lim
𝑛→∞

 (𝑤 . , 𝑡 + ℋ𝜔𝑥1 . , 𝑡 ) − 𝑥2 . , 𝑡  𝐿2 𝜔 = 0, 

 

where 

 

 
 
 

 
 

𝜕𝑤

𝜕𝑡
 𝜉1, 𝜉2, 𝑡 = 𝛾

𝜕2𝑤

𝜕𝜉2
 𝜉1 , 𝜉2, 𝑡 + 𝛽( 1 + ℋ𝜔  𝑤 𝜉1, 𝜉2, 𝑡 

                  + 𝛾 − 𝛼ℋ𝜔 
𝜕𝑥1

𝜕𝜉2
 𝜉1 , 𝜉2, 𝑡 +  ℋ𝜔

2 − 1  𝜉1 , 𝜉2 , 𝑡 )   𝒬

𝑤 𝜉1, 𝜉2, 0 = 𝑤0 𝜉1, 𝜉2                                                                   Ω

𝑤 𝜂1 , 𝜂2 , 𝑡 = 0                                                                                  Θ

 (51) 

 

In this section, we give the specific results related to some examples of sensors locations and we apply these results to 
different situations of the domain, which usually follow from symmetry considerations. 

We consider the two-dimensional system defined on Ω =  0,1 × (0,1) with the case of system described by the following 

equations: 

 
 
 

 
 

𝜕𝑥2

𝜕𝑡
 𝜉1 , 𝜉2, 𝑡 = 𝛾

𝜕2𝑥2

𝜕𝜉2
 𝜉1 , 𝜉2, 𝑡 + 𝛽𝑥2 𝜉1, 𝜉2, 𝑡 

                  −𝛽𝑥1 𝜉1, 𝜉2, 𝑡 𝒬    

𝑥2 𝜉1, 𝜉2, 0 = 𝑥02
 𝜉1, 𝜉2                                           Ω           

𝑥2 𝜂1 , 𝜂2, 𝑡 = 0                              Θ          

   (52) 

 

augmented with the output function 
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𝑦 𝑡 = C𝑥1 . , 𝑡                                         (53) 

 

Let 𝜔 =  𝛼1, 𝛽1 ×  𝛼2, 𝛽2 , In this case the eigenfunctions and eigenvalues for the dynamic system (52) for Neumann 

conditions are given by 

 

𝜑𝑖𝑗  𝜉1 , 𝜉2 =
2

 (𝛽1−𝛼1)(𝛽2−𝛼2)
 𝑆𝑖𝑛 𝑖𝜋  

𝜉1−𝛼1

𝛽1−𝛼1
  𝑆𝑖𝑛 𝑗𝜋  

𝜉2−𝛼2

𝛽2−𝛼2
  (54) 

𝜆𝑖𝑗 = − 
𝑖2

(𝛽1−𝛼1)2
+

𝑗 2

(𝛽2−𝛼2)2
 𝜋2,   𝑖, 𝑗 ≥ 1         (55) 

 

We examine the tow cases illustrated in fig. (2)-(3). 

5.1 Internal Rectangular Sensor 

For discussing this case, suppose the system (52)-(53) where the sensor supports 𝐷𝑖 is the located inΩ. The output 

function can be written by the form  

𝑦 𝑡 =  𝐷𝑖
𝑥2 𝜉1 , 𝜉2 , 𝑡 𝑓𝑖 𝜉1, 𝜉2 𝑑𝜉1𝑑𝜉2,                              (56) 

where𝐷 ⊂ Ω, is the location of zone sensor as in (Figure 3).  

 

Fig. 3: Rectangular domain, region 𝝎 and location 𝑫 with rectangular support sensor 

Then, the sensor (𝐷𝑖 ,𝑓𝑖)1≤𝑖≤𝑞  may be sufficient for 𝜔𝐸-observability, and there exists ℋ𝜔 ∈ ℒ(𝑅𝑞 , 𝐿2 𝜔 ) such that the 

operator (𝐴22 − ℋ𝜔𝐴12) generates a strongly continuous stable semi-group on the space 𝐿2 𝜔 . Thus we have 

 

lim
𝑡→∞

 (𝑤 𝜉1, 𝜉2, 𝑡 + ℋ𝜔𝑥2 𝜉1, 𝜉2, 𝑡 ) − 𝑥1 𝜉1 , 𝜉2, 𝑡  𝐿2 𝜔 = 0, 

 

where 

 

 
 
 

 
 

𝜕𝑤

𝜕𝑡
 𝜉1 , 𝜉2, 𝑡 = 𝛾

𝜕2𝑤

𝜕𝜉2
 𝜉1, 𝜉2, 𝑡 + 𝛽( 1 + ℋ𝜔 𝑤 𝜉1, 𝜉2, 𝑡 

                  + 𝛾 − 𝛼ℋ𝜔 
𝜕𝑥2

𝜕𝜉2
 𝜉1 , 𝜉2, 𝑡 +  ℋ𝜔

2 − 1  𝜉1 , 𝜉2 , 𝑡 ) 𝒬

𝑤 𝜉1, 𝜉2, 0 = 𝑤0 𝜉1, 𝜉2                                                                 Ω

𝑤 𝜉1, 𝜉2, 𝑡 = 0                                                                                Θ

 (57) 

Then, we have the following result  

Proposition 5.1: Suppose 𝜔 = 𝐷𝑖 = πi=1
2 [𝛼𝑖 − 𝜉𝑖0

, 𝛽𝑖 − 𝜉𝑖0
] ⊂ 𝛺 as in (Figure 3). Then the sensor (𝐷𝑖 , 𝑓𝑖)1≤𝑖≤𝑞  is not 𝜔𝐸-

observable by the 𝜔𝐸-estimator (57), if for any 𝑖0 ∈  1,2 , 𝑖0(𝜉𝑖0
− 𝛼𝑖0

) (𝜉𝑖0
− 𝛽𝑖0

) ∈ 𝑄 and 𝑓𝑖  is symmetric about the 

line𝑥𝑖0
= 𝜉𝑖0

. 

Proof: suppose 𝑖0 = 1, (𝜉𝑖0
− 𝛼𝑖0

) (𝜉𝑖0
− 𝛽𝑖0

) ∈ 𝑄, then there exists 𝑗0 ≥ 1 such thatSin  𝑗0𝜋𝑐1 𝛽1 𝛼1 = 0. But  

𝑦 𝑡 =  𝑓1 , 𝜑𝑖0𝑗0
 =  

4

 𝛽1 − 𝛼1  𝛽2 − 𝛼2 
 

1 2 

  𝑓1(
𝛼1+𝜉1

𝛼1−𝜉1

𝛼2+𝜉2

𝛼2−𝜉2

𝜉1, 𝜉2) 

𝑆𝑖𝑛  
𝑗0𝜋𝜉1

 𝛽1 − 𝛼1 
 𝑆𝑖𝑛  

𝑗0𝜋𝜉2

 𝛽2 − 𝛼2 
 𝑑𝜉1𝑑𝜉2 

If 𝑓1 is symmetric about 𝜉1 = 𝑥2 the integral in the square bracket is zero and hence 𝑦 𝑡 =  𝑓1 , 𝜑𝑖0𝑗0
 = 0. 

5.2 Internal circular sensor 
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Consider the system (52) augmented with the output function𝑦 𝑡 = 𝐶𝑥1 . , 𝑡  where the sensor supports 𝐷𝑖 is 

located inside the domainΩ. The output 𝑦 𝑡 = 𝐶𝑥1 . , 𝑡  can be written by thefollowing form 

𝑦 𝑡 =  𝐷𝑖
𝑥1 𝑟, 𝜃, 𝑡 𝑓𝑖 𝑟, 𝜃 𝑑𝑖𝑑𝜃𝑖 ,              (58) 

where𝐷𝑖 = (𝑟𝑖 ,𝜃𝑖) ⊂ Ω, is the location of zone sensor as in (Figure 4).  

 

Fig.4: Rectangular domain, region 𝝎 and location 𝑫 with circular support sensor 

Then, the sensor (𝐷𝑖 ,𝑓𝑖)1≤𝑖≤𝑞  may be sufficient for 𝜔𝐸-observability, and there exists ℋ ∈ ℒ(𝑅𝑞 , 𝐿2 𝜔 ) such that the 

operator (𝐴22 − ℋ𝜔𝐴12) generates a strongly continuous stable semi-group on the space 𝐿2 𝜔 . Thus we have  

 

lim
𝑡→∞

 (𝑤 𝑟, 𝜃, 𝑡 + ℋ𝜔𝑥2 𝑟, 𝜃, 𝑡 ) − 𝑥1 𝑟, 𝜃, 𝑡  𝐿2 𝜔 = 0, 

where 

 

 
 
 

 
 

𝜕𝑤

𝜕𝑡
 𝑟,𝜃, 𝑡 = 𝛾

𝜕2𝑤

𝜕𝜉2
 𝑟, 𝜃, 𝑡 + 𝛽( 1 + ℋ𝜔  𝑤 𝑟, 𝜃, 𝑡 

                  + 𝛾 − 𝛼ℋ𝜔 
𝜕𝑥2

𝜕𝜉2
 𝑟, 𝜃, 𝑡 +  ℋ𝜔

2 − 1  𝑟, 𝜃, 𝑡 )    𝒬

𝑤 𝑟, 𝜃, 0 = 𝑤0 𝑟,𝜃                                                                   Ω

𝑤 𝑟, 𝜃, 𝑡 = 0                                                                              Θ

 (59) 

Then, we have the following result: 

Proposition 5.2: Suppose 𝜔 = 𝐷𝑖 = 𝐷𝑖 𝑐, 𝑟 ⊂ Ω = πi=1
2  0,1 𝑐 =  𝑐1, 𝑐2 . Then the sensor (𝐷𝑖 ,𝑓𝑖)1≤𝑖≤𝑞  is not𝜔𝐸-

observable by the 𝜔𝐸-estimator (59), if for any 𝑖0 ∈  1,2 , 𝑖0(𝑐𝑖0
− 𝛼𝑖0

) (𝑐𝑖0
− 𝛽𝑖0

) 𝜖 𝑄 and 𝑓𝑖  is symmetric about the 

line𝑥𝑖0
= 𝑐𝑖0

. 

Proof: suppose 𝑖0 = 1, then there exists 𝑗0 ≥ 1 such thatcos 𝑗0𝜋𝑐1 𝛽1 𝛼1 = 0. Consider the output function (53) with the 

change of variable 𝑥2 = 𝑐1 + 𝑟  𝑐𝑜𝑠 𝜃, 𝑥2 = 𝑐2 + 𝑟  𝑠𝑖𝑛 𝜃, then 

𝑦 𝑡 =  𝑓1 ,𝜑𝑖0𝑗0
 =  

4

 𝛽1 − 𝛼1  𝛽2 − 𝛼2 
 

1 2 

  𝑓1(
𝑟

0

2𝜋

0

𝑐1 + 𝑟 Cos𝜃, 𝑐2 + 𝑟 Sin𝜃)

× 𝑆𝑖𝑛  
𝑗0𝜋(𝑐1 + 𝑟 Sin𝜃)

 𝛽1 − 𝛼1 
  𝑆𝑖𝑛  

𝑗0𝜋(𝑐1 + 𝑟 Sin𝜃)

 𝛽2 − 𝛼2 
 𝑟  𝑑𝑟  𝑑𝜃 

Since 𝑓1 is symmetric about 𝑥2 = 𝑐1, the function 

 𝑟 , 𝜃 → 𝑓1 𝑐1 + 𝑟 Cos 𝜃 , 𝑐2 + 𝑟 Sin 𝜃 𝑐𝑜𝑠  
𝑗0𝜋(𝑐1 + 𝑟 Sin𝜃)

 𝛽2 − 𝛼2 
  

is symmetric on  0,𝜋  about 𝜃 = 𝜋 2 for all 𝑟 . But the function  

 𝑟 ,𝜃 → 𝑆𝑖𝑛  
𝑗0𝜋(𝑐1 + 𝑟 Sins𝜃)

 𝛽2 − 𝛼2 
  

is antisymmetric on  0,𝜋  about 𝜋 2 . By decomposing the integral as a sum on  0, 𝜋  and  𝜋, 2𝜋  it is easy to see that 

𝑦 𝑡 =  𝑓1 , 𝜑𝑖0𝑗0
 = 0. 

Remark 5.3: These results can be extended to the following: 

(1) Case of Neumann or mixed boundary conditions. 

(2) Case of boundary (pointwise, zone) sensors. 

6. CONCLUSION 

The concept developed in this paper is related to the regional exponential reduced observability in connection with the 
strategic sensors. Various interesting results concerning the choice of circular sensors are given and illustrated in specific 
situations. Many questions still opened. This is the case of, for example, the problem of finding the optimal sensor location 
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ensuring such an objective. The result of regional exponential reduced observability concept of hyperbolic linear or 
semi linear or nonlinear systems is under consideration. 
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