## EXISTENCE OF NONOSCILLATORY SOLUTIONS OF FIRST ORDER NONLINEAR NEUTRAL DIFFERENCE EQUATIONS

R.Arul ${ }^{1}$, K.Alagesan ${ }^{2}$ and G.Ayyappan ${ }^{3}$<br>${ }^{1 \& 2}$ Department of Mathematics, Kandaswami Kandar’s College, Velur - 638 182, Namakkal Dt. Tamil Nadu, India.<br>${ }^{3}$ Department of Mathematics, Periyar University College of Arts and Science College, Pappireddipatti-636 905, Tamil Nadu, India.

## Abstract

In this paper, we discuss the existence of nonoscillatory solutions of first order nonlinear neutral difference equations of the from

$$
\begin{aligned}
& \Delta\left((x(n)-p(n) x(n-\tau))^{\alpha}\right)+Q(n) G(x(n-\sigma))=0 \\
& \Delta\left((x(n)-p(n) x(n-\tau))^{\alpha}\right)+\sum_{s=c}^{d} Q(n, s) G(x(n-s))=0
\end{aligned}
$$

and

$$
\Delta\left(\left(x(n)-\sum_{s=a}^{b} p(n, s) x(n-s)\right)^{\alpha}\right)+\sum_{s=c}^{d} Q(n, s) G(x(n-s))=0
$$

We use the Knaster-Tarski fixed point theorem to obtain some sufficient conditions for the existence of nonoscillatory solutions of above equations. Examples are provided to illustrate the main results.
2010 AMS Subject Classification: 39A10
Keywords and Phrases: First order; Nonoscillation; neutral difference equations.

## Council for Innovative Research

Peer Review Research Publishing System
Journal: JOURNAL OF ADVANCES IN MATHEMATICS
Vol.11, No. 5
www.cirjam.com , editorjam@gmail.com

## 1. INTRODUCTION

In this paper, we discuss the existence of nonoscillatory solutions of first order nonlinear neutral difference equations of the from

$$
\begin{align*}
& \Delta\left((x(n)-p(n) x(n-\tau))^{\alpha}\right)+Q(n) G(x(n-\sigma))=0, n \in \mathrm{~N}_{0} .  \tag{1.1}\\
& \Delta\left((x(n)-p(n) x(n-\tau))^{\alpha}\right)+\sum_{s=c}^{d} Q(n, s) G(x(n-s))=0, n \in \mathrm{~N}_{0} \tag{1.2}
\end{align*}
$$

and

$$
\begin{equation*}
\Delta\left(\left(x(n)-\sum_{s=a}^{b} p(n, s) x(n-s)\right)^{\alpha}\right)+\sum_{s=c}^{d} Q(n, s) G(x(n-s))=0, n \in \mathrm{~N}_{0} \tag{1.3}
\end{equation*}
$$

where $\Delta$ is the forward difference operator defined by $\Delta x(n)=x(n+1)-x(n)$ and $\mathrm{N}\left(n_{0}\right)=\left\{n_{0}, n_{0}+1, n_{0}+2, \ldots\right\}$ and $n_{0}$ is a nonnegative integer subject to the following conditions:
$\left(C_{1}\right) \alpha$ is a ratio of odd positive integers;
$\left(C_{2}\right) \sigma, \tau, a, b, c$, and $d$ are nonnegative integer with $a<b$ and $c<d$;
$\left(C_{3}\right)\{p(n)\},\{Q(n)\}$ and $\{Q(n, s)\}$ are nonnegative real sequences;
$\left(C_{4}\right) G(x)$ is a positive continuous real valued function with $x G(x)>0$ for $x \neq 0$.
Let $\theta=\max \{\tau, \sigma\}$. By a solution of equations (1.1)-(1.3), we mean a real sequence $\{x(n)\}$ defined and satisfying equations (1.1)-(1.3) for all $n \geq n_{0}-\theta$. Such a solution is said to be oscillatory if it is neither eventually positive nor eventually negative and nonoscillatory otherwise.

In recent years, there has been much research concerning the oscillation of first order neutral delay difference equations, see for example [1-4, 9, 11-13, 16] and the references cited therein. In [2, 5,7, 8, 10, 14, 15], the authors investigated the existence of nonoscilatory solutions of first order difference equations. Following this trend, we obtain some new sufficient conditions for the existence of nonoscillatory solutions of equations (1.1)-(1.3).
In Section 2, we establish some sufficient conditions for the existence of nonoscillatory solutions of equations (1.1)-(1.3). In Section 3, we present some examples to illustrate the main results. The results established in this paper are discrete analogue of that in [6].

## 2. Nonoscillation Theorems

In this section, we present some sufficient conditions for the existence of bounded nonoscillatory solutions of equations (1.1)-(1.3). We begin with the following lemma.

## Lemma 2.1. (Knaster-Tarski Fixed Point Theorem)

Let $B$ be a partially ordered Banach space with ordering $\leq$. Let $M$ be a subset of $B$ with the following properties: the infimum of $M$ belongs to $M$ and every nonempty subset of $M$ has a supremum which belongs to $M$. Let $T: M \rightarrow M$ be an increasing mapping, that is, $x \leq y$ implies $T x \leq T y$. Then $T$ has a fixed point in $M$.

The proof of Lemma 2.1 can be found in [3].
Theorem 2.1. Assume that $0 \leq p(n) \leq p<1, G$ is nondecreasing and

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty} Q(n)<\infty, \tag{2.1}
\end{equation*}
$$

then equation (1.1) has a bounded nonoscillatory solution.
Proof: Let $B$ be the set of all bounded real valued sequence with the supremum norm,

$$
\|x\|=\sup _{x_{n} \in B}\left|x_{n}\right|<\infty .
$$

Then clearly $B$ is a Banach space. We can define a partial ordering as follows: for given $x_{1}, x_{2} \in B, x_{1} \leq x_{2}$ means that $x_{1}(n) \leq x_{2}(n)$ for $n \geq n_{0} \in \mathrm{~N}_{0}$. Define

$$
S=\left\{x \in B: C_{1} \leq x(n) \leq C_{2}, n \geq n_{0}\right\}
$$

where $C_{1}$ and $C_{2}$ are positive constants such that

$$
C_{1} \leq \beta<(1-p) C_{2}
$$

If $\tilde{x}_{1}(n)=C_{1}, n \geq n_{0}$, then $\tilde{x}_{1} \in S$ and $\tilde{x}_{1}=\inf S$. In addition, if $\phi \subset S^{*} \subset S$, then

$$
S^{*}=\left\{x \in B: \lambda \leq x(n) \leq \mu, C_{1} \leq \lambda, \mu \leq C_{2}, n \geq n_{0}\right\}
$$

Let $\tilde{x}_{2}(n)=\mu_{0}=\sup \left\{\mu: C_{1} \leq \mu \leq C_{2}, n \geq n_{0}\right\}$. Then $\tilde{x}_{2} \in S$ and $\tilde{x}_{2}=\sup S^{*}$. From the condition (2.1) there exists $n_{1} \geq n_{0}$ with

$$
\begin{equation*}
n_{1} \geq n_{0}+\max \{\tau, \sigma\} \tag{2.2}
\end{equation*}
$$

sufficiently large that

$$
\begin{equation*}
\sum_{s=n}^{\infty} Q(s) \leq \frac{\left[(1-p) C_{2}\right]^{\alpha}-\beta^{\alpha}}{G\left(C_{2}\right)}, n \geq n_{1} . \tag{2.3}
\end{equation*}
$$

For $x \in S$, we define

$$
(T x)(n)= \begin{cases}p(n) x(n-\tau)+\left[\beta^{\alpha}+\sum_{s=n}^{\infty} Q(s) G(x(s-\sigma))\right]^{1 / \alpha}, & n \geq n_{1} \\ \left(T x_{1}\right)(n), & n_{0} \leq n \leq n_{1}\end{cases}
$$

For $n \geq n_{1}$ and $x \in S$, by making use of (2.3), we obtain

$$
\begin{aligned}
(T x)(n) & \leq p C_{2}+\left[\beta^{\alpha}+G\left(C_{2}\right) \sum_{s=n}^{\infty} Q(s)\right]^{1 / \alpha} \\
& \leq p C_{2}+\left[\beta^{\alpha}+G\left(C_{2}\right) \frac{\left[(1-p) C_{2}\right]^{\alpha}-\beta^{\alpha}}{G\left(C_{2}\right)}\right]^{1 / \alpha} \\
& \leq p C_{2}+\left[\left[(1-p) C_{2}\right]\right]^{1 / \alpha} \\
& \leq C_{2}
\end{aligned}
$$

and

$$
(T x)(n) \geq \beta \geq C_{1}
$$

Hence $T x \in S$ for every $x \in S$. Let $x_{1}, x_{2} \in S$ with $x_{1} \leq x_{2}$. Since $G$ is nondecreasing, $T x_{1} \leq T x_{2}$, that is, $T$ is an increasing mapping. Then by the Knaster-Tarski fixed point theorem, there exists a positive $x \in S$ such that $T x=x$. Thus $\{x(n)\}$ is a bounded nonoscilatory solution of equation (1.1), which completes the proof.

Theorem 2.2. Assume that $1<p \leq p(n) \leq p_{0}<\infty, G$ is nondecreasing and (2.1) holds, then equation (1.1) has a bounded nonoscillatory solution.

Proof: Let $B$ be a Banach space as defined in Theorem 2.1. We can define a partial ordering as follows: for given $x_{1}, x_{2} \in B, x_{1} \leq x_{2}$ means that $x_{1}(n) \leq x_{2}(n)$ for $n \geq n_{0} \in \mathrm{~N}_{0}$. Define

$$
S=\left\{x \in B: C_{3} \leq x(n) \leq C_{4}, n \geq n_{0}\right\}
$$

where $C_{3}$ and $C_{4}$ are positive constants such that

$$
\left(p_{0}-1\right) C_{3}<\beta \leq(1-p) C_{4}
$$

If $\tilde{x}_{1}(n)=C_{3}, n \geq n_{0}$, then $\tilde{x}_{1} \in S$ and $\tilde{x}_{1}=\inf S$. In addition, if $\phi \subset S^{*} \subset S$, then

$$
S^{*}=\left\{x \in B: \lambda \leq x(n) \leq \mu, C_{3} \leq \lambda, \mu \leq C_{4}, n \geq n_{0}\right\}
$$

Let $\tilde{x}_{2}(n)=\mu_{0}=\sup \left\{\mu: C_{3} \leq \mu \leq C_{4}, n \geq n_{0}\right\}$. Then $\tilde{x}_{2} \in S$ and $\tilde{x}_{2}=\sup S^{*}$. From the condition (2.1) there exists $n_{1} \geq n_{0}$ with

$$
\begin{equation*}
n_{1}+\tau \geq n_{0}+\sigma \tag{2.4}
\end{equation*}
$$

sufficiently large that

$$
\begin{equation*}
\sum_{s=n}^{\infty} Q(s) \leq \frac{\beta^{\alpha}-\left[\left(p_{0}-1\right) C_{3}\right]^{\alpha}}{G\left(C_{3}\right)}, n \geq n_{1} \tag{2.5}
\end{equation*}
$$

For $x \in S$, we define

$$
(T x)(n)= \begin{cases}\frac{1}{p(n+\tau)}+\left[x(n+\tau)\left(\beta^{\alpha}-\sum_{s=n+\tau}^{\infty} Q(s) G(x(s-\sigma))\right)^{1 / \alpha}\right], n \geq n_{1} \\ \left(T x_{1}\right)(n), & n_{0} \leq n \leq n_{1}\end{cases}
$$

For $n \geq n_{1}$ and $x \in S$, by making use of (2.5), we obtain

$$
(T x)(n) \leq \frac{1}{p}\left[C_{4}+\left(\beta^{\alpha}\right)^{1 / \alpha}\right] \leq \frac{1}{p}\left[C_{4}+\beta\right] \leq \frac{1}{p}\left[C_{4}+(1-p) C_{4}\right] \leq C_{4}
$$

and

$$
\begin{aligned}
(T x)(n) & \geq \frac{1}{p(n+\tau)}\left[C_{3}+\left(\beta^{\alpha}-G\left(C_{3}\right) \sum_{s=n+\tau}^{\infty} Q(s)\right)^{1 / \alpha}\right] \\
& \geq \frac{1}{p(n+\tau)}\left[C_{3}+\left(\beta^{\alpha}-G\left(C_{3}\right) \frac{\beta^{\alpha}-\left[\left(p_{0}-1\right) C_{3}\right]^{\alpha}}{G\left(C_{3}\right)}\right)^{1 / \alpha}\right] \\
& \geq \frac{1}{p(n+\tau)}\left[C_{3}+\left(\beta^{\alpha}-\beta^{\alpha}+\left[\left(p_{0}-1\right) C_{3}\right]^{\alpha}\right)^{1 / \alpha}\right] \\
& \geq \frac{1}{p(n+\tau)}\left[C_{3}+p_{0} C_{3}-C_{3}\right] \\
& \geq C_{3}
\end{aligned}
$$

Thus $T x \in S$ for every $x \in S$. Let $x_{1}, x_{2} \in S$ with $x_{1} \leq x_{2}$. Since $G$ is nondecreasing, $T x_{1} \leq T x_{2}$, that is, $T$ is an increasing mapping. Then by the Knaster-Tarski fixed point theorem, there exists a positive $x \in S$ such that $T x=x$. Thus $\{x(n)\}$ is a bounded nonoscilatory solution of equation (1.1), which completes the proof.

Theorem 2.3. Assume that $0 \leq p(n) \leq p<1, G$ is nondecreasing and

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty} \sum_{s=c}^{d} Q(n, s)<\infty, \tag{2.6}
\end{equation*}
$$

then equation (1.2) has a bounded nonoscillatory solution.
Proof: Let $B$ be a Banach space as defined in Theorem 2.1. We can define a partial ordering as follows: for given $x_{1}, x_{2} \in B, x_{1} \leq x_{2}$ means that $x_{1}(n) \leq x_{2}(n)$ for $n \geq n_{0} \in \mathrm{~N}_{0}$. Define

$$
S=\left\{x \in B: C_{5} \leq x(n) \leq C_{6}, n \geq n_{0}\right\},
$$

where $C_{5}$ and $C_{6}$ are positive constants such that

$$
C_{5} \leq \beta<(p-1) C_{6} .
$$

If $\tilde{x}_{1}(n)=C_{5}, n \geq n_{0}$, then $\tilde{x}_{1} \in S$ and $\tilde{x}_{1}=\inf S$. In addition, if $\phi \subset S^{*} \subset S$, then

$$
S^{*}=\left\{x \in B: \lambda \leq x(n) \leq \mu, C_{5} \leq \lambda, \mu \leq C_{6}, n \geq n_{0}\right\} .
$$

Let $\tilde{x}_{2}(n)=\mu_{0}=\sup \left\{\mu: C_{5} \leq \mu \leq C_{6}, n \geq n_{0}\right\}$. Then $\tilde{x}_{2} \in S$ and $\tilde{x}_{2}=\sup S^{*}$. From the condition (2.6) there exists $n_{1} \geq n_{0}$ with

$$
n_{1} \leq n_{0}+\max \{\tau, d\}
$$

sufficiently large that

$$
\sum_{s=n}^{\infty} \sum_{i=c}^{d} Q(s, i) \leq \frac{\left[(1-p) C_{6}\right]^{\alpha}-\beta^{\alpha}}{G\left(C_{6}\right)}, n \geq n_{1} .
$$

For $x \in S$, we define

$$
(T x)(n)= \begin{cases}p(n) x(n-\tau)+\left[\beta^{\alpha}+\sum_{s=n}^{\infty} \sum_{i=c}^{d} Q(s, i) G(x(s-i))\right]^{1 / \alpha} & , n \geq n_{1} \\ \left(T x_{1}\right)(n), & n_{0} \leq n \leq n_{1} .\end{cases}
$$

The remaining part of the proof is similar to that of Theorem 2.1, and hence the details are omitted.
Theorem 2.4. Assume that $1<p \leq p(n) \leq p_{0}<\infty, G$ is nondecreasing and (2.6) holds, then equation (1.2) has a bounded nonoscillatory solution.
Proof: Let $B$ be a Banach space as defined in Theorem 2.1. We can define a partial ordering as follows: for given $x_{1}, x_{2} \in B, x_{1} \leq x_{2}$ means that $x_{1}(n) \leq x_{2}(n)$ for $n \geq n_{0} \in \mathrm{~N}_{0}$. Define

$$
S=\left\{x \in B: C_{7} \leq x(n) \leq C_{8}, n \geq n_{0}\right\},
$$

where $C_{7}$ and $C_{8}$ are positive constants such that

$$
\left(p_{0}-1\right) C_{7}<\beta \leq(p-1) C_{8} .
$$

If $\tilde{x}_{1}(n)=C_{7}, n \geq n_{0}$, then $\tilde{x}_{1} \in S$ and $\tilde{x}_{1}=\inf S$. In addition, if $\phi \subset S^{*} \subset S$, then

$$
S^{*}=\left\{x \in B: \lambda \leq x(n) \leq \mu, C_{7} \leq \lambda, \mu \leq C_{8}, n \geq n_{0}\right\} .
$$

Let $\tilde{x}_{2}(n)=\mu_{0}=\sup \left\{\mu: C_{7} \leq \mu \leq C_{8}, n \geq n_{0}\right\}$. Then $\tilde{x}_{2} \in S$ and $\tilde{x}_{2}=\sup S^{*}$. From the condition (2.6) there exists $n_{1} \geq n_{0}$ with

$$
n_{1}+\tau \geq n_{0}+d
$$

sufficiently large that

$$
\sum_{s=n+\tau}^{\infty} \sum_{i=c}^{d} Q(s, i) \leq \frac{\beta^{\alpha}-\left[\left(p_{0}-1\right) C_{7}\right]^{\alpha}}{G\left(C_{7}\right)}, n \geq n_{1}
$$

For $x \in S$, we define

$$
(T x)(n)=\left\{\begin{array}{l}
\frac{1}{p(n+\tau)}+\left[x(n+\tau)+\left(\beta^{\alpha}-\sum_{s=n+\tau}^{\infty} \sum_{i=c}^{d} Q(s, i) G(x(s-i))\right)^{1 / \alpha}\right], n \geq n_{1} \\
\left(T x_{1}\right)(n),
\end{array}\right.
$$

The remaining part of the proof is similar to that of Theorem 2.2, and hence the details are omitted.
Theorem 2.5. Assume that $0 \leq \sum_{s=a}^{b} p(n, s) \leq p<1, G$ is nondecreasing and (2.6) holds, then equation (1.3) has a bounded nonoscillatory solution.

Proof: Let $B$ be a Banach space as defined in Theorem 2.1. We can define a partial ordering as follows: for given $x_{1}, x_{2} \in B, x_{1} \leq x_{2}$ means that $x_{1}(n) \leq x_{2}(n)$ for $n \geq n_{0} \in \mathrm{~N}_{0}$. Define

$$
S=\left\{x \in B: C_{9} \leq x(n) \leq C_{10}, n \geq n_{0}\right\},
$$

where $C_{9}$ and $C_{10}$ are positive constants such that

$$
C_{9} \leq \beta<(1-p) C_{10} .
$$

If $\tilde{x}_{1}(n)=C_{9}, n \geq n_{0}$, then $\tilde{x}_{1} \in S$ and $\tilde{x}_{1}=\inf S$. In addition, if $\phi \subset S^{*} \subset S$, then

$$
S^{*}=\left\{x \in B: \lambda \leq x(n) \leq \mu, C_{9} \leq \lambda, \mu \leq C_{10}, n \geq n_{0}\right\}
$$

Let $\tilde{x}_{2}(n)=\mu_{0}=\sup \left\{\mu: C_{9} \leq \mu \leq C_{10}, n \geq n_{0}\right\}$. Then $\tilde{x}_{2} \in S$ and $\tilde{x}_{2}=\sup S^{*}$. From the condition (2.6) there exists $n_{1} \geq n_{0}$ with

$$
n_{1} \geq n_{0}+\max \{b, d\}
$$

sufficiently large that

$$
\sum_{s=n}^{\infty} \sum_{i=c}^{d} Q(s, i) \leq \frac{\left[(1-p) C_{10}\right]^{\alpha}-\beta^{\alpha}}{G\left(C_{10}\right)}, n \geq n_{1} .
$$

For $x \in S$, we define

$$
(T x)(n)=\left\{\begin{array}{l}
\sum_{s=a}^{b} p(n, s) x(n-s)+\left[\beta^{\alpha}+\sum_{s=n}^{\infty} \sum_{i=c}^{d} Q(s, i) G(x(s-i))\right]^{1 / \alpha}, n \geq n_{1} \\
\left(T x_{1}\right)(n), \\
n_{0} \leq n \leq n_{1}
\end{array}\right.
$$

The remaining part of the proof is similar to that of Theorem 2.1, and hence the details are omitted.

## 3. Examples

In this section, we present some examples to illustrate the main results.
Example 3.1. Consider the difference equation

$$
\begin{equation*}
\Delta\left(\left(x(n)-\frac{1}{4} x(n-1)\right)^{3}\right)+\frac{7}{2^{2 n+8}} x(n-2)=0, n \geq 0 \tag{3.1}
\end{equation*}
$$

Here $p(n)=\frac{1}{4}, Q(n)=\frac{7}{2^{2 n+8}}, \alpha=3$, and $\tau=1, \sigma=2$. By taking $G(x)=x$, we see that $\sum_{n=1}^{\infty} Q(n)<\infty$. Further it is easy to verify that all other conditions of Theorem 2.1 are satisfied. Therefore the equation (3.1) has a bounded nonoscillatory solution. In fact, $\{x(n)\}=\left\{\frac{1}{2^{n}}\right\}$ is one such solution of equation (3.1).

Example 3.2. Consider the difference equation

$$
\begin{equation*}
\Delta\left(\left(x(n)-\frac{1}{2} x(n-3)\right)^{3}\right)+\sum_{s=1}^{2} \frac{1}{n+s} x(n-s)=0, n \geq 0 \tag{3.2}
\end{equation*}
$$

Here $p(n)=\frac{1}{2}, Q(n, s)=\frac{1}{n+s}, \alpha=3$, and $c=1, d=2$. By taking $G(x)=x$, we see that all other conditions of Theorem 2.3 are satisfied and hence every solution of equation (3.2) has a bounded nonoscillatory.
Example 3.3. Consider the difference equation

$$
\begin{equation*}
\Delta\left(x(n)-\sum_{s=1}^{2} \frac{1}{2(n+s-1)} x(n-s)\right)+\sum_{s=2}^{3} \frac{1}{(n+s)^{2}} x(n-s)=0, n \geq 0 \tag{3.3}
\end{equation*}
$$

Here $p(n)=\frac{1}{2(n+s-1)}, Q(n, s)=\frac{1}{(n+s)^{2}}, \alpha=1, a=1, b=2$, , and $c=2, d=3$. By taking $G(x)=x$, we see that all other conditions of Theorem 2.5 are satisfied and hence every solution of equation (3.3) has a bounded nonoscillatory.

## References

[1] R.P. Agarwal, Difference Equations and Inequalities, Second Edition, Marcel Dekker, New York, 2000.
[2] R.P. Agarwal, M.Bohner, S.R.Grace and D.O’Regan, Discrete Oscillation Theory, Hindawi Publ. Corp., New York, 2005.
[3] R.P. Agarwal, S.R.Grace and D.O'Regan, Oscillation Theory for Difference and Functional Differential Equations, Kluwer Academic, 2000.
[4] R.Arul and G.Ayyappan, Some oscillation results for first order nonlinear neutral difference equations, JMI Int.J. of Math. Sci., 4(1)(2013), 1-9.
[5] R.Arul and T.J.Raghupathi, Existence of nonoscillatory solutions of nonlinear delay difference equations, Far East J. of Math. Sci., 76(1)(2013), 71-80.
[6] T.Candan, Existence of nonoscillatory solutions of first order nonlinear neutral difference equations, Appl. Math. Lett., 26(2013), 1182-1186
[7] M.P.Chen and B.G.Zhang, The existence of bounded positive solutions of delay difference equations, Pan America Math. I., 3(1)(1993), 79-94.
[8] S.S.Chang and W.T.Patula, An existence theorem for a nonlinear difference equations, Nonlinear Anal., 20(1993), 193-203.
[9] J.R.Graef, E.Thandapani and S.Elizabeth, Oscillation of first order nonlinear neutral difference equations, Indian J.Pure Appl. Math., 36(9)(2005), 503-512.
[10] S.Lourdu Marian, M.Paul Loganathan and A.George Maria Selvam, Existence of nonoscillatory solutions of first order nonlinear neutral delay difference equations, American J. of Math. Sci. and Appl., 1(1)(2013), 21-26.
[11] O.Ocalan and O.Duman, Oscillation analysis of neutral difference equations with delays, Chaos Solitons and Fractals, 39(2009), 261-270.
[12] N.Parhi, Behavior of solutions of delay difference equations, Indian J. Pure Appl. Math., 33(1)(2002), 31-43.
[13] E.Thandapani, R.Arul and P.S.Raja, Oscillation of first order neutral delay difference equations, Appl. Math. ENotes, 3(2003), 88-94.
[14] E.Thandapani, R.Arul and P.S.Raja, The asymptotic behavior of nonoscillatory solutions of nonlinear neutral type difference equations, Math. Comput. Model., 39(13)(2004), 1457-1465.
[15] E.Thandapani, J.R.Graef and P.W.Spikes, On existence of positive solutions and oscillations of neutral difference equations of odd order, J.Diff. Equ. Appl., 2(1996), 175-183.
[16] G.Wei, Asymptotic behavior results for nonlinear neutral delay difference equations, Appl. Math. Comput., 217(2011), 7184-7190.

