ISSN 2347-1921

Finite Groups Having Exactly 34 Elements of Maximal Order Zhangjia Han, Chao Yang
 School of Applied Mathematics, Chengdu University of Information Technology,Chengdu, China

ABSTRACT
Let G be a finite group, $M(G)$ denotes the number of elements ofmaximal order of G. In this note a finite group G with $M(G)$ $=34$ is determined.
\section*{Indexing terms/Keywords}

Finite groups; Classification; Number of elements of maximal order; Thompson's Conjectur.

Academic Discipline And Sub-Disciplines

Mathematics

SUBJECT CLASSIFICATION

2010 Mathematics Subject Classification: 20D45, 20E34

TYPE (METHOD/APPROACH)

Mathematics research

Council for Innovative Research

Peer Review Research Publishing System
Journal: JOURNAL OF ADVANCES IN MATHEMATICS
Vol.11, No. 5
www.cirjam.com , editorjam@gmail.com

INTRODUCTION

For a finite group G, we denote by $M(G)$ the number of elements of maximal order of G, and the maximal element order in G by $k=k(G)$. There is atopic related to one of Thompson's Conjectures:
Thompson's Conjecture: Let G be a finite group. For a positive integerd, define $G(d)=\mid\{x \in G \mid$ the order of x is $d\} \mid$. If S is a solvable group, $G(d)=S(d)$ for $d=1 ; 2 ; \ldots$, then G is solvable.

Recently, some authors have investigated this topic in several articleS(See[3], [7], [8], [9]). In particular, in [2] the authors gave a complete classfication of the finite group with $M(G)=30$, and the finite group with $M(G)=24$ are classified in [6]. In this paper, we consider a finite group G satisfying $M(G)=34$. Our main result of this paper is:
Main Theorem: Suppose G is a finite group having exactly 34 elements of maximal order. Then G is solvable and $|\mathrm{G}|$ $=2^{\alpha} 3^{\beta}$, where $2 \leq \alpha \leq 7$, and $1 \leq \beta \leq 4$.
By the above theorem, we have:
Corollary: Thompson's Conjecture holds if G has exactly 34 elements of maximal order.
All groups considered are finite and all unexplained notations are standard and can be found in [4].

Preliminaries

The following lemma reveals the relationship of $M(G)$ and k.
Lemma 2.1 [9, Lemma 1] Suppose G has exactly n cyclic subgroups of orderl, then the number of elements of order I (de -noted by $\mathrm{n}_{l}(\mathrm{G})$) is $\mathrm{n}_{l}(\mathrm{G})=\mathrm{n} \phi(\mathrm{I})$, where $\phi(\mathrm{I})$ is the Euler function of I . In particular, if n denotes the number of cyclic subgroups of G of maximal order k, then $M(G)=n \phi(k)$.

By above lemma, we have:
Lemma 2.2 If $M(G)=34$ and k is maximal element order of G, thenpossible values of n, k and $\phi(k)$ are given in following table:

n	$\phi(\mathrm{k})$	k
34	1	2
17	2	$3,4,6$
2	17	null
1	34	null

In proving our main theorem, the following two results will be frequently used.
Lemma 2.3 [2, Lemma 6] If k is prime, and the number of elements of maximal order k is m , then k divides $\mathrm{m}+1$.
Lemma 2.4 [2, Lemma 8] If the number of elements of maximal order k is m , then there exists a positive integer α such that $|\mathrm{G}|$ divides mk^{α}.

Lemma 2.5 [8, Lemma 2.5] Let P be a p-group with order p^{t}, where p is a prime, and t is a positive integer. Suppose $b \in$ $Z(P)$, where $o(b)=p^{u}=k$ with u a positive integer. Then P has at least $(p-1) p^{t-1}$ elements of order k.

Proof of Main Theorem

By the hypothesis $\mathrm{M}(\mathrm{G})=34$, then $\mathrm{k} 6=2$ by Lemma 2.3, and and $\mathrm{k} 6=4$ by [2, Corollary 2]. In the following we prove our theorem case by case for the remaining possible values of k.
Case $1 \mathrm{k}=3$. In this case G is a 3 -group or a $\{2,3\}$-group. If G is a 3 -group, then $\exp (G)=3$. By $[5$, Theorem 3.8.8], the number of 3-elements $M(G)$ of G satisfies that $M(G) \equiv 4(\bmod 9)$, which contradicts with the fact $M(G)=34$. Hence G is not a 3-group. If G is a $\{2,3\}$-group, then $\pi_{e}(\mathrm{G})=\{1,2,3\}$. By [1, Theorem] we know that $\mathrm{G}=\mathrm{N} \succ \mathrm{Q}$ is a Frobenius group, whe
-re $\mathrm{N} \cong C_{3}^{t}, \mathrm{Q} \cong C_{2}$ or $\mathrm{N} \cong C_{2}^{2 t}, \mathrm{Q} \cong C_{3}$. Suppose that $\mathrm{Q} \cong C_{2}$. Then N is an elementary abelian 3-group, By [5, Theorem 3.8.8], we can get a contradiction. If $\mathrm{Q} \cong C_{3}$, then the number of elements of order 3 is two, which contradicts to our assum ption. Thus k ${ }^{\neq} 3$.

Case $2 \mathrm{k}=6$. In this case $|\mathrm{G}|=2^{\alpha} 3^{\beta}$, where $\alpha>0$ and $\beta>0$ by Lemma 2.4. Let x be an element of order 6 . Then $\left|\mathrm{C}_{G}(\mathrm{x})\right|$ $=2^{u} 3^{v}$. Since there exists no element of order 9 or 4 in $C_{G}(x)$, we have $v \leq 3$ and $u \leq 4$ by Lemma 2.5. Since G has exactly 17 cyclic subgroups of order 6 , we have $\left|G: N_{G}(\langle x\rangle)\right|=1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 9 ; 12$ or 16 . If there is an element y of order 6 in G such that $\left|G: N_{G}(\langle x\rangle)\right|=9$; 12 or 16 , then there exists another element z of order 6 in G such that $\left|G: N_{G}(\langle x\rangle)\right|=1$; 2; $3 ; 4 ; 6$ or 8 . That is to say, G always has an element x of order 6 such that $\left|G: N_{G}(\langle x\rangle)\right|=1 ; 2 ; 3 ; 4 ; 6$ or 8 . Therefore $|G|$
$\mid 2^{7} 3^{4}$ since $|G|=\left|G: N_{G}(\langle x\rangle)\right|\left|N_{G}(\langle x\rangle): \mathrm{C}_{G}(x)\right|\left|\mathrm{G}_{G}(x)\right|$.The Theorem is proved.

ACKNOWLEDGMENTS

This work is supported by the National Scienti c Foundation of China(No: 11301426 and 11471055) and Scientific Research Foundation of SiChuan Provincial Education Department(No: 15ZA0181) and the Scientific Research Foundation of CUIT (No: J201418).

REFERENCES

[1] Brandl, R., Shi, W. J., Finite groups whose element orders are consecutive integers, J. Alg., 143(2)(1991), 388-400.
[2] Chen, G. Y., Shi,W. J., Finite groups with 30 elements of maximal order, Appl. Categor. Struct.16(2008), 239-247.
[3] Du, X. L.,Jiang, Y. Y., On ${ }^{-}$nite groups with exact 4p elements of max-imal order are solvable, Chin. Ann. Math. 25A(5) (2004), 607-612 (inChinese).
[4] Gorenstein, D.,1968. Finite Groups, New York: Harper \& Row press.
[5] Huppert, B., 1967.Endliche Gruppern I, Springer-Verlag, Berlin/New York.
[6] Qinhui Jiang, Changguo Shao, Finite groups with 24 elements of maximal order, Front. Math. China, 5(4)(2010), 665678.
[7] Youyi Jiang, Finite groups with 2p2 elements of maximal order are solvable, Chin. Ann. Math., 21A(1)(2000), 6l-64(in Chinese).
[8] Youyi Jiang, A theorem of ${ }^{-}$nite groups with 18p elements having maximal order, Alg. Coll., 15(2)(2008), 317-329.
[9] Cheng Yang, Finite groups based on the numbers of elements of maximal order, Chin. Ann. Math.14A(5),(1993), 561567(in Chinese).

