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Abstract

Let R be a commutative ring with unity and M is a unitary left R-module . In this paper , we introduce the notion of strongly
S-coprime modules, where M is called strongly S-coprime briefly (SS-Coprime) if for each reR , r’M is small in M implies
rM=0 . We investigate many properties about this concept. Moreover many relations between it and other related
concepts, are given.
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INTRODUCTION

Let R be a commutative ring with unity and let M be a unital R-module. Recall that a proper submodule N of M is called
prime if whenever r € R,x € M,rx € N implies that x € N or r € [N: M],[10] . M is called a prime R-module if the zero
submodule (0) is a prime submodule of M. Equivalently, M is a prime R-module if anngM = anngN for each nonzero
submodule N of M,[4].

S. Yassemi in [13] introduced the notions of second submodule and second module, where a submodule N of M is called
second if whenever reR-{0}, rN=N or rN=0 . M is called a second module if M is a second submodule of M ; that is
whenever reR-{0}, rM=M or rM=0.

S. Annine in [2] introduced the notion of coprime module as follows: M is called a coprime R-module if annM:ann% for
each proper submodule N of M. However, it is known that second modules and coprime modules are equivalent.
Moreover I. E. Wijayant in [15], give the following :

An R-module M is coprime if and only if annRM:annR% for each proper fully invariant summodule N of M. and proved
that it is equivalent to definition of coprime module (in sense of S. Annine .

Recall that a proper submodule N of M is called small (denoted by N<<M) if whenever N+K=M, K is a submodule of M,
then K=M [1]. As a generalization of coprime module. I.M.A.Hadi & R.l.Khalaf in [7] introduce the notion of small coprime

(briefly, S-coprime) module, where an R-module M is called S-coprime if anngM = annR%for each N<<M. Equivalently, M
is S-coprime if for each reR-{0} , rM<<M implies rM =0 .

Tutuncu, Tribak in [12] introduced an studied the notion of T. non cosingular, where an R-module M is called T-
noncosingular if whenever ¢ € EndM, Imp<<M, implies Im¢ = 0 . Itis clear that T-noncosingular module is S-coprime and
the converse is not true in general, as we shall see later.

In section two of this paper we investigate the notion of strongly S-coprime module (briefly SS-coprime) where an R-
module M is called SS-coprime if for any a,b€R, abM<<M implies aM=0 or bM=0 , it is clear that SS-coprime module is s-
coprime but the converse is not true. However we see by examples that the concept SS-coprime and T-noncosingular are
independent. However, if M is T-noncosingular and annM is a prime ideal then M is SS-coprime. Moreover many
properties of SS-coprime modules and some connections between SS-coprime modules and other related concepts are
given.

In section three, the concept of semistrongly S-coprime (briefly, SSS-coprime) is presented, where an R-module is SSS-
coprime if whenever reR with r’M<<M, then rM=0. It is clear that every SS-coprime is SSS-coprime, but the converse is
true under certain condition. Most of properties of SS-coprime modules generalized to SSS-coprime.

2. SS-Coprime Modules

Definition 2.1 :

An R-module is called strongly S-coprime (briefly SS-coprime) if for each a,beR, abM<<M implies
aM=0 or bM=0

Remarks and Examples 2.2:

1) ltis clear that every SS-coprime module is S-coprime, but the converse is not true in general, for example:

The Z-module Zs is S-coprime since (0) is the only small submodule in Zg and so rZg<<Zg implies rZs=(0). But Zs is
not SS-coprime, since 2.3Z=(0) <<Zs and 2.Zs+(0) , 3.Zs%#(0) .

2) Let M be an R-module, then M is SS-coprime if and only if M is S-coprime and annM is a prime ideal
Proof :
It is easy

3) Every T-noncosingular module is S-coprime , but neither S-coprime nor SS-coprime implies T-noncosingular in
general.

Proof :

Let M be a T-noncosingular R-module . Let reR-{0} , rM<<M. Define ¢:M—M by ¢@(m)=rm , vm €M . Then
Im@p=rM<<M and since M is T-noncosingular , rM=0. Thus M is S-coprime

Now consider the following example:

Let M be the Z module Z,~-@® Z, . Then M is not T-noncosingular Z-module . However we can show that M is SS-
coprime so let abM<<M=Z,-@® Z, then ab Z,~ & Z,. and abZ,<<Z, . But Z,~ is divisible so abZ,~-<<Z,~- implies ab=0
and hence a=0 or b=0 . Thus aM=0 or bM=0 , that is M is SS-coprime (and hence M is S-coprime)
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T-noncosingular module need not be SS-coprime, for example: Th Z-module Zg is not SS-
coprime by part (1), but it is T-noncosingular .

5) If M is T-noncosingular and anngM is a prime ideal, then M is SS-coprime .

Proof :

Let a,beR, abM<<M . Define f: M—M byf(m)=abm, vm € M. Then Imf=abM<<M. But M is T-noncosingular , so
abM=(0), that is abe annM. As annM is a prime ideal, then a € annM or b € annM ; thus aM=(0) or bM=(0) and M is
SS-coprime.

6) An R-module M is SS-coprime if and only if M is an SS-coprime R-module, where R = R/annM
7) LetM, M be two isomorphic R-module. Then M is SS-coprime if and only if M is SS-coprime .
8) Aring R is an SS-coprime R-module if and only if R is an integral domain

Proof :

Let R be an integral domain , let a,beR with (a)(b)R<<R. Then (a)(b)=0 and so (a)=0 or (b)=0 . Conversely, if R is SS-
coprime R-module , let a,beR a.b=0 . Then (a)(b)<<R and R is SS-coprime , either (a)=0 or (b)=0. Thus a=0 or b=0;
thatis R is an integral domain.

9) LetR be an SS-coprime, then R is K-nonsingular and the converse is not true in general , where R is K-nonsingular if
for each feR, f+0 , kerf £,R(ker f is not essential in R) .

Proof :
R is SS-coprime , so part(8), J(R)=(0) . Thus L(R)=Z(R)=(0). Hence kerf£,R .
Also Zs as Zg-module is K-nonsingular , but it is not SS-coprime .

Recall that an R-module M is called a scalar module if for each feEndM , there exists r €R such that f(m)=rm
,Vm € M [11].

Proposition 2.3 :
Let M be an R-module. If M is S-coprime and scalar module , then M is T-nonsingular module.

Proof :

Let feEndM and Imf<<M . Since M is a scalar R-module , there exists r €R such that f(m)=rm ,vm € M . Thus
f(M)=rM<<M and since M is S-coprime f(M)=rM=0.

Therefore M is T-noncosingular.

Recall that an R-module M is called a multiplication R-module , if for each N<M there exists an ideal | of R such that
N=IM. Equivalently, M is a multiplication R-module if for each N<M, N=[N:M] [3],where[N:M] ={reR:rMSN} .

Remark 2.4 :
Every multiplication SS-coprime R-module M has (0) as the only small submodule of M
Proof :
Let N<<M . Since M is SS-coprime so M is S-coprime .Hence annM=ann % = [N:M].
This implies (0)= (annM)M=[N:M]M=N.
Proposition 2.5:
Let M be an SS-coprime R-module . Then M is a prime module if and only if M is a primary module.

Proof :
(=) ltis clear .

(&) Let reR , xeM and rx=0 . Since M is primary, either x=0 or r" €annM for some n€Z.. But M is SS-coprime implies
annM is a prime ideal , hence either x=0 Or reannM. Thus M is a prime module.

The following two results are characterizations of SS-coprime modules.

Proposition 2.6 :
Let M be an R-module . Then M is SS-coprime module if and only if for each ideals 1,J of R IJIM<<M implies IM=0 or JIM=0

Proof :
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)

Let 1,J be ideals of R and 1IIM<<M. Suppose JM=(0) . Hence there exists beJ, b+0 such that bM=0. It follows that for each
a€l , abM<IIM<<M . So that abM <<M But M is SS-coprime and bM=(0), so that aM=0 for each a€l. Thus IM=(0).

(&) ltis clear.
Proposition 2.7 :
An R-module M is SS-coprime if and only if for each a,beR , abM<<M implies [aM:M]=annM or [bM:M]=annM.
Proof :
It is easy so is omitted
Remark 2.8 :
The homomorphic image of SS-coprime is not necessarily SS-coprime , for example:
The Z-module Z is SS-coprime. Let m: Z — Z/<6> = Zg be the natural epimorphism 1(Z)=Z which is not SS-coprime.
Proposition 2.9 :
Let M be an SS-coprime R-module. Let N<<M . Then % is an SS-coprime R-module.

Proof :

Let a,beR and a.b(%) <<% . Then 24N

But M is SS-coprime, so either aM=0 or bM=0 . It follows that a% =(0) or b% =(0) . Thus% is SS-coprime .

Corollary 2.10 :

Let :M—M be an epimorphism with kerf<<M. If M is an SS-coprime R-module, then M is SS-coprime.

Corollary 2.11 :

Let M be an R-module with projective cover f: P — M. If P is an SS-coprime R-module , then M is SS-coprime.

Corollary 2.12 :

Let be aring . Then the following statements are equivalent

< % and since N<<M , we get abM+N <<M, and since N<<M , then abM<<M .

1) Every projective R-module is SS-coprime

2) Every R-module M having a projective cover is SS-coprime .
Proof :

=2

It is following directly by Corollary 2.11 .

(2) = (1) Let M be a projective R-module . Since there exists the identity mapping i: M — M and kerf=0<<M , then M has
a projective cover . Hence by (2) , M is SS-coprime.

Proposition 2.13:

Let M be an R-module. Let N<M such that [N:M] =annM. If % is an SS-coprime R-module, then M is SS-coprime.

Proof :

Let a,beR and a.bM<<M. It follows that E'WTW & % that is ab(%) << % . But% is SS-coprime, so either a% =(0) or
b % =(0) . This implies either aMcSN or bMEN , so either ae[N:M]=annM or beg[N:M]=annM . Thus aM=(0) or bM=(0).
Remark 2.14 :

1) Adirect summand of SS-coprime module may not be SS-coprime , for example: consider the Z-module M=Z&Zs . It is
easy to see that M is SS-coprime , but by Remark and Example 2.2(1) , Zs is not SS-coprime .

2) The direct sum of SS-coprime modules need not be SS-coprime module , for example: each of the Z-module Z,and
Z3is SS-coprime , but M=Z,@Z3; =Z is not SS-coprime.

Proposition 2.15:
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Let M; and M, be R-modules and annMi=annM, . Then M= M1@®M is SS-coprime. Particularly, M@®M is SS-coprime if M
is SS-coprime .

Proof :

Let a,beR and ab(M:®M;)<< M1@BM, . Then abMi<< M; and abMy<< M, . As M1& M, are SS-coprime , then (either
aM;=0 or bM;=0) and (either aM>=0 or bM,=0) . But annM;=annM; , hence aM=0 or bM=0. Thus M is SS-coprime .

Proposition 2.16 :

Let M= M:®M: . if M is an SS-coprime R-module such that annM; and annM; are noncomparable prime ideals , then M
and M; are SS-coprime modules.

Proof :

Since M is SS-coprime , then M is S-coprime by Remarks and Examples 2.2(2). Hence by [7, Theorem 19] , M1 and M
are S-coprime modules . But ann M; and ann M; are prime ideals of R , so by Remarks and Examples 2.2(2), M1 and M
are SS-coprime modules.

Recall that an R-module M is called small prime if annM=annN for each (0)=N<<M. Equivalently M is a small prime R-
module if (0) is a small prime submodule , where a proper submodule N of M is called a small prime submodule if
whenever reR, xeM and (x)<<M, rxeN implies xeN or re[N:M] [8].

It is clear that every prime module is a small prime module , and if M is a small prime module, then annM is a prime ideal

(8]
Theorem 2.17 :

Let M be an R-module such that every submodule N of M is relatively divisible (i.e. rIMNN=rN, Vr € R). If M is small prime ,
then M is SS-coprime.

Proof :
We claim that M is S-coprime . So | shall prove that annM=[N:M] for each N<<M.

Suppose that there is a small submodule N of M and reR,r#0 such that re[N:M] and rM#(0). As M is small prime, we get
rN#(0) . By hypothesis , N is relatively divisible, hence rMnrN=r’N and so rN=r°N. This implies that , for any neN , m=rn;
for some n;€N, and hence r(n-rn1)=0 . But n-rn1EN<<M , so that (n-rn1)<<M . On the other hand , M is small prime , so
annM=ann(n-rn,) . Hence reannM, which is a contradiction . Thus annM = ann(N:M), VN<<M, i.e. M is S-coprime . Beside
this , M is small prime implies annM is a prime , so by Remark and Example 2.2(2) , M is SS-coprime.

Recall that an R-module M is called F-regular if IMNN=IN for each N<M and each ideal | of R [5].
Corollary 2.18 :

Let M be an F-regular R-module .If M is small prime , then M is SS-coprime.

Corollary 2.19 :

Let M be amodule over a regular ring R (i.e. R is regular in sense of VonNeuamann)
Then the following statements are equivalent :

1) Mis a small prime R-module

2) Mis an SS-coprime R-module

3) Mis a prime R-module

Proof :

=@

Since R is regular ring , R/ann(x) is a regular ring for each xeM. Hence M is F-regular[14]. Thus the result follows by
Corollary 2.18 .

@=0)

Since M is SS-coprime , then annM is a prime ideal by Remarks and Examples 2.2(2) , so that R=R/annM is an integral
domain . But R is regular ring implies R is regular ring , it is follows that R is a field , hence M is a prime R-module which
implies that M is a prime R-module .

A=

Itis clear .

Remark 2.20 :
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Let M be a divisible module over an integral domain R . Then M is a faithful SS-coprime.

Proof :

Let a,beR and abM<<M . If ab+0 , then abM=M , so M<<M which is a contradiction . Thus ab=0 and hence a=0 or b=0 .
So that aM=0 or bM=0 ; that is M is SS-coprime.

Also, if reannM, then rM=0. Since M is divisible, then r=0. Thus M is faithful.

Proposition 2.21 :
Let M be a faithful R-module . Consider the following statements :
1) Mis SS-coprime
2) Ris SS-coprime
3) Ris anintegral domain
Then (1) = (3) &(2) and (3) = (1) if M is finitely generated multiplication R-module.
Proof :
OH=0)

Let a,beR such that ab=0 . Then (ab)<<R . So , abM=(0)<<M. But M is SS-coprime , so either aM=0 or bM=0. Since M is
faithful , then a=0 Or b=0.

G)=0

Let a,beR and abM<<M . Since M is finitely generated faithful multiplication module , then (ab)<<R. But R is an integral
domain , so (ab)=(0) and hence either a=0 or b=0. Thus either aM=(0) or bM=(0)

(3) =(2)
See Remarks and Examples 2.2(8)

Let M be an R-module , we say that M is small retractable if Hom(M,N)+0 for each N<<M .
Proposition 2.22 :

Let M be a small retractable and scalar module . If M is S-coprime , then RadM=(0).
Proof :

Suppose there exists meRadM , m#0 . Hence (m)<<M and since M is small retractable, there exists f:M—(m), =0 ,
hence f € EndM. But M is a scalar R-module , so that there exists reR such that f(x)=rx , YxeM . Thus f(M)=rM c(m)<<M
and as M is S-coprime , we get rM=0. Hence f=0 which is a contradiction , therefore RadM=(0).

Hence it is clear that if M is small retractable scalar module and M is SS-coprime then RadM=0 .
Proposition 2.23:
Let M be an R-module . If Hom(M,N)=0, for each N<<M , then M is S-coprime
Proof :

Let a€R and aM<<M. Define :M—M by f(m)=am , VmeM. Hence f(M)=aM<<M, thus feENom(M,aM) and aM<<M, so by
hypothesis f=0 . Thus f(M)=aM=0 and M is S-coprime.

Corollary 2.24 :
Let M be an R-module .If Hom(M,N)=0 for each N<<M and annM is a prime ideal . Then M is SS-coprime.
Proof :
It follows by Proposition 2.23 and Remarks and Examples 2.2(2) .
Proposition 2.25:

Let M be an R-module .Then M is an SS-coprime E-module if and only if Hom(M,N)=0, ¥ N<<M and anngM is a prime
ideal in E , where E=End(M).

Proof :

(=) Let feHom(M,N), N<<M. Then f(M)S N<<M, so f(M)<<M. But M is SS-coprime E-module , hence M is S-coprime E-
module and so f(M)=0 . Thus Hom(M,N)=0. Moreover , since M is SS-coprime E-module , anngM is a prime ideal in E by
Remarks and Examples 2.2(2) .

5216 |Page October 10, 2015



LLL ISSN 2347-1921

(<) First we shall prove M is an S-coprime E-module . Let feEHom(M,N), f(M)<<M . Put f(M)= N , hence feHom(M,N)=0.
Thus f=0 and so M is an S-coprime E-module. But anngM is a prime ideal so M is SS-coprime E-module by Remarks and
Examples 2.2(2) .

Under the class of multiplication module , we have the following
Theorem 2.26:
Let M be a multiplication R-module . Then M is an SS-coprime if and only if M is an SS-coprime E-module .
Proof :
(=) Let f,geEndM, and (feg)(M)<<M . Since g(M)<M and M is multiplication R-module,

g(M)=IM for some ideal | of R. It follows that (feg)(M)= f(g (M))= f(IM) = If(M) . But f{(M)<M, so f(M)=JM, for some ideal J of
R. Thus (feg)(M)=IIM and so IIM<<M. But M is an SS-coprime R-module , hence either IM=0 or JM=0 by Proposition 2.6 .
Thus either f(M)=0 or g(M)=0 ; that is M is an SS-coprime E-module.

(=)Let abM<<M where a,beR . Define f,g:M—M by f(m)=am ,g(m)=bm , vmeM. Then (feg)(M)=abM<<M . Since M is an
SS-coprime E-module, then either f(M)=0 or g(M)=0 and hence either aM=0 or bM=0. Thus M is an SS-coprime R-module.

Recall that an R-module is called hollow module if every proper submodule of M is small[6].
Proposition 2.27 :
Let M be a hollow R-module . Then the following statements are equivalent :
1) Mis S-coprime
2) Mis coprime
3) Mis SS-coprime
Proof :
1)y=(2) Itis clear .

(1) = (3) Let abM<<M where a,beR. Then either aM or bM is a proper submodule of M. Hence if aM<M, then aM<<M
and so aM=0 . Similarly , bM=0 . Thus M is SS-coprime.

(3) = (1) It follows by Remarks and Examples 2.2(2).
Proposition 2.28 :

Let | be a nil ideal of aring R . If M is an S-coprime R-module, then IM=0 .
Proof :

Let a €l , we claim that aM<<M . Assume aM+K=M for some submodule K of M . Then for each n €Z: , a"M+K =M . But a
is a nilpotent element , so K=M and aM<<M . Since M is S-coprime , then aM=0 for any a €l . Thus IM=(0).

Proposition 2.29:
Let | .J be two ideals of a ring R such that 1J is a nil ideal . If M is an SS-coprime R-module, then IM=0 or JIM=0.
Proof :

Since M is an SS-coprime R-module, then M is an S-coprime R-module and hence by Proposition 2.28, 1IM=0, so that
IIM<<M . But M is SS-coprime , therefore either IM=0 or JIM=0.

Recall that a ring R is semilocal if R/J(R) is semisimple.
Proposition 2.30 :
Let R be a semilocal ring and J(R) is nilpotent . Then M is S-coprime if and only if M is semisimple .
Proof :
(=) If M is S-coprime . Since R is semilocal , J(LR) is semilocal, hence RadM=J(R)M and % is semisimple by [1.
Corollary 15.18]. But J(R) is a nil ideal , so by Proposition 2.28, J(R)M=0 . then RadM =0 .
(&) ltis clear .
Note 2.31:

If R is a semilocal ring with J(R) is nilpotent and M is an SS-coprime R-module , then M is semisimple , but the converse
is not true for example: consider Zg as Zg-module . The ring Zg is semilocal , J(Z6)=0 is a nil ideal . Also Zg as Zg-module is
semisimple , but it is not SS-coprime .
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3. Semi Strongly S-Coprime Modules

In this section we investigate the notion of semi strongly S-coprime modules and present some of its properties and some
of relations between this concept and other related concepts .

Definition 3.1 :

An R-module is called semi strongly S-coprime (briefly, SSS-coprime ) if for each aeR, a’M<<M implies aM=0 .

Remarks and Examples 3.2 :

1) Itis clear that every SS-coprime is SSS-coprime , but not conversely , for example : if M is the Z-module Zg , then
a’Ze<< Zs implies a°Ze=(0) ; that is a’eann,Zs = Zg and so a€6Z . Thus aZe=(0) and M is SSS-coprime . But M is not
SS-coprime .

2) Every SSS-coprime module is S-coprime
Proof :

Let M be an SSS-coprime module , let aeR with aM«M . Since a’McaM , then a’M«M . Hence aM=(0) because M
is SSS-coprime . Thus M is S-coprime .

3) Itis easy to see that : an R-module M is S-coprime and anngM is a semiprime ideal of R if and only if M is SSS-
coprime .

4) Let M be a module over a chained ring R . Then M is SS-coprime if and only if M is SSS-coprime .
5) If M and M’ are isomorphic R-module. Then M is SSS-coprime if and only if M'is  SSS-coprime.

6) The image of SSS-coprime need not be SSS-coprime . As example to show this : The Z-module Z is SSS-coprime ,
let m: Z—Z/<4> ~ Z, be the natural epimorphism , then 7(Z)=24 is not SSS-coprime .

7) Foranyring R+0 . If R is SSS-coprime , then L(R)=J(R)=(0) .
Proof :

Suppose there exists a€J(R) , a #0 . Then a’R«R. Since R is SSS-coprime , then aR=(0) (i.e. a=0) which is a
contradiction . Thus J(R)=(0), hence L(R)=(0).

Proposition 3.3 :
The direct sum of two SSS-coprime modules is SSS-coprime .
Proof :

Let M= M1@M- , where M; and M; are SSS-coprime R-module . If reR such that r’M«M , then r2M1<<M1 and r2M2<<M2 . By
SSS-coprimeness of M; and Mz, r M;=(0) and r M=(0) . Thus rM=(0) and M is SSS-coprime.

Remark 3.4 :

A direct summand of SSS-coprime module may be not SSS-coprime , for example : If M is the Z-module Z&Z, , then M is
SSS-coprime , but Z4 is not a SSS-coprime Z-module.

The following result is a characterization of SSS-coprime module .
Proposition 3.3:
Let M be an R-module. Then the following statements are equivalent >

1) Mis SSS-coprime module
2) Foranyideal | of R, I"M«M implies IM=(0)
3) Foranyideal | of R and n €Z., I"'M«M implies IM=(0).
Proof :
Itis easy, so is omitted .

The following results are analogous to results about SS-coprime modules .

Proposition 3.4 :

Let N<<M. If M is SSS-coprime R-module. Then % is an SS-coprime R-module.

Proof :

It is similar to proof of Proposition 2.9 .
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Corollary 3.7 :

Let :M—M be an epimorphism with kerf<<M. if M is an SSS-coprime R-module, then M is SSS-coprime.
Corollary 3.8 :

L.et M be an R-module with projective cover f: P — M. If P is an SSS-coprime R-module , then M is SSS-
coprime.

Proposition 3.9 :

Let M be an R-module. Let N<M such that [N:M] =annM. If % is an SSS-coprime R-module, then M is SSS-coprime.

Proof :

It is similar to the proof of Proposition 2.13

Theorem 3.10:

Let M be a multiplication R-module . Then M is an SSS-coprime if and only if M is an SSS-coprime E-module , where
E=End(M)

Proof :

It is similar to the proof of Proposition 2.26

Remark 3.11 :

Since every SSS-coprime is S-coprime by Remark and Example 3.2(2) . If R is a semilocal ring with J(R) is a
nilpotent , then every SSS-coprime is semisimple

Next we have

Proposition 3.12:
Let M be a finitely generated faithful multiplication R-module . Then M is SSS-coprime if and only if R is SSS-coprime .
Proof :

(=)Let (@®)<<R . Since M is faithful finitely generated multiplication , then a’M<<M, hence aM=0 . But M is faithful so a=0
(i.e. (2)=(0)).

(<) Let a€R and a°’M<<M . Since M is faithful finitely generated multiplication , [a’M:rM]<<R , hence (a®)<<R . So (a)=(0).
Thus aM=(0).
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