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ABSTRACT 

In this study, mollification and marching methods are used to solve aninverse problem in combustion engines. With the 
benefit of 2D mollification, we first propose an algorithm, and then prove some theorems, which ensure us the proposed 
method in stable and reliable, and then some numerical experiment has been done to show the efficiency of the method. 
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Introduction 

Inverse problems play a vital role in science and engineering and have rightfully received a great deal of attention by 
applied mathematicians, statisticians, and engineers. The most interesting characteristic of inverse problems is that they 
cannot be solved analytically; hence how accurate we solve them by computational methods in another important task to 
do [4]. 

The majority of the methods that have been proposed for solvinginverse problems were formalized in the last four decades 
in terms of their capabilities to treat ill-posed unstable problems. The basis of such formal methods resides on the idea of 
reformulating an inverse problem in terms of an approximate well-posed problem, by utilizing some kind of regularization 
techniques [1]. 

Following the model introducedin [1, 3], which the in-cylinder pressure in an internal combustion engine was modeled as a 
function of crank angle. In this article, wewould like toconsider the temperature as a function ofcrank angle and variation of 
piston in cylinder during the compression stroke.Basically, we are aim to add more minutedetails to the problem of interest 
and generate an efficient numerical method to solve the problem. 

For convenience we outline our procedure as follows: 

In the next section, the mathematical formulation of ourinterest problem is described. The next section, the regularized 
problem and the marching scheme isdescribed [2]. In the next section, a marching algorithm is generated to have the 
optimize solution. After that to proof the reliability of the proposed method, stability and convergence analysis are 
discussed.After that, for testing the method, two examples are discussed.  

Description of the Problem 

In internal combustions (IC) engines, the mathematical model of heat transfer process in cylinder wall in general form may 
be written as follows [1,3], 

𝜕2𝑇

𝜕𝑟2
+

1

𝑟

𝜕𝑇

𝜕𝑟
+

1

𝑟2

𝜕2𝑇

𝜕𝜃2
+

𝜕2𝑇

𝜕𝑧2
= 𝑘

𝜕𝑇

𝜕𝑡
        (1) 

Where𝑇 = 𝑇(𝑟, 𝑧, 𝑡), 𝑅1 < 𝑟 < 𝑅2, 0 < 𝜃 < 2𝜋, 0 < 𝑧 < 𝑎 and 0 < 𝑡 < 𝑇𝑡 . Also the boundary conditions regarding the 
problem may be written as follows 

𝑇 𝑅1 , 𝑧, 𝑡 = 𝑃 𝑡, 𝑧 ,         (2) 

𝑘
𝜕

𝜕𝜃
𝑇 𝑅2 , 𝑧, 𝑡 = 𝑞 𝑡, 𝑧 ,         (3) 

𝜕

𝜕𝑧
𝑇 𝑟, 0, 𝑡 = 𝜑 𝑟, 𝑡 ,         (4) 

𝜕

𝜕𝑧
𝑇 𝑟, 𝑏, 𝑡 = 𝜓 𝑟, 𝑡 ,         (5) 

𝑇 𝑟, 𝑏, 0 = 𝑓(𝑟, 𝑙).         (6) 

In cylinder one may consider that the variation of 𝑇 is not dependent on 𝜃. Therefore, in the equation (1), the term 
𝜕2𝑇

𝜕𝜃2
 can 

be dropped. On the other hand, the crank angle baseofa lot of information in IC engines and it is clear that crank angle 
varies with time, i.e. 𝛼 = 𝛼(𝑡), which implies, 

𝜕𝑇

𝜕𝑡
=

𝜕𝑇

𝜕𝛼
.
𝜕𝛼

𝜕𝑡
.          (7) 

In IC engines 
𝜕𝛼

𝜕𝑡
 defines the engine angular speed, 𝜔𝑒, and it is considered as follows, 

 
𝜕𝛼

𝜕𝑡
= 𝜔𝑒 =

2𝜋𝑁

60
,          (8) 

Where 𝑁 demonstrates the engine speed. We can rewrite equation (1) using equation (8), we have 

 𝐾𝜔𝑒
𝜕𝑇

𝜕𝛼
=

𝜕2𝑇

𝜕𝑟2
+

1

𝑟

𝜕𝑇

𝜕𝑟
+

𝜕2𝑇

𝜕𝑍2
,         (9) 

Where the initial and boundary conditions may be written as follows, 

 𝑇 𝑅1 , 𝑧, 𝛼 = 𝑃 𝑧,𝛼 ,         (10) 

 𝐾
𝜕𝑇

𝜕𝑟
 𝑅2 , 𝑧, 𝛼 = 0,          (11) 

𝐾
𝜕𝑇

𝜕𝑧
 𝑟, 0, 𝛼 = 0,          (12) 

𝐾
𝜕𝑇

𝜕𝑧
 𝑟, 𝑏, 0 = 𝑓1(𝑟, 𝑏)         (13) 

   In the practical experiences, occasionally, the boundary conditions or some parts ofthem may be unavailable duo to 
physical situations. Hence having an alternativecondition to solve the problem is essential. 
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𝑇 𝑅2 , 𝑧, 𝛼 = 𝜂 𝑡 ,          (14) 

The problem of interest, then, can be summarized as follows: 

𝐾𝜔𝑒
𝜕𝑢

𝜕𝛼
=

𝜕2𝑢

𝜕𝑟2
+

1

𝑟

𝜕𝑢

𝜕𝑟
+

𝜕2𝑢

𝜕𝑍2
,         (15) 

 𝑇 𝑅1 , 𝑧, 𝛼 = 𝑃 𝑧,𝛼          (16) 

𝑇 𝑅2 , 𝑧, 𝛼 = 𝜂 𝑧, 𝛼 ,         (17) 

𝐾
𝜕𝑣

𝜕𝑟
 𝑅2 , 𝑧, 𝛼 = 0,          (18) 

Where𝐾𝜔𝑒 is given and 𝜂 𝑡 is measured and also.Determining𝑣(𝑟, 𝑧, 𝛼) and 𝑃(𝑧, 𝛼) from theproblem is our primal 
goal.Furthermore, the known data function 𝜂 𝑧, 𝛼 is only known approximately as 𝜂𝜀 𝑧, 𝛼  such that 

 𝜂 𝑧, 𝛼 − 𝜂𝜀 𝑧, 𝛼  ≤ 𝜀         (19) 

Where𝜀 is a positive tolerance. 

Regularized problem and the marching scheme 

The mollified problem 

The regularized problem, based on mollification, is formulated as follows. 

𝐾𝜔𝑒
𝜕𝑣

𝜕𝛼
=

𝜕2𝑣

𝜕𝑟2
+

1

𝑟

𝜕𝑣

𝜕𝑟
+

𝜕2𝑣

𝜕𝑍2
,         (20) 

𝑣 𝑅1 , 𝑧, 𝛼 = 𝑃 𝑧, 𝛼          (21) 

𝑣 𝑅2 , 𝑧, 𝛼 = 𝐽𝛿1
𝜂𝜀 𝑧, 𝛼 ,         (22) 

𝐾
𝜕𝑣

𝜕𝑟
 𝑅2 , 𝑧, 𝑡 = 0,          (23) 

where𝑣(𝑟, 𝑧, 𝛼) and 𝑃(𝑧, 𝛼)are needed to be determined. 

Marching scheme 

Let 𝑀, 𝑁, and 𝑂, positive integers,ℎ =  𝑅2 −𝑅1/𝑀, 𝑙 =  𝑎/𝑂, 𝑘 =  1/𝑇𝑡be theparameters of the finite differences 

discretization.We introduce the discrete functions𝑈𝑖,𝑗
𝑛 ,𝑄𝑖,𝑗

𝑛 ,𝑊𝑖,𝑗
𝑛 ,𝑃𝑖,𝑗

𝑛  and𝑆𝑖 ,𝑗
𝑛 asdiscrete computed approximations of 

𝑣(𝑖ℎ, , 𝑗𝑙, 𝑛𝑘), 𝑣𝑟(𝑖ℎ, , 𝑗𝑙, 𝑛𝑘), 𝑣𝛼 (𝑖ℎ, , 𝑗𝑙, 𝑛𝑘), 𝑣𝑧(𝑖ℎ, , 𝑗𝑙, 𝑛𝑘)and 𝑣𝑧𝑧 (𝑖ℎ, , 𝑗𝑙, 𝑛𝑘)respectively. Then, the space marching algorithm 
is defined as follows. 

    1.  Select 𝛿0. 

    2.  Perform mollification of 𝜂𝜀  and set. 

𝑈𝑀,𝑗
𝑛 = 𝐽𝛿0

𝜂𝜀 𝑗𝑙, 𝑛𝑘 ,𝑄𝑀,𝑗
𝑛 = 0. 

3.  Perform mollified differentiations. Set  

𝑈𝑀,𝑗
𝑛 = 𝐃𝛼  𝐽𝛿0

𝜂𝜀 𝑗𝑙, 𝑛𝑘  , 𝑆𝑀,𝑗
𝑛 = 𝐃𝑧 𝐽𝛿0

𝑈𝑀,𝑗
𝑛  . 

    4.  Initialize 𝑖 = 𝑀. Do while 𝑖 ≥ 1, 

i. 𝑈𝑖−1,𝑗
𝑛 = 𝑈𝑖,𝑗

𝑛 − ℎ𝑄𝑖,𝑗
𝑛 ,         (24) 

ii. 𝑄𝑖−1,𝑗
𝑛 = 𝑄𝑖,𝑗

𝑛 − ℎ  𝐾𝜔𝑒𝑊𝑖,𝑗
𝑛 +

1

𝑖ℎ
𝑄𝑖,𝑗

𝑛 + 𝑆𝑖,𝑗
𝑛  ,       (25) 

iii. 𝑊𝑖−1,𝑗
𝑛 = 𝑊𝑖,𝑗

𝑛 − ℎ𝐃𝛼 𝐽𝛿𝑖
𝑄𝑖,𝑗

𝑛  ,        (26) 

iv. 𝑃𝑖−1,𝑗
𝑛 = 𝑃𝑖,𝑗

𝑛 − 𝑘𝐃𝑧  𝐽𝛿𝑖
′ 𝑊𝑖,𝑗

𝑛  ,        (27) 

v. 𝑆𝑖−1,𝑗
𝑛 = 𝐃𝑧 𝐽𝛿𝑖

∗𝑃𝑖−1,𝑗
𝑛  .         (28) 

where𝐃𝛼and 𝐃𝑧respectively denote the centered difference operator with respect to 𝛼 and 𝑧 [5]. From now on, we denote 
 𝑌𝑖 = maxj,n |𝑌𝑖,𝑗

𝑛 |and   𝑌 ∞ = maxi |𝑌𝑖|. 

Stability and Convergence of the Scheme 

In this section, we analyze the stability of the marching scheme (24)–(28).Without loss of generality, from now on, we 

assume  𝛿 −∞ = min⁡{𝛿𝑖}, also  𝑌𝑖 = maxj,n |𝑌𝑖,𝑗
𝑛 | and   𝑌 ∞ = maxi |𝑌𝑖|. 

Assumption1:For all 𝑟, 𝑧, 𝛼 ∈ 𝐼 =  𝑅1 , 𝑅2 ×  0, 𝑙 × [0,2𝜋], we  further  assume that 𝑇 𝑟, 𝑧, 𝛼 ∈ 𝐶2 𝐼 . 

Theorem 1 [Stability]:If Assumption 1 holds, for the marching scheme (24)–(28), there exists a constant𝛬, dependent on 
 𝛿 −∞ , such that 
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max  𝑈0 ,  𝑄0 ,  𝑊0 ,  𝑃0 ,  𝑆0  ≤ Λmax  𝑈𝑀 ,  𝑄𝑀 ,  𝑊𝑀 ,  𝑃𝑀 ,  𝑆𝑀   . 

Proof: 

Usingtheorem 4 and 6 from [5], there exist constants 𝐶1, 𝐶2 and 𝐶3 such that, 

𝐃𝛼 𝑄𝑖,𝑗
𝑛  ≤

𝐶1

 𝛿 −∞
 𝑄𝑖 ,𝐃𝑧 𝑊𝑖−1,𝑗

𝑛  ≤
𝐶2

 𝛿 −∞
 𝑊𝑖  and 𝐃𝑧 𝑃𝑖−1,𝑗

𝑛  ≤
𝐶3

 𝛿 −∞
 𝑃𝑖     (29) 

We have from (24)-(26) and (29) 

 𝑈𝑖−1,𝑗
𝑛  ≤  𝑈𝑖,𝑗

𝑛  + ℎ 𝑄𝑖,𝑗
𝑛  ≤  1 + ℎ max{  𝑈𝑖 ,  𝑄𝑖 }      (30) 

 𝑄𝑖−1,𝑗
𝑛  ≤  𝑄𝑖,𝑗

𝑛  + ℎ  𝐾𝜔𝑒  𝑊𝑖,𝑗
𝑛  +

1

𝑖ℎ
 𝑄𝑖,𝑗

𝑛  +  𝑆𝑖 ,𝑗
𝑛   ≤  𝑄𝑖,𝑗

𝑛  + ℎ 𝐾𝜔𝑒  𝑊𝑖,𝑗
𝑛  + 𝜉 𝑄𝑖,𝑗

𝑛  +  𝑆𝑖,𝑗
𝑛    

≤  1 + 𝐶𝑞ℎ max{ 𝑊𝑖 +  𝑄𝑖 +  𝑆𝑖 }.       (31) 

 𝑊𝑖−1,𝑗
𝑛  ≤  𝑊𝑖 + ℎ

𝐶1

 𝛿 −∞
 𝑄𝑖 ≤  1 + ℎ

𝐶1

 𝛿 −∞
 max  𝑄𝑖 ,  𝑊𝑖  .     (32) 

Also, 

 𝑃𝑖−1,𝑗
𝑛  ≤  𝑃𝑖,𝑗

𝑛  + 𝑘
𝐶2

 𝛿 −∞
 𝑊𝑖,𝑗

𝑛  ≤  1 + ℎ
𝐶1

 𝛿 −∞
 max  𝑃𝑖 ,  𝑊𝑖       (33) 

 𝑆𝑖−1,𝑗
𝑛  ≤

𝐶3

 𝛿 −∞
 𝑃𝑖−1,𝑗

𝑛  ≤  ℎ
𝐶3

 𝛿 −∞
 max  𝑃𝑖         (34) 

Now let 𝐶𝛿 =  1,  𝐶𝑞 , 
𝐶1

 𝛿 −∞
,

𝐶2

 𝛿 −∞
 , then from (30)-(34) we can conclude, 

max  𝑈𝑖−1 ,  𝑄𝑖−1 ,  𝑊𝑖−1 ,  𝑃𝑖−1 ,  𝑆𝑖−1  ≤  1 + 𝐶𝛿ℎ max  𝑈𝑖 ,  𝑄𝑖 ,  𝑊𝑖 ,  𝑃𝑖 ,  𝑆𝑖  ,   (35) 

and iterating this last inequality 𝑀 times, we have 

max  𝑈0 ,  𝑄0 ,  𝑊0 ,  𝑃0 ,  𝑆0  ≤  1 + 𝐶𝛿ℎ 
𝑀 max  𝑈𝑀 ,  𝑄𝑀 ,  𝑊𝑀 ,  𝑃𝑀 ,  𝑆𝑀      (36) 

which implies 

max  𝑈0 ,  𝑄0 ,  𝑊0 ,  𝑃0 ,  𝑆0  ≤ exp(𝐶𝛿) max  𝑈𝑀 ,  𝑄𝑀 ,  𝑊𝑀  ,  𝑃𝑀 ,  𝑆𝑀       (37) 

SettingΛ = exp(Cδ)completes the proof of this statement. 

We will now show that the above scheme convergence to the desired 𝐽𝛿𝑣 for fixed 𝛿. To do so, we define 

∆𝑈𝑖,𝑗
𝑛 = 𝑈𝑖,𝑗

𝑛 − 𝑣 𝑖ℎ, 𝑗𝑙, 𝑛𝑘 , ∆𝑄𝑖,𝑗
𝑛 = 𝑄𝑖,𝑗

𝑛 − 𝑣𝑟 𝑖ℎ, 𝑗𝑙, 𝑛𝑘 , ∆𝑊𝑖,𝑗
𝑛 = 𝑊𝑖,𝑗

𝑛 − 𝑣𝛼 𝑖ℎ, 𝑗𝑙, 𝑛𝑘 ,  

∆𝑃𝑖,𝑗
𝑛 = 𝑃𝑖,𝑗

𝑛 − 𝑣𝑧 𝑖ℎ, 𝑗𝑙, 𝑛𝑘 , ∆𝑆𝑖,𝑗
𝑛 = 𝑆𝑖 ,𝑗

𝑛 − 𝑣𝑧𝑧  𝑖ℎ, 𝑗𝑙, 𝑛𝑘 ,  

and denote∆𝑖= max ∆𝑈𝑖 , ∆𝑄𝑖 , ∆𝑊𝑖 , ∆𝑃𝑖, , ∆𝑆𝑖 . 

From the marching scheme introduced in (24)–(28), we can notice that the mollified solution 𝑣(𝑟, 𝑧, 𝛼) satisfies 

𝑣  𝑖 − 1 ℎ, 𝑗𝑙, 𝑛𝑘 = 𝑣 𝑖ℎ, 𝑗𝑙, 𝑛𝑘 − ℎ𝑣𝑟 𝑖ℎ, 𝑗𝑙, 𝑛𝑘 ,      (38) 

𝑣𝑟  𝑖 − 1 ℎ, 𝑗𝑙, 𝑛𝑘 = 𝑣𝑟 𝑖ℎ, 𝑗𝑙, 𝑛𝑘 − ℎ  𝐾𝜔𝑒𝑣𝛼 𝑖ℎ, 𝑗𝑙, 𝑛𝑘 +
1

𝑖ℎ
𝑣𝑟 𝑖ℎ, 𝑗𝑙, 𝑛𝑘 +

𝜕

𝜕𝑧
𝑣𝑧 𝑖ℎ, 𝑗𝑙, 𝑛𝑘  ,  (39) 

𝑣𝛼  𝑖 − 1 ℎ, 𝑗𝑙, 𝑛𝑘 = 𝑣𝛼  𝑖ℎ, 𝑗𝑙, 𝑛𝑘 − ℎ
𝜕

𝜕𝛼
𝑣𝑟 𝑖ℎ, 𝑗𝑙, 𝑛𝑘 ,      (40) 

𝑣𝑧  𝑖 − 1 ℎ, 𝑗𝑙, 𝑛𝑘 = 𝑣𝑧 𝑖ℎ, 𝑗𝑙, 𝑛𝑘 − ℎ
𝜕

𝜕𝑧
𝑣𝛼  𝑖ℎ, 𝑗𝑙, 𝑛𝑘 ,      (41) 

𝑣𝑧𝑧  𝑖 − 1 ℎ, 𝑗𝑙, 𝑛𝑘 =
𝜕

𝜕𝑧
𝑣𝑧  𝑖 − 1 ℎ, 𝑗𝑙, 𝑛𝑘 ,       (42) 

Comparing (38)-(42) with the scheme, we can write 

∆𝑈𝑖−1,𝑗
𝑛 = ∆𝑈𝑖,𝑗

𝑛 +  𝑈𝑖−1,𝑗
𝑛 − 𝑈𝑖,𝑗

𝑛  −  𝑣  𝑖 − 1 ℎ, 𝑗𝑙, 𝑛𝑘 − 𝑣 𝑖ℎ, 𝑗𝑙, 𝑛𝑘  + 𝑂 ℎ2 , 

= ∆𝑈𝑖,𝑗
𝑛 + ℎ∆𝑄𝑖,𝑗

𝑛 + 𝑂 ℎ2 ,        (43) 

∆𝑄𝑖−1,𝑗
𝑛 = ∆𝑄𝑖,𝑗

𝑛 +  𝑄𝑖−1,𝑗
𝑛 −𝑄𝑖,𝑗

𝑛  −  𝑣𝑟  𝑖 − 1 ℎ, 𝑗𝑙, 𝑛𝑘 − 𝑣𝑟 𝑖ℎ, 𝑗𝑙, 𝑛𝑘  + 𝑂 ℎ2 , 

= ∆𝑄𝑖,𝑗
𝑛 − ℎ  𝐾𝜔𝑒∆𝑊𝑖,𝑗

𝑛 +
1

𝑖ℎ
∆𝑄𝑖,𝑗

𝑛 + ∆𝑆𝑖,𝑗
𝑛  + 𝑂 ℎ2 ,     (44) 

∆𝑊𝑖−1,𝑗
𝑛 = ∆𝑊𝑖,𝑗

𝑛 − ℎ  𝑣𝛼  𝑖 − 1 ℎ, 𝑗𝑙, 𝑛𝑘 − 𝑣𝛼  𝑖ℎ, 𝑗𝑙, 𝑛𝑘  + 𝑂 ℎ2 , 

= ∆𝑊𝑖,𝑗
𝑛 − ℎ 𝐃𝛼 𝐽𝛿𝑖

𝑄𝑖,𝑗
𝑛  − 𝑣𝑟𝛼  𝑖ℎ, 𝑗𝑙, 𝑛𝑘  + 𝑂 ℎ2 ,     (45) 
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∆𝑃𝑖−1,𝑗
𝑛 = ∆𝑃𝑖,𝑗

𝑛 − ℎ 𝑣𝑧  𝑖 − 1 ℎ, 𝑗𝑙, 𝑛𝑘 − 𝑣𝑧 𝑖ℎ, 𝑗𝑙, 𝑛𝑘  + 𝑂 ℎ2 , 

= ∆𝑊𝑖,𝑗
𝑛 − ℎ  𝐃𝑧  𝐽𝛿𝑖

′ 𝑊𝑖−1,𝑗
𝑛  − 𝑣𝛼𝑧  𝑖ℎ, 𝑗𝑙, 𝑛𝑘  + 𝑂 ℎ2 ,     (45) 

Also 

 𝑈𝑖−1,𝑗
𝑛  ≤  ∆𝑈𝑖,𝑗

𝑛  + ℎ ∆𝑄𝑖,𝑗
𝑛  + 𝑂 ℎ2 ,        (47) 

 ∆𝑄𝑖−1,𝑗
𝑛  ≤  ∆𝑄𝑖,𝑗

𝑛  + ℎ  𝐾𝜔𝑒  ∆𝑊𝑖,𝑗
𝑛  +

1

𝑖ℎ
 ∆𝑄𝑖,𝑗

𝑛  +  ∆𝑆𝑖,𝑗
𝑛   + 𝑂 ℎ2 .     (48) 

Using theorem 4 and 6 from [5], we have 

 ∆𝑊𝑖−1,𝑗
𝑛  ≤  ∆𝑊𝑖,𝑗

𝑛  + ℎ  
𝐶

 𝛿 −∞
  ∆𝑄𝑖,𝑗

𝑛  + 𝑘 + 𝐶𝛿𝑘
2  + 𝑂 ℎ2 ,     (49) 

 ∆𝑃𝑖−1,𝑗
𝑛  ≤  ∆𝑃𝑖,𝑗

𝑛  + ℎ  
𝐶

 𝛿 −∞
  ∆𝑊𝑖,𝑗

𝑛  + 𝑙 + 𝐶𝛿 𝑙
2 + 𝑂 ℎ2 .     (50) 

Letting𝐶0 =  1,𝐾𝜔𝑒 + 2  and 𝐶1 =  
𝐶𝑘

 𝛿 −∞
+ 𝐶𝛿𝑘

2,
𝐶𝑙

 𝛿 −∞
+ 𝐶𝛿 𝑙

2  

 ∆𝑖−1 ≤  1 + 𝐶0ℎ  ∆𝑖  + 𝑂 ℎ2 .        (51) 

By calculating 𝐿 iterations, 

∆𝐿≤ exp 
𝐶𝑟𝐿

 𝛿 −∞
2   ∆0 + 𝐶 𝑙 + 𝑘 + ℎ  .        (52) 

Since 

∆𝑀≤
𝐶

 𝛿 −∞
2  𝜀 + 𝑙 + 𝑘 ,         (53) 

the convergence of the algorithm readily follows. That is∆𝐿 converges to zero as 𝜀, ℎ, 𝑘 and 𝑙 tend to zero. 

Numerical Results 

In this section to show the ability of the proposed numerical procedure, we present two examples. In all cases, without loss 

of generality, we set 𝑝 = 3(see [2]). The radii of mollification are always chosen automatically using the mollification and 

GCV methods. Discretized measured approximations of boundary data are modeled by adding random errors to the exact 

data functions. For example, for the boundary data function ℎ(𝑥, 𝑡), its discrete noisy version is generated by  

ℎ𝑗 ,𝑛
𝜀 = ℎ 𝑥𝑗 , 𝑡𝑛 + 𝜀𝑗 ,𝑛 , 𝑗 = 0,1,… , 𝑁, 𝑛 = 0,1,… ,𝑇,      (54) 

where the 𝜀𝑗 ,𝑛  are random variables uniformly distributed on [−𝜀, 𝜀]. 

The errors exact and approximate solution are measured by the relative RMS-norm. 

Example 1: As the first example, in equations (15)-(18) consider 𝐾 = 1, 𝜔𝑒 = 2.576 and 𝜂 𝑧, 𝛼 = 𝑒−0.08 sin𝛼 + 𝑧2. Also, 

𝑅1 = 0.02,𝑅2 = 0.08,𝑎 = 0.15and 𝑇𝑡 = 2. 

Since this problem cannot be solved analytically, we follow a scheme which compars the solutions with each other. 

Table 1 demonstrates RMS norm of comparing two solutions at three different mesh levels and two different amountsof 𝜺. 

Table 1.Comparing solutions with each other 

𝑴 = 𝑵 = 𝑶 
𝜺  𝑃 𝑧, 𝛼 |𝑀1

−𝑃 𝑧, 𝛼 |𝑀2
  

𝑴𝟏 𝑴𝟐 

128 256 0.01 0.0831 

256 512 0.01 0.0698 

512 1024 0.01 0.0357 

128 256 0.05 0.0936 

256 512 0.05 0.0908 

512 1024 0.05 0.0806 

 

Figure 1 illustrates the difference between two levels of noise at 𝑀 = 1024 and for a fixed 𝑧. 
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Fig 1: the difference between two levels of noise at 𝑴 = 𝟏𝟎𝟐𝟒 and for a fixed 𝒛. 

Example 2: In equations (15)-(18) consider 𝐾 = 1, 𝜔𝑒 = 2.576 and 𝜂 𝑧, 𝛼 = 𝑒𝑧 cos𝛼. Also, 𝑅1 = 0.02,𝑅2 = 0.1, 𝑎 =

0.13and 𝑇𝑡 = 2.4. 

Table 2 demonstrates RMS norm of comparing two solutions at three different mesh levels and two different amountsof 𝜺. 

Table 2.Comparing the solution with each other 

𝑴 = 𝑵 = 𝑶 
𝜺  𝑃 𝑧, 𝛼 |𝑀1

−𝑃 𝑧, 𝛼 |𝑀2
  

𝑴𝟏 𝑴𝟐 

128 256 0.01 0.0809 

256 512 0.01 0.0782 

512 1024 0.01 0.0719 

128 256 0.05 0.1058 

256 512 0.05 0.0957 

512 1024 0.05 0.0881 

 

Figure 1 illustrates the difference between two levels of noise at 𝑀 = 1024 and for a fixed 𝑧. 

 

Fig 2: the difference between two levels of noise at 𝑴 = 𝟏𝟎𝟐𝟒 and for a fixed 𝒛. 

Conclusion 

Overall, we developed a convergence scheme and it demonstrated a reasonable amount of accuracy, although analytical 
solutions were not available. This conclusion is consistent with the previous studies on this subject of interest [1, 3]. 
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