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ABSTRACT 

The main interest of the present paper is to study α-Kenmotsu manifolds that satisfy some certain tensor conditions  
where α is a smooth function defined by dα⋀η=0 on M

n
. In particular, the flatness conditions of α-Kenmotsu manifolds are 

investigated. We conclude the paper with an example on α-Kenmotsu manifolds  depending on α. 
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INTRODUCTION 

Tanno classified connected almost contact metric manifolds whose automorphism groups possess the 
maximum dimension (see [16]). The sectional curvature of plane sections for such manifolds containing  the 
vector f i e l d  ξ is a constant which is called c. The author proved  that these manifolds can be divided  
into three  classes: 

(1) Homogenous normal  contact Riemannian manlfolds with c > 0, 

(2) Global Riemannian products of a line or a circle with Kaehlerian manifold whose constant holomorphic  
sectional  curvature under the condition  c = 0, 

(3) A warped  product space R×fC for the case c < 0. 

It  is well known  that the  class (1)  are characterized by  admitting a Sasakian structure. Kenmotsu 

defined  a  structure closely related  to  the  warped  product which is characterized the differential 

geometric properties  of the manifolds of class (3).  The structure is known as Kenmotsu  structure and 

in general, these structures are not Sasakian (see [8]). 

It is well known that Kenmotsu  manifolds can be characterized through their Levi-Civita connection. He 
proved that such  a  manifold M

2n+1 is locally a warped  product (-ε,+ε)xfN
2n being a Kaehlerian manifold 

and f (t) = ce
t
  where c is a positive  constant (see [8]). 

Weakly symmetric and weakly Ricci-symmetric Riemannian manifolds are generalized locally symmetric  
manifolds  and  pseudo  symmetric  manifold,  respectively.  These are manifolds in which the covariants 
derivative  ∇R of the curvature tensor R is a linear expression in R. The appearing coefficients of this 

expression are called associated 1-forms. They satisfy in the specified types of manifolds gradually weaker 
conditions. 

Firstly, the notions  of weakly symmetric and weakly Ricci-symmetric manifolds were introduced by L. 
Tamássy and T.Q. Binh in 1992 (see [14], [15]). In [14], the authors studied  on weakly symmetric and weakly 
projective  symmetric  Riemannian manifolds. In 1993, the authors considered weakly symmetric and 
weakly Ricci symmetric  Einstein  and  Sasakian  manifolds  (see [15]). In  2000, U. C.  De, T.Q. Binh  
and  A.A.  Shaikh  gave necessary  conditions  for the  compatibility of several K -contact structure with  
weak  symmetry and  weakly  Ricci-symmetry (see  [5]). In 2002,  C. Özgür,  investigated weakly 
symmetric and weakly Ricci-symmetric Riemann-para Sasakian  manifolds (see [11]). 

The notion of special weakly Ricci symmetric manifolds was introduced andstudied by H. Singh, and Q. 
Khan in 2001(see [13]). The authors considered special weakly  symmetric  manifolds. Next, Q. Khan  
studied  some geometric  properties of conharmonic Sasakian  manifolds in 2004 and he also obtained 
some results  on special weakly Ricci-symmetric Sasakian manifolds (see [10]). This paper is devoted to 
obtain some results on α-Kenmotsu manifolds by choosing a real value-function α instead of any real 
number α (constant function) with the help of some certain curvature tensor fields. For this reason, we 
have an α-Kenmotsu structure if there exists a normal almost contact metric structure (φ,ξ,η,g) such that 
dη=0 and dΦ=2α(η∧Φ) for any vector fields X,Y on Mⁿ, where α is a smooth function defined by dα∧η=0 

on Mⁿ . 

In this paper, the flatness conditions of α-Kenmotsu manifolds are investigated where α is a smooth 
function defined by dα∧η=0 on Mⁿ. In particular, we consider φ-conformally flat, φ-conharmonically flat 
and φ-projectively flat α-cosymplectic manifolds. We prove main results on these manifolds by using the 
class (3). Moreover, special weakly Ricci-symmetric α-cosymplectic manifolds are examined. Finally, we 
give an example on α-Kenmotsu manifolds. 

PRELIMINARIES 

Let (M
n
,g) be an n-dimensional Riemannian manifold. We denote by ∇ the covariant differentiation with 

respect to the Riemannian metric g. Then  we have 

R(X,Y)Z = ∇X∇YZ- ∇Y∇XZ- ∇[X,Y]Z. 

The Riemannian curvature tensor  is defined by 

R(X,Y,Z,W ) = g (R(X,Y)Z,W). 

The Ricci tensor  of M
n
 is defined as 

S(X,Y)=trace{Z→R(X,Z)Y} 

Locally, S is given by 

S(X,Y)=∑R(X,Ei,Y,Ei),  for i=1,2,…,n, 
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where {E₁,E₂,...,En} is a local orthonormal frames field and X,Y,Z,W are vector fields on Mⁿ. 

The Ricci operator Q is a tensor field of type (1,1) on Mⁿ defined by 

g(QX,Y)=S(X,Y), 

for all vector fields on Mⁿ. 

Let (M
n
,g), n=dimM , n > 3, be a connected Riemannian manifold of class C

∞
 and ∇ be 

its Riemannian connection. The Weyl conformal curvature tensor C, the  conharmonic curvature tensor 
K and the projective curvature tensor P of (M

n
,g) are defined by 

(2.1) C(X,Y)Z  = R(X,Y)Z-(1/(n-2))[S(Y,Z)X-S(X,Z)Y+g(Y,Z)QX-g(X,Z)QY 

                   +(r/((n-1)(n-2)))[g(Y,Z)X-g(X,Z)Y], 

(2.2) K(X,Y)Z  = R(X,Y)Z-(1/(n-2))[S(Y,Z)X-S(X,Z)Y+g(Y,Z)QX-g(X,Z)QY], 

(2.3)      P(X,Y)Z=R(X,Y)Z-(1/(n-1))[g(Y,Z)QX-g(X,Z)QY], 

    respectively, where Q is the Ricci operator, S is the Ricci tensor, r=trace(S) is the scalar curvature 
and X,Y,Z∈χ(Mⁿ), χ(Mⁿ) being the Lie algebra of vector fields of Mⁿ (see [6,17]). 

Let C be the Weyl conformal curvature tensor of Mⁿ. Since at each point p∈ Mⁿ the tangent space TP(Mⁿ) 

can be decomposed into the direct sum TP(Mⁿ)=φ(TP(Mⁿ)⊕L(ξp), where L(ξp) is a 1-dimensional linear 

subspace of TP(Mⁿ) generated by ξp, we have a map: 

C: TP(Mⁿ) x TP(Mⁿ) x TP(Mⁿ)→φ(TP(Mⁿ)⊕L(ξp). 

 It may be natural to consider the following particular cases: 

(1) C: TP(Mⁿ) x TP(Mⁿ) x TP(Mⁿ)→L(ξp), i.e., the projection of the image of C in φ(TP(Mⁿ) is zero, 

(2) C: TP(Mⁿ) x TP(Mⁿ) x TP(Mⁿ)→ φ(TP(Mⁿ), i.e., the projection of the image of C in L(ξp) is zero, 

(3) C: φ(TP(Mⁿ) x φ(TP(Mⁿ) x φ(TP(Mⁿ)→ L(ξp), i.e., when C is restricted to TP(Mⁿ) x φ(TP(Mⁿ) x φ(TP(Mⁿ), 
the projection of the image of in φ(TP(Mⁿ) is zero (see [4]). This condition is equivalent to 

 

(2.4)                                                                φ²C(φX,φY)φZ=0.   

 

A differentiable manifold (Mⁿ,g), n>3, satisfying (2.4) is called φ-conformally flat. 

A differentiable manifold (Mⁿ,g), n>3, satisfying the condition 

 

(2.5)                                                     φ²K(φX,φY)φZ=0,  

 

is called φ-conharmonically flat. 

A differentiable manifold (Mⁿ,g), n>3, satisfying the condition 

 

(2.6)                                                     φ²P(φX,φY)φZ=0,  

 

is called φ-projectively flat. 

The cases (1) and (2) were considered in [18] and [19], respectively. The case (3) was considered in [4] 
for the case Mⁿ is a K-contact manifold. In [2], the authors considered  

(k,µ)-contact manifolds satisfying (2.5). Furthermore, the authors studied (k,µ)-contact metric manifolds 

satisfying (2.4) in [1].  

In [12], the author proves that an n-dimensional (n>3) conformally flat Lorentzian para-Sasakian 
manifold is an η-Einstein manifold, conharmonically flat Lorentzian para-Sasakian manifold is an 
Einstein manifold with zero scalar curvature. Also the author showed that a projectively flat Lorentzian 
para-Sasakian manifold is an Einstein manifold with scalar curvature r=n(n-1).  
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α-KENMOTSU MANIFOLDS 

Let Mⁿ be an n-dimensional differentiable manifold equipped with a triple (φ,ξ,η), where φ is a (1,1)-
tensor field, ξ is a vector field, η is a 1-form on Mⁿ such that 

(3.1)                                                 η(ξ)=1, φ²=-I+η⊗ξ, 

which implies 

(3.2)                                                 φξ=0, η∘φ=0, rank(φ)=n-1. 

If Mⁿ admits a Riemannian metric g, such that 

(3.3)                                                 g(φX,φY)=g(X,Y)-η(X)η(Y), η(X)=g(X,ξ) 

then Mⁿ is said to admit almost contact structure (φ,ξ,η,g) 

On such a manifold, the fundamental Φ of Mⁿ is defined by 

                             Φ(X,Y)=g(φX,Y), 

for X,Y∈Γ(TM). 

An almost contact metric manifold (M,φ,ξ,η,g) is said to be almost cosymplectic if dη=0  

and dΦ=0, where d is the exterior differential operator. The products of almost Kaehlerian manifolds and 
the real line R or the S¹ circle are the simplest examples of almost cosymplectic manifolds. An almost 
contact manifold (M,φ,ξ,η) is said to be normal if the Nijenhuis torsion 

 Nφ(X,Y)=[φX,φY]-φ[φX,Y]-φ[X,φY]+φ²[X,Y]+2dη(X,Y)ξ, 

vanishes for any vector fields X and Y. 

An almost contact metric manifold Mⁿ is said to be almost α-Kenmotsu if dη=0 and dΦ=2αη∧Φ, α being 

a non-zero real constant. It is worthwhile to note that almost α-Kenmotsu structures are related to some 
special local conformal deformations of almost cosymplectic structures.                    

Moreover, an α-Kenmotsu manifold satisfies the following relations 

(3.4)                                                 ∇Xξ=-αφ²X,  

 

 

(3.5)                                                 (∇Xη)(Y)=α[g(X,Y)-η(X)η(Y)], 

 

(3.6)                                                 (▽Xφ)Y=-α[g(X,φY)ξ+η(Y)φX], 

 

for any vector fields X,Y on M
n
, where ▽ denotes the Riemannian connection of g. 

An α-Kenmotsu manifold Mⁿ is said to be Einstein if its Ricci tensor S is of the form 

S(X,Y)=λg(X,Y), 

where λ is constant and it is called η-Einstein if its Ricci tensor S is of the form 

(3.7)                                                 S(X,Y)=λ₁g(X,Y)+λ₂η(X)η(Y),  

 

for any vector fields X and Y where λ₁ and λ₂ are functions on Mⁿ (see [3,17]). 

BASIC CURVATURE PROPERTIES 

By using Riemannian curvature tensor properties, the following relations are obtained on  

α-Kenmotsu manifolds: 

(4.1)                                                 R(X,Y)ξ=[α²+ξ(α)](η(X)Y-η(Y)X),  

 

(4.2)                                                 R(X,ξ)ξ=[α²+ξ(α)](η(X)ξ-X), 
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(4.3)                                                 R(ξ,X)Y=[α²+ξ(α)](η(Y)X-g(X,Y)ξ), 

 

 

(4.4)                                                 g(R(ξ,X)Y,ξ)=[α²+ξ(α)](-g(X,Y)+η(X)η(Y)),  

 

 

(4.5)                                                 S(X,ξ)=-(n-1)[α²+ξ(α)]η(X),  

 

 

(4.6)                                                 S(ξ,ξ)=-(n-1)(α²+ξ(α)), 

 

 

(4.7)                                                 S(φX,φY)=S(X,Y)+2(n-1)[α²+ξ(α)]η(X)η(Y), 

 

for any vector fields X,Y on Mⁿ where α is a smooth function such that dα∧η=0. In these formulas, ∇ is 

the Levi-Civita connection, R the Riemannian curvature tensor and S is the Ricci tensor of Mⁿ. 

Remark 4.1  In [20], the above curvature properties are obtained for α∈R, α≠0. 

CERTAIN TENSOR FIELDS ON α-KENMOTSU MANIFOLDS 

In this section, we consider conharmonically flat and special weakly Ricci-symmetric manifold. Thus we 
give the following results: 

Theorem 5.1  Let Mⁿ be an α-Kenmotsu manifold. If the manifold Mⁿ is conharmonically flat Einstein 

manifold and α is parallel along ξ, then Mⁿ is a manifold of constant curvature such that α² is constant.  

Proof  We suppose that Mⁿ be an α-Kenmotsu manifold satisfying following condition 

(5.1)                                                 K(X,Y)Z=0. 

 

Then it follows from (2.2) 

 

(5.2)                          R(X,Y)Z=(1/(n-2))[S(Y,Z)X-S(X,Z)Y+g(Y,Z)Q(X)-g(X,Z)Q(Y)]. 

 

Let the manifold be Einstein. Then (5.2) reduces to 

 

(5.3)                          R(X,Y)Z=(2λ/n-2)[g(Y,Z)X-g(X,Z)Y], 

 

or 

 

(5.4)                          g(R(X,Y)Z,W)=(2λ/n-2)[g(Y,Z)g(X,W)-g(X,Z)g(Y,W)]. 

 

Taking X=W=ξ in (5.4), then we get 

 

(5.5)                          g(R(ξ,Y)Z,ξ)=(2λ/n-2)[g(Y,Z)-η(Y)η(Z)].  

 

Using (5.5) with the help of (4.4), we obtain 
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((2λ/n-2)+(α²+ξ(α)))[g(Y,Z)-η(Y)η(Z)]=0. 

 

We observe that if g(Y,Z)-η(Y)η(Z)=0, then g(φY,φZ)=0 can be obtained by using (3.3) which is a 
contradiction on this structure. So the relation ((2λ/n-2)+(α²+ξ(α))) vanishes. If α is parallel along ξ, then  

we obtain (2λ/n-2)+α²)=0. Thus we find λ=((2-n)α²)/2) with α≠0. Hence, α-Kenmotsu case has a constant 
curvature such that α² is constant.  

Consequently, the manifold Mⁿ has a constant curvature satisfying α² is constant. As a special case, if 
we choose α=1, we obtain that a conharmonically α-Kenmotsu manifold is locally isometric with a unit 
sphere which is proved in [10]. 

Definition 5.1  An n-dimensional Riemannian manifold (Mⁿ,g) is called a special weakly Ricci-

symmetric manifold if 

 

(5.6)                          (∇S)(Y,Z)=2ζ(X)S(Y,Z)+ζ(Y)S(X,Z)+ζ(Z)S(Y,X),  

 

where ζ is a 1-form and is defined by  

 

(5.7)                                               ζ(X)=g(X,ρ),  

 

where ρ is the associated vector field. 

Then we can give the following results: 

Theorem 5.2   If a special weakly Ricci-symmetric α-Kenmotsu manifold admits a cyclic Ricci tensor 

and α is parallel along ξ, then the 1-form ζ must be vanished. 

Proof  Let (5.6) and (5.7) be satisfied in an α-Kenmotsu manifold Mⁿ. Taking cyclic sum of (5.6), we 

have 

 (5.8)                           (∇S)(Y,Z)+(∇S)(Z,X)+(∇S)(X,Y)=4[ζ(X)S(Y,Z)+ζ(Y)S(X,Z)+ζ(Z)S(Y,X)]. 

Let Mⁿ admit a cyclic Ricci tensor. Then (5.8) reduces to 

 

(5.9)                           ζ(X)S(Y,Z)+ζ(Y)S(X,Z)+ζ(Z)S(Y,X)=0. 

 

Taking Z=ξ in (5.9), we have 

 

(5.10)                          ζ(X)S(Y,ξ)+ζ(Y)S(X,ξ)+η(ρ)S(Y,X)=0, 

 

also taking Y=ξ in (5.10) we get 

 

(5.11)                           ζ(X)S(ξ,ξ)+η(ρ)S(X,ξ)+η(ρ)S(ξ,X)=0. 

 

Using X=ξ in (5.11) and (4.6), we find 

 

(5.12)                           -3(α²+ξ(α))(n-1)η(ρ)=0, 

 

and 

 

(5.13)                                                    η(ρ)=0, 
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for the parallelity of α along ξ. Then making use of (5.13) in (5.11) gives ζ(X)=0, ∀X∈T(M).  

At this point we recall that 1-form ζ must be vanished for α-Kenmotsu. This completes the proof. 

Theorem 5.3  If the 1-form ζ does not vanish, then there exists no special weakly Ricci-symmetric α-

Kenmotsu Einstein manifold.  

Proof   Since α-Kenmotsu is an Einstein manifold, it holds (∇S)(Y,Z)=0 and S(Y,Z)=λg(Y,Z). Hence 

(5.6) implies 

 

(5.14)                                           2ζ(X)S(Y,Z)+ζ(Y)S(X,Z)+ζ(Z)S(Y,X)=0. 

 

Putting Z=ξ in (5.14), we get 

 

(5.15)                                            2ζ(X)S(Y,ξ)+ζ(Y)S(X,ξ)+η(ρ)S(Y,X)=0.  

 

Further, taking X=ξ in (5.15), we have 

 

(5.16)                                             2η(ρ)S(Y,ξ)+ζ(Y)S(ξ,ξ)+η(ρ)S(Y,ξ)=0.  

 

Then putting Y=ξ in (5.16) and with the help of (3.1) and (3.6) we have 

 

(5.17)                                           -4(α²+ξ(α))(n-1)η(ρ)=0. 

 

In view of (5.17) in (5.16), we find ζ(Y)=0, ∀Y∈T(M) for α²≠0. Thus it completes the proof. 

α-KENMOTSU MANIFOLDS SATISFYING FLATNESS CONDITIONS  

In this section, we consider φ-conformally flat, φ-conharmonically flat and φ-projectively flat α-Kenmotsu 
manifolds. According to these statements, the following results are held under certain flatness 
conditions: 

Theorem 6.1  Let Mⁿ be an n-dimensional, (n>3), φ-conformally flat α-Kenmotsu manifold and α is 

parallel along ξ. Then Mⁿ is an η-Einstein manifold. 

 Proof  Suppose that (Mⁿ,g), n>3, be a φ-conformally flat α-Kenmotsu manifold. It is easy to see that 

φ²C(φX,φY)φZ=0 holds if and only if 

 

g(C(φX,φY)φZ,φW)=0, 

 

for any X,Y,Z,W∈χ(Mⁿ). So by the use of (2.1) φ-conformally flat means 

                                       

(6.1)                               g(R(φX,φY)φZ,φW) = (1/(n-2))[g(φY,φZ)S(φX,φW)                                                 

                                     -g(φX,φZ)S(φY,φW)+g(φX,φW)S(φY,φZ)-g(φY,φW)S(φX,φZ)] 

                                     -(r/((n-1)(n-2)))[g(φY,φZ)g(φX,φW)-g(φX,φZ)g(φY,φW). 

 

Let {E₁,...,En-1,ξ} be a local orthonormal basis of vector fields in Mⁿ. Using that {φE₁,...,φEn-1,ξ} is also a 

local orthonormal basis, if we put X=W=Ei in (6.1) and sum up with respect to i, then 

 

(6.2)                      ∑g(R(φEi,φY)φZ,φEi)  = (1/(n-2))∑g(φY,φZ)S(φEi,φEi) 

                -g(φEi,φZ)S(φY,φEi)+g(φEi,φEi)S(φY,φZ)-g(φY,φEi)S(φEi,φZ)]  

                             -(r/(n-1)(n-2))∑[g(φY,φZ)g(φEi,φEi)-g(φEi,φZ)g(φY,φEi),      for i=1,2,…,n-1. 
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It can be verify that 

 

(6.3)                      ∑g(R(φEi,φY)φZ,φEi)=S(φY,φZ)+[α²+ξ(α)]g(φY,φZ), 

 

 

(6.4)                      ∑S(φEi,φEi)=r+[α²+ξ(α)](n-1), 

 

 

(6.5)                      ∑g(φEi,φZ)S(φY,φEi)=S(φY,φZ),  

 

 

(6.6)                      ∑g(φEi,φEi)=n-1,  

 

and 

 

(6.7)                      ∑g(φEi,φZ)g(φY,φEi)=g(φY,φZ), 

 

for i=1,2,…,n-1. 

 

So by virtue of (6.4) and (6.5), (6.7) can be written as 

 

(6.8)                      S(φY,φZ)=(r/n-1+(α²+ξ(α)))g(φY,φZ). 

 

Then making use of (3.6) and (4.7), (6.8) takes the form 

 

(6.9)                 S(Y,Z)  = (r/n-1+(α²+ξ(α)))g(Y,Z)-(r/n-1+(α²+ξ(α))n)η(Y)η(Z).  

 

It means that Mⁿ is an η-Einstein manifold by virtue of (3.7). This completes the proof. 

Theorem 6.2  Let Mⁿ be an n-dimensional, (n>3), α-Kenmotsu manifold and α is parallel along ξ. 

Then there exists no φ-projectively flat α-Kenmotsu manifolds with zero scalar curvature and the 
manifold has negative scalar curvature. 

Proof   Assume that Mⁿ be an n-dimensional, (n>3), φ-projectively flat α-Kenmotsu manifold. It is clear 

that φ²P(φX,φY)φZ=0 holds if and only if 

 

g(R(φX,φY)φZ,φW)=0, 

 

for any X,Y,Z,W∈χ(Mⁿ). From (2.3) and (4.7), φ-projectively flat means 

 

(6.10)             g(R(φX,φY)φZ,φW)  = (1/n-2)[g(φY,φZ)S(φX,φW)-g(φX,φZ)S(φY,φW)].  

 

Choosing {E₁,...,En-1,ξ} as a local orthonormal basis of vector fields in Mⁿ and using the fact that 

{φE₁,...,φEn-1,ξ} is also a local orthonormal basis, putting X=W=Ei in (6.10) and summing up with respect 

to i, then we have 
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(6.11)         ∑g(R(φEi,φY)φZ,φEi)  = (1/n-2)∑[g(φY,φZ)S(φEi,φEi)-g(φEi,φZ)S(φY,φEi)], 

 

for i=1,2,…,n-1. 

 

Then applying (6.4) and (6.5) into (6.11) gives 

 

(6.12)         S(φY,φZ)=(r/n)g(φY,φZ). 

 

By virtue of (3.6) and (4.7) in (6.12), we find 

 

(6.13)         S(Y,Z)=(r/n)g(Y,Z)-(r/n+(α²+ξ(α))(n-1))η(Y)η(Z),  

 

and contracting (6.13) with respect to Y and Z, we have 

(6.14)            r+(α²+ξ(α))n(n-1)=0, 

which contradicts our hypothesis for n=0 and n=1. Thus there exists no φ-projectively flat α-Kenmotsu 
manifolds with r=0. On the other hand, the manifold is of negative scalar curvature with r=-α²n(n-1). 
Therefore, the proof is completed. 

Theorem 6.3  Let Mⁿ be an n-dimensional, (n>3), φ-conharmonically flat α-Kenmotsu manifold. Then 

Mⁿ is an η-Einstein manifold with zero scalar curvature. 

Proof  Suppose that (Mⁿ,g), (n>3), be a φ-conformally flat α-Kenmotsu manifold. It obvious that 

φ²K(φX,φY)φZ=0 holds if and only if 

g(K(φX,φY)φZ,φW)=0, 

 

for any X,Y,Z,W∈χ(Mⁿ). Using (2.2), φ-conformally flat gives 

 

(6.15)                 g(R(φX,φY)φZ,φW)  = (1/n-2)[g(φY,φZ)S(φX,φW) 

             -g(φX,φZ)S(φY,φW)+g(φX,φW)S(φY,φZ)-g(φY,φW)S(φX,φZ)]. 

 

In analogy with the proof of (6.2), we can suppose that {E₁,...,En-1,ξ} is a local orthonormal basis of 

vector fields in Mⁿ. By using the fact that {φE₁,...,φEn-1,ξ} is also a local orthonormal basis, if we put 

X=W=Ei in (6.15) and sum up with respect to i, then 

 

(6.16)                 ∑g(R(φEi,φY)φZ,φEi)  = (1/n-2)∑[g(φY,φZ)S(φEi,φEi) 

             -g(φEi,φZ)S(φY,φEi)+g(φEi,φEi)S(φY,φZ)-g(φY,φEi)S(φEi,φZ)], 

for i=1,2,…,n-1. 

 

Making use of (6.4) and (6.5), (6.16) turns into 

 

(6.17)                 S(φY,φZ)=(r+(α²+ξ(α)))g(φY,φZ).  

 

Then applying (3.6) and (4.7) into (6.17) we have 

 

(6.18)                 S(Y,Z)=(r+(α²+ξ(α)))g(Y,Z)-(r+(α²+ξ(α))n)η(Y)η(Z). 
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Assume that α is parallel along ξ, then the manifold is η-Einstein manifold. By contracting (6.18) with 
respect to Y and Z, we obtain (2-n)r=0 which implies the scalar curvature r=0. 

EXAMPLE IN THREE DIMENSIONAL CASE 

Let us denote the standart coordinates of R³(x,y,z) and consider 3-dimensional manifold M⊂R³ defined 

by 

 

M={(x,y,z)∈R³ :  z≠0}. 

 

The vector fields are 

 

e₁= ez3(∂/(∂x)),  e₂= ez3(∂/(∂y))  e₃=(∂/(∂z)). 

 

It is clear that {e₁,e₂,e₃} are linearly independent at each point of M. Let g be the Riemannian metric 

defined by 

 

g(e₁,e₁)=g(e₂,e₂)=g(e₃,e₃)=1,   g(e₁,e₂)=g(e₁,e₃)=g(e₂,e₃)=0, 

 

and given by the tensor product 

 

g=(1/ez3) (dx⊗dx+dy⊗dy)+dz⊗dz. 

 

Let η be the 1-form defined by η(X)=g(X,e₃) for any vector field X on M and φ be the (1,1) tensor field 

defined by φ(e₁)=e₂, φ(e₂)= -e1 , φ(e₃)=0. Let h be the (1,1) tensor field defined by h(e₁)=-λe₁, h(e₂)=λe₂ 
and h(e₃)=0. Then using linearity of g and φ, we have 

 

φ²X=-X+η(X)e₃,   η(e₃)=1,   g(φX,φY)=g(X,Y)-η(X)η(Y), 

 

for any vector fields on M. 

 

Let ∇ be the Levi-Civita connection with respect to the metric g. Then we get 

 

[e₁,e₃] = -3z²e₁,   [e₂,e₃] = -3z²e₂,   [e₁,e₂]=0. 

 

It follows that the structure of (φ,ξ,η,g) can easily be obtained. So it is sufficient to check that the only 
non-zero components of the second fundamental form Φ are 

 

Φ((∂/(∂x)),(∂/(∂y)))=-Φ((∂/(∂y)),(∂/(∂x)))=-(1/ez3), 

 

and hence 

 

(7.1)                              Φ = -(1/ez3) (dx∧dy),  

 

where Φ(e₁,e₂) = -1 and otherwise Φ(ei,ej) = 0  for i≤j. Thus the exterior derivation of Φ is given by 
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(7.2)                              dΦ = 6z²(1/e2z3), (dx∧dy∧dz).  

 

Since η=dz, with the help of (7.1) and (7.2), we have 

 

(7.3)                              dΦ = -6z² (η∧Φ), 

 

where α defined α(z)=-3z². Moreover, it can be noted that Nijenhuis torsion tensor of φ vanishes. Hence, 
the manifold is an α-Kenmotsu. 
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