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ABSTRACT

In this paper, we study pseudo-slant submanifolds of a locally decomposable Riemannian manifold. We give necessary
and sufficient conditions for distributions which are involued in the definition of pseudo-slant submanifold to be integrable.
We search these type submanifolds with parallel canonical structures and we obtain some new results.
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1. INTRODUCTION

Study of slant submanifolds was initiatedy by B. Y. Chen [3,4], as a generalization of both holomorphich and totally real
submanifolds of a Keahler manifold. Slant submanifolds have been studied in different kind structure such as almost
contact, neutral Keahler, Lorentzian Sasakian and Sasakian by several geometers.

Semi-slant submanifolds of a Keahler manifold was introduced by N. Papaghich [5], as a naturel generalization of slant
submanifolds. After then, bi-slant submanifolds was worked in a almost Hermitian manifold.

Recently, A. Carriazo defined and studied bi-slant submanifolds in an almost Hermitian manifold and gave the some
notions of pseudo-slant submanifold in an almost Hermitian manifold[2].

After then, V. A. Khan and M. A. Khan [7], defined and studied the contact versions of pseudo-slant submanifold in a
Sasakian manifold.

H. M. Tastan and F. Ozdemir studied the pseudo-slant submanifolds in a locally product Riemannian manifold. They
obtained a basic inequality involving Ricci curvature and squared mean curvature of a pseudo-slant submanifold of a
locally product Rieannian manifold[9].

The purpose of the present paper is to define and study pseudo-slant submanifolds in a locally decomposable Riemannian
manifold and work integrability conditions of distributions these submanifolds and type submanifolds with parallel
canonical structures. Moreover, an example is used demonstrate that the method presented in this paper is effective.

2. PRELIMINARIES

Let M be an N— dimensional manifold with a tensor F of type (1,1) suchthat F? =1, F #FI. Inthis case

(l\/l , F) is said to be an almost product structure F. Since F2 =1, we can set

1 1
P=—(1+F), Q=_(I-F)
then we have
P+Q=1, P’=P, Q*=Q, PQ=QP=0, F=P-Q.

Thus P and Q define two complementary distributions. We easily see that the eigenvalues of F are 1 and —1. An
eigenvector corresponding to the eigenvalue 1 isin P, and an eigenvector corresponding to —1 is in Q Thus if F has
eigenvalue 1 of multiplicity P and eigenvalue and eigenvalue —1 of multiplicity , then the dimensions of P is p and
that of Q is Q.

Conversely, there exitin M two globally complementary distributions P and Q of dimensions P and (, respectively
(p+g=n), then we can define an almost product structure F on M by F =P —-Q.

If an almost product manifold (M, F) admits a Riemannian metric g such that
9(X,Y)=g(FX,FY) (1)
for any vector fields X,Y on M, then M s called an almost product Riemannian manifold.

Moreover, If the almost Riemannian product structure F is parallel thatis, (V, F) =0, then (M, F, Q) is called
locally decomposable Riemannian manifold[10].

If Ml(Cl) is a real space form with sectional curvature C; and M 2 (Cz) is a real space form with sectional curvature

C,, then the Riemannian curvature tensor R of locally decomposable Riemannian manifold M, (C,)x M, (C,) is given
by

R(X,Y)Z :%(Cl-i-cz){g(Y,Z)X -9(X,Z2)Y +9(FY,Z)FX

~g(FX,2)FY}+ 3 (6~ {a(FY, 2)X @
—g(FX,2)Y +g(Y,Z)FX —g(X,Z2)FY}
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for any vector fields X,Y and Z on M.

In this section, we will recall the definitions an some notations used throughout this paper. For an arbitrary submanifold
M of a Riemannian manifold M the Gauss and Weingarten formulas are, respectively, given by

V.Y =V, Y +h(X,Y) 3)
and

V.Y =-AX +VLXV, ()

for any vector fields X,Y tangentto |\7| and V normal to |\7|, where V and 6 denote the Riemannian connections
on M and M, respectively. On the oyther hand, h:T(TM)xI'(TM) — I'(T*M) is the second fundamental form
and A, :T'(TM) —T'(TM) is also the shape operator of M in M, where I'(TM) denotes the differentiable

vector fields seton M. V* is the normal connection on the normal bundle F(Tl|\7|). On the other hand, A, and h
are related by the formula

9(A X,Y)=g(h(X,Y),V), (5)
forany X,Y e (TM) and V e [(T*M).

If we denote the Riemannian curvature tensor of the connection V by R then Gauss and Codazzi equations are,
respectively, given by formulas

R(X,Y)Z =R(X,Y)Z+Ax2Y = Ay X
+(Vh)(Y,Z)-(V,h)(X,Z),

6

and
(R(X,Y)Z)" =(Vh)(Y,Z)=(V,h)(X,2), )
forany X,Y,Z €(TM), where (R(X,Y)Z)" denotes normal partof R(X,Y)Z. it (R(X,Y)Z)" =0, then

the submanifold M is said to be curvature invariant.

Let M be a submanifold a locally decomposable Riemannian manifold (M, F, @). Then we can write
FX = fX +wX, (8)

for any X GF(T|\7|), where fX and @X denote the tangent and normal components of FX | respectively. In same
way, we have

FV =BV +CV, ©)

forany V € F(Tll\7| ), where BV and CV are also the tangent and normal components of FV, respectively. By
using (8) and (9) and the properties of F, we obtain

f2+Bw=1, of +Cw=0 (10)
and

fB+BC =0, wB+C?=1. (11)
if f=0 (res. @=0), |\7| is said to be an anti-invariant (resp. an invariant) submanifold. Moreover, if

f 20 and @#0, then M is called semi-invariant submanifold.
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3. PSEUDO-SLANT SUBMANIFOLDS

Let M be a submanifold of a locally decomposable Riemannian manifold (M, F, ). A distribution D on M is said

to be a slant if for X € Dp the angle & between FX and Dp is constant, that is, it is independent of P € M and
X e Dp. The constant angle @ is called the slant angle of the distribution. So a submanifold M of M is said to be a

slant submanifold if the tangent bundle T|\7| of |\7| is slant[8].

Thus invariant and anti invariant submanifolds are special cases of slant submanifolds.

Definition 3.1. Let M be a submanifold of a locally decomposable Riemannian manifold (M, F,q). M is said to

be pseudo-slant of M if there exit two distributions D* and D on M such that

i) TM has the orthogonal direct decomposition TM = D* & D’

i) The distribution D" is an anti-invariant, that is, F(D™") cT*M,

iii) The distribution D? is a slant distribution with slant angle 4.

Next, we denote P and ( the dimensions of D" and De, respectively, then we have the following classifications;
i) If p=0, then M is an anti-invariant submanifold.

iy 1f q=0and @=0, then M is invariant submanifold.
T v b
i) If q=0and @ ;t{O,E}, then M is a proper slant submanifold.
iv) If pq#0 and @=0, then M is semi-invariant submanifold.
T ~ 8 .
v) If pg#0 and Hi{O,E}, then M is a pseudo-slant submanifold[7].

Now, let M be a pseudo-slant submanifold of a locally decomposable Riemannian manifold (M, F, g) and we denote

the orthogonal complementary of F(D*) and F(D?) in T*M by Vv, then we have direct sum
T'*M =F(D")®F(D’)®v. (12)

We note that F(D*) and F(D?) are mutually orthogonal distributions in normal bundle because D and D’ are
orthogonal distributions.

The following theorem characterize pseudo-slant submanifolds of in a locally product Riemannian manifolds.

Theorem 3.1. Let M be a submanifold of a locally Riemannian product manifold (M, F, g). Then M s a slant
submanifold if and only if there exists a constant A € (0,1) such that 2 = A.l. In this case, if @ is the slant angle of
M, then itis satisfies A = COS” 6.

Theorem 3.1. Let M be a submanifold of a locally decomposable Riemannian manifold (M, F, g). Then

M isa pseudo-slant submanifold if and only if there exists a constant A € (0,1)

and a distribution D’ on M such that

i) D’={X eTM|BoX =X}

ii) For X € TM orthogonalto DY, BwX = X. Furthermore, if 0 is slant angle, it is satisfies 4 =Sin® 6.
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Proof. Wwe suppose that M is a pseudo-slant submanifold. Then for X € D?, from Theorem 3.1 and (10) , we
obtain BwX =sin?@X, i.e. i) is satisfied. For X GF(FI\7|) orthogonal to D?, f2X =0, also it implies that
BwX = X. Soii) is also satisfied.

Conversely, the conditions i) and ii) are satisfied. We put ﬂ,:Sin2 @, from (1) and (10), for X & D, we obtain
f2X = X cos? @ which proves D is a slant distribution. We denote the orthogonal distribution of D in M by D,

for X € D', from ii), we can easily see BwX = X, thatis, f2X =0. Thistellus D' is an anti-invariant distribution.

Now, we will give an example to show that we work on space is nonempty.

Example 3.1. We consider the Euclidean space [] ® =[] *X] ® with usual Riemannian metric and Riemannian
product structure F.

Let |\7| be submanifold of [J ° defined by
x(u,v,s,t):(«/l_Bt,Zu +V+3s+t,u+2v—-3s—2t,
u+v—3t,—u—3s—3t,v—23s).

Then the tangent bundle of M are spanned by the vectors

o @@ 0 O 0 o o0 0
g=2—+—+———, e, =—+2—+—+—,
OX, OX; OX, OXs OX, OX; OX, OXg
e, _3£_3i_3i_3i’ e, —JRB 0 i_gi_ 0 30
OX, OXy OX  OXg oX, OX, OX  OX, OXg

0 1
where ()(1, X5, X5, Xgy X55 X ) are usual coordinates of [1 ° and { — , 1<1<6 are standart basis vector fields of
21731 g 6 ox
i

E®. Then we can easily to see that

Fe_zi 1 N \ Fezziﬂi_i_i,
ox, OX, OX, OX ox,  OX, OX, OX

Fe, £, 0 0. 5 ) Fe, _J_a §0 _, C4iNNeN | SR
ox, | ox,  oX, o, ox, OX,  OX, O

According to the product structure F and the usual metric tensor g of [ 6, we obtain
g(Fesie1) = g(Fea’ez) = g(Fes’es) = g(Fea’e4) =0,
g(Fe41e1) = g(Femez) = g(Fe41e3) = g(Fe41e4) =0

and

[Fedlle]  Fedllezl e flle. 7

Thus the slant distribution D’ = Span{e,,e,} and anti-invariant distribution D" = Spar{e;,e,}, thatis, M isa4-

cos @ = g(Fe.e) g(Fe,e) 9g(Fe.e) 3

dimensional pseudo-slant submanifold of [] ® with usual almost Riemannian product structure F and metric tensor g.
Let M be a pseudo-slant submanifold of a locally decomposable Riemannian manifold (M, F, ). Then we have
V.FY =FV,Y
V, Y +V, 0¥ =FV,Y + Fh(X,Y)
h(X, fY)+V, fY = A X +V oY = TV, Y +@V,Y +Bh(X,Y)+Ch(X,Y) 13)
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forany X,Y € F(|'|\7| ) Corresponding the tangent and normal components of (13), we get
(V)Y =A, X +Bh(X,Y) (14)
and
(V@)Y =—h(X, fY)+Ch(X,Y). (15)
In the same way, forany X € [(TM) and V e ['(T*M), we obtain
V,FV =FV V
V,BV +V,CV =F(-A X)+FV+V
h(X,BV)+V, BV — A, X +V*,CV = —fA, X —wA, X + BV-,V +CV*,V,
which implies that
(V,BV = A, X — fA X (16)
and
(V,C)V =—wA, X —h(X,BV). 17
On the other hand, for any Z,W e I"(D"), from (14), we have
~A.,Z=fV,Z+Bh(Z,W),
that is,

F[ZW]=A,W—A_,Z (18)

and

9(AZ — AW, U) =g(h(Z,U), FW) - g(h(W,U), FZ)
=g9(V,Z,FW)—-g(V W, F2Z)
=-g(h(W,U),FZ)+g(V,FZ,W)
=_9(A:ZW’U)_9(AFZW'U)

=—29(A,W,U)
which proves
A Z =—-A,W (19)
forall U € T(TM). From (18) and (19), we conclude that
f[Z,W]=2A,W. (20)

Thus we have the following theorem.
Theorem 3.3. Let M bea pseudo-slant submanifold of a locally decomposable Riemannian manifold (M, F, Q).

The orthogonal distribution D' is integrable if and only if

A_.D"=0.

Theorem 3.4. Let |\7| be a pseudo-slant submanifold of a locally decomposable Riemannian manifold

(M, F, g). The slant distribution D’ is integrable if and only if the second fundamental form h of M satisfies the
condition

h(X, fY)—h(fX,Y) eI'(v ® o(D?)) (21)
for X,Y eT(D?).
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Proof. For X,Y eI'(D?) and Z eT'(D"), we have

9([X,Y1,2)=9(V«Y.2)-g(V, X,Z)
=9(V,Z,X)—-g9(V,Z,Y)
=9(V,FZ,FX)-g(V,FZ,FY)
=g(VyoZ, IX)+9(V,0Z,wX)
—9(Vx@Z, ) -g(VyaZ, oY)
=—0g(A,Y, X)+g(A,X, fY)
+9((Vy0)Z +o(V,Z), »X)
—9((Vy0)Z+a(VZ),&Y).

Taking into account of v and @D’ being mutually orthogonal and (15), we arrive
9([X.Y]1,2) =g(h(X, fY),0Z) - g(h(Y, fX), wZ)

+sin” 99(V, Z, X) —sin*0g(VZ,Y)
=g(h(X, fY)—=h(Y, fX),®Z)
+sin® Og(V,Y,Z)—sin’ 8g(V, X, Z)
— g(h(X, fY)=h(Y, fX), @Z) +sin? 8g([X,Y],2),

that is,

cos?8g([X,Y],2) = g(h(X, fY)—h(fX,Y),®Z),

which proves our assertion.

Theorem 3.5. Let M bea pseudo-slant submanifold of a locally decomposable Riemannian manifold (M, F, g).

M is a mixed geodesic submanifold if and only if
A Z+A,BV el(DY) (22)
for Ze(D') and V e [(T*M).
Proof. Forany X eI'(D?) and Z eI'(D"), we have
9(A X,Z2)=9(VxZ,V) =g(V«FZ,FV)
=9(V,@Z,BV)+g(V,0Z,CV)
=9(V,@Z,BV)+9(Vy®)Z +wV,Z,CV).
Making use of C being symmetric and (17), we obtain

9(AZ,X)=-9(A;BV,X)+9(Ch(X,Z),CV)
=9g(A.,Z-A,;BV,X)
=g(AZ-A,Z-A_,BV,X)

which proves our assertion.
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In a pseudo-slant submanifold, slant and anti-invariant distributions are totally geodesic in submanifold, pseudo-
slant submanifold is called pseudo-slant product.

Theorem 3.6. Let |\7| be a pseudo-slant submanifold of a locally decomposable Riemannian manifold (|\/| JF, g).

M is a pseudo-slant product if and only if the shape operatory A of M satisfies
A o, (D) =0. (23)
Proof. By using (3), (4) and (15), we have
g(V,U,X)=9g(V,FU,FX)

=g(V,aJ, tX)+g(V,aJ, »X)

=—g(A,Z, X)+g((V,0)U +o(V,U), ®X)

=—g(h(Z, fX),aJ) + g(wV, U, wX)
forany U,Z eT'(D") and X eI'(D?). This implies that
cos’ 8g(V,U, X) =—g(h(Z, fX),aJ) =—g (A, fX,Z). (24)

Furthermore, by a direct calculation, we reach

a(VZ,Y)=09(V,FZ,FY)
=9(Vx@Z, Y)+9(VyaZ, oY)
=—09(A,; X, ) +9((Vy@)Z + oV, Z), 0Y)
=—g(h(X, 1Y), wZ) +9(aV,Z, oY)
forany X,Y eT(D?) and Z eT'(D"). So we have
cos’ 8g(V,Z,Y)=—-g(A,, fY, X). (25)

Combining (24) and (25), we conclude that M isa pseudo-slant product if and only if (23) is satisfied.

Theorem 3.7. Let M be a pseudo-slant submanifold of a locally decomposable Riemannian manifold (M, F, Q). The

tensor field @ is parallel if and only if shape operator A, satisfies
AY =sec’ OA,, fY
forany Y € (TM) and V e T (T*M).

Proof. if o is parallel, from (15), we have
Ch(X,Y)—=h(X, fY) =0,

forany X,Y € [(TM). This implies
Ch(X, fY)—cos*&n(X,Y) =0.
Thus we have
g(Ch(X, Y),V)—cos? ag(h(X,Y),V) =0
forany V e I(T*M). This is equivalent to

AY =sec’ OA., fY.
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The converse is obvious.

For pseudo-slant submanifold M in M, M is called D* —geodesicif h(X,Y) =0 forany X,Y e [(D%).

Theorem 3.8. Let M bea pseudo-slant submanifold of a locally decomposable Riemannian manifold (M, F, g). If

the tensor field f is parallel on |\7|, then |\7| isa D* — geodesic submanifold.

Proof. if f is parallel, then from (14), we have
AY +Bh(X,Y)=0
forany X,Y €'(D™). Taking into account of h — being symmetric and (19), we conclude A Y =Bh(X,Y)=0
and fV,Y =0 ie, V,Y e[(D"). Thus we have g(FV,Y,V) =g(V,Y,FV) =g(h(X,Y),CV)=0, for
any V € v. This implies that Ch(X,Y) =0. so M is D* — geodesic submanifold.
Theorem 3.9. Let M bea pseudo-slant submanifold of a locally decomposable Riemannian manifold (M, F, g).
If the tensor field C is parallel, then |\7| is D" — geodesic submanifold.
Proof. Since C is parallel, from (17), we reach
oA, X +h(X,BV) =0,
for X e (TM) and V e T(T*M). Here, taking V = FY = @Y for Y e [(D"), we have
@A, X +h(X,BaY)=0. Making use of (19), we arrive at
h(X,BwY)+h(BoX,Y)=0,
X e(DY).
On the other hand, because of BaY =Y — f2Y =Y, we get h(X,Y) =0. This proves our assertion.
By using (15) and (16), we get
g((VxB)V.Y) =g((V @)Y,V),
for X,Y €(TM) and V e (T*M).

Theorem 3.10. Let M be a pseudo-slant submanifold of a locally decomposable Riemannian manifold (M, F, Q).

If the tensor field B is parallel, then linear map
C?:V >V
has either h — eigenvector with cos? @ eigenvalue or M is totally geodesic submanifold in M.

Proof. Since B is parallel, by using (16), we have
A, X =1A X, @7)

X eT(TM) and V e I(T*M). substituting (27) into V = FY =Y for Y € [(D*), we get fA, X =0, that
is, A, X e(D"). Thus g(h(X, fZ),wY) =0, which implies h(X, fZ) e T(v), for X,Z eT(TM). Taking

into (27), we conclude
C*h(X,Z)=Ch(X, fZ) =h(X, f°Z) =cos® 6h(X, Z).
This tells us that linear map C? has either eigenvector h with eigenvalue cos’ 0 oritis totally geodesic submanifold.

Theorem 3.11. Let M be a pseudo-slant submanifold of a locally decomposable Riemannian manifold (M, F, g). If

the tensor field C is parallel, then M is a pseudo-slant minimal submanifold.
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Proof. since C is parallel, from (17), we have
h(X,BH)+ oA, X =0, (28)
for X e [(TM), where H denotes the mean curvature tensor of M in M. Thus (28) implies
g(oA, X, H)+g(h(X,BH),H) =2g(h(X,BH),H) =0.
Here we suppose that H # 0 and BH =0. Then
@A, X +h(X,BCH) =0,
from (11), we mean @A, X =0, which from
9(Ac X,Y) =g(h(X,Y),CH) =0.

This proves CH = 0. The proof is complete.

4. PSEUDO-SLANT SUBMANIFOLD IN LOCALLY DECOMPOSABLE RIEMANNIAN
SPACE FORMS

In this section, we have researched pseudo-slant submanifolds in product Riemannian space forms.

Theorem 4. 1. Let |\7| be a pseudo-slant submanifold of locally decomposable Riemannian space form
M, (c,)xM,(c,). If M is a curvature-invariant pseudo-slant submanifold, then M is a proper slant submanifold.

Proof. we suppose that M is curvature-invariant pseudo-slant submanifold of a M, (¢,)x M, (C,). From (2) and
(6), we have

(V, (Y, Z) = (V,h)(X, Z) =%(cl+cz)g(FY,Z)wx +%(c1—cz)g(v,2)wx ~0,

forany X eI'(D") and Y,Z eI'(D?). This implies that
(e —¢,)9(Y,2)+(c, +¢,)g(FY, 2)}oX =0 (29)

and
{(c,—¢,)9(FY,Z2)+(c, +¢,)g(Y,Z2)}wX =0. (30)

From the solutions of (29) and (30), we conclude the g(Y,Z)wX =0. Thistellus M is a proper slant submanifold.

Now, let {el,ez,...,ep,e

e } be a orthonormal basis of I'(TM) such that {€,, €, ..., e } are basis

p+1? p+2""’ep+q

vectors of I'(D?) and {€,.1:€p121+1€,.q ) are basis vectors I'(D™"). We denote the Riemannian curvature and Ricci

tensors of M by R and S, respectively, by using (2), we have

R(X,Y)Z =%(C1+CZ){g(Y,Z)X -g(X,Z)Y +g(FY,Z)FX

—g(Fx,Z)FY}+%(c1—c2){g(FY,Z)x an

—g(FX,2)Y +g(Y,Z2)FX —=g(X,Z)FY}
+Ah(Y,Z)X - Ah(x,Z)Y +(VYh)(X,Z) _(Vxh)(Yv Z)1

and
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S(X,Y) =%(cl+cz){(p+q—1—cos2 Ag(X,Y)+tr(f)g(fX,Y)}
+§(c1—cz){(p+q—2)g(fx,v)+tr(f)g(x,v)} @2)

+(p+)g(h(X.Y), H)— 3" g(h(e, X), h(e, V).

i,j=1

Also, scalar curvature o of M is given by

0 =36+ {(p+a-1-cos* O)(p+a)+tri (1)}

+2(6~CH(p+a-2r (1) + (p+a)tr(1)} @

2 2 2
+(pra)*[H]"-[hl"
From (23) and (31), we have following Theorem.
Theorem 4. 2. Let M be a pseudo-slant submanifold of a locally decomposable Riemannian space form

M =M, (c,)xM,(C,). I M is atotally geodesic submanifold, then M = M, (¢,)x M, (C,), where M, (c,) isa

real space form of constant curvature C, and Mz(cz) is a real space form of constant curvature C;.

Theorem 4. 3. Let M bea (p+(Q)— dimensional pseudo-slant minimal submanifold of a 2M —dimensional
locally decomposable Riemannian space form M = M, (C) x M, (C). Then M is a totally geodesic submanifold if and
only if |\7| satisfies one of the following conditions;

i) M is aRiemannian product manifold of two M *(C) and M ?(c).

i S:%c{(p+q—1—cosz6‘)g(.,.)+tr(f)g(f.,.)},

i) cr:%c{(p+q—1—cos2 O)(p+q)+tr’(f)}.
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