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ABSTRACT

The aim of this paper is to introduce a new compound optimum design namedCDA, by combining the C-optimality, D-
optimality, and A-optimality together. The significance of the proposed compound gains from that it can be used for
parameter estimation, minimizing the average variance and model estimation simultaneously.
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1. INTRODUCTION

Cook and Wong [2] considered a compound optimality criterion that is a convex combination of the two concave criteria
and so we can find the optimal design directly as if this is a single objective optimal design problem. D-optimality focuses

-1
on the variances of the estimates of the coefficients in the model, which minimizing the determinant of (X T X) which is
equivalent to maximizing thedeterminant of X TX . An exact design is called D-optimal, if it minimizes the determinant D
of the covariance matrix. C-optimality interest is in estimating the linear combination of the parameters ¢’ g with minimum

variance, where ¢ is a known vector of constants. In A-optimality tr M 71(5), the total variance of the parameter

estimates, is minimized, equivalent to minimizing the average variance. This paper is organized as follows; the C -, D -, A
— Optimum Designs were introduced in Section 2. The CDA-optimality was derived in section 3 and some of its properties
were discussed. The generalized CDA- Optimum Design was introducedin Section 4.

2. C-,D-, A-OPTIMUM DESIGNS

C-optimality introduced by Elfving [2] which provided a geometrical interpretation for finding c-optimal designs and
developed by Silvey and Titterington [10] and Titterington[11]. Fellman [4]justified that at most m linearly independent
support points are needed for a c-optimal design. Pukelsheim and Torsney [9]introduced a method for computing c-optimal
weights given the support points. C—optimality minimize the variance of the best linear unbiased estimate for a given linear

combination of the model parameters ¢’ 0 , where cis p X 1, a vector of a known constants. The c-optimaity criterion to
be minimized is thus

varc'd o« ¢'M*(&)c
The aim of c-optimality is to obtain the best design for estimating the linear combination of the parameters
_ AT
C6 +--+c,0,=c'0

The efficiency of any design & relative to C-optimum design is defined as:

e =(o)- S M e e

c"M*(&)e
C—-optimality is defined as minvar (CT (9), which is proportional toC"™ M ™ (f)C A disadvantage of c-optimum
designs is that they are often singular.

D- Optimum Design

D-optimum design is one of the most commonly used design criteria for linear regression model that is also known as the
Determinant criterion. This criterion introduced by Wald [12], and later was called D-optimality by Kiefer and Wolfowitz [5].
The D-Optimality is the most common criterion due to numerous applications found in the literature; see for example, Latif
and Zafar Yab [6]and Poursina and Talebi [8]. D-optimality criterion is just to maximize the determinant of the Fisher
information matrix, |XTX|, this means that the optimal design matrixX* contains the n experiments which maximizes the
determinant of X7 X .

*T *
Mathematically, ‘X X' = maqu S5 ‘)

Maximizing the determinant of the information matrix X”X is equivalent to minimizing the determinant of the dispersion

—1
matrix (X X ) . Using such an idea, the D-efficiency of an arbitrary design, X, is naturally defined as

[me)”

Eff (D) \Wff_j

A-optimality criterion introduced by Chernoff [1]; who showed that the employed criterion of optimality is the one that
involves the use of Fisher's information matrix. Invariance under re-parameterization loses its appeal if the parameters of
interest have a definite physical meaning. Then the average-variance criterion provides a reasonable alternative. If the

A-Optimum Design

coefficient matrix is partitioned into its columns, K = (Cl,..., CS), then the inverse ]/¢_1 can be represented as
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= %tr(CK (A)*)= %tr(K' AK)= %Zc} A,

#.(Cc(A) =
This is the average of the standardized variances of the optimal estimatorsfor the scalar parameter systems QG,..., Clsl9
formed from the columns of K. From the point of view of computational complexity, the criterion ¢71 is particularly simple
to evaluate since it only requires the computation of the s diagonal entries of the dispersion matrix K'A K .

3. CDA- OPTIMUM DESIGN

To obtainparameter estimation, minimizing the average variance and model estimation of the area under the curve, a new
compound criteria called CDA is introduced.CDA is constructedby combing C, D and A-optimality. By maximizing a
weighted product of the efficiencies

@K {en® }k ) fes (A }(k*1)2

Then taking the logarithm we get

K Iog{Eff (C)}+ k(- k){Eff(D)}+ (k-1)* {Eff (A)}

16 WA (2

‘M n trm 2 (e)

o' mt (5; )c

' mt (§)c

——klog{cT M*(&)c }+k(1—k)logﬂ M (él}% +(k-1)%log tr M (&)}

~klog +k(1-k)log

The terms containing &¢ ,§D and §A are constants, a maximum is found over & . Hence, thecriterion that has to be

maximized is given by

cD(CDA) (§)=—k log {CT M —1‘(§)C}+k(l_p_k) Iog{ M _1(§j}+ (k —1)2 log {tr M _1(5)}

and the derivative function for CDA-optimality is

- 2
Jeo o) ST M e (=) T eom™ £ b= T oM 2 1(x)

¢'mt (¢)c p

A CDA-optimum design, &:ps, maximizes ®cp, (&) or equivalently log®.p,(€). The equivalence theorem can now be
stated as follows:

Theorem 1.
i A necessary and sufficient condition for a design féDAto be CDA-optimum is fulfillment of the inequality
CDA *
¢( )(x, §CDA)S1, Xey.

ii. The upper bound of ¢(CDA) (X, féDA) is achieved at the points of the optimum design.

iii. For any non-optimum designflthat is a design for which (D(CDA)(§)<CD(CDA)(§$DA) and
CDA *
supg ©O(x, 20, ) > 1.

Xey
A measure of efficiency of a design ¢ relative to a CDA-optimum design is given by

Pepa($)

Effera €)= 35S

The proof can be made directly, sinceCD(CDA) (5) 0 <k <1 is a convex combination of three optimum design criteria,
so the CDA-criterion is also convex and satisfying convexity conditions.
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Properties of CDA-Optimality

A good design should give a small variance matrix, therefore the function @ is related to the variance matrix, and should
have following properties:

i. Non-negativity:®.p, (M) = 0,

ii. Isotonicity: if (M* — M) is a positive semi-definite matrix, then ®[M*] = ®[M].
iii. Positive homogeneity: ®[kM] = k ®[M]; k > 0,
iv. Superadditivity: ®[M + M*] = ©[M] + O[M*].

The previous properties are important to define with a proper scaling the relative efficiency of an experiment (or a design
with the matrix M) with respect to another reference experiment withM*. Pazman [7]discussed some other optimality
properties for small samples.

4. THE GENERALIZED CDA-OPTIMALITY:

A generalized CDA-criterion will be introduced as:

(GCOn) (9&): _Z'l:aj log {A‘JI' M —1(5)(; A, }+ i%loQ {‘A.T M —1(§)Ai‘}

i=1

+Zk:c, logtr {A1T M (&)A }

1=1

where, a i'Si ,bI and C, are sets of non-negative coefficients reflecting the importance of the parts of the design criteria.
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