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ABSTRACT  

The aim of this paper is to introduce a new compound optimum design namedCDA, by combining the C-optimality, D-
optimality, and A-optimality together. The significance of the proposed compound gains from that it can be used for 
parameter estimation, minimizing the average variance and model estimation simultaneously. 
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1. INTRODUCTION 

Cook and Wong [2] considered a compound optimality criterion that is a convex combination of the two concave criteria 
and so we can find the optimal design directly as if this is a single objective optimal design problem. D-optimality focuses 

on the variances of the estimates of the coefficients in the model, which minimizing the determinant of   1
XX T

which is 

equivalent to maximizing thedeterminant of XX T
. An exact design is called D-optimal, if it minimizes the determinant D 

of the covariance matrix. C-optimality interest is in estimating the linear combination of the parameters 𝑐𝑇𝛽 with minimum 

variance, where c is a known vector of constants. In A-optimality  1Mtr , the total variance of the parameter 

estimates, is minimized, equivalent to minimizing the average variance. This paper is organized as follows; the C -, D -, A 
– Optimum Designs were introduced in Section 2. The CDA-optimality was derived in section 3 and some of its properties 
were discussed. The generalized CDA- Optimum Design was introducedin Section 4. 

2.  C -, D -, A – OPTIMUM DESIGNS 

C-optimality introduced by Elfving [2] which provided a geometrical interpretation for finding c-optimal designs and 
developed by Silvey and Titterington [10] and Titterington[11]. Fellman [4]justified that at most m linearly independent 
support points are needed for a c-optimal design. Pukelsheim and Torsney [9]introduced a method for computing c-optimal 
weights given the support points. C–optimality minimize the variance of the best linear unbiased estimate for a given linear 

combination of the model parameters Tc  , where c is 𝑝 × 1, a vector of a known constants. The c-optimaity criterion to 

be minimized is thus  

cMcc TT )(ˆvar 1    

The aim of c-optimality is to obtain the best design for estimating the linear combination of the parameters  

 T

pp ccc 11  

The efficiency of any design   relative to C-optimum design is defined as: 
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C–optimality is defined as min  TCvar , which is proportional to  CMCT 1
. A disadvantage of c-optimum 

designs is that they are often singular.  

D- Optimum Design 

D-optimum design is one of the most commonly used design criteria for linear regression model that is also known as the 
Determinant criterion. This criterion introduced by Wald [12], and later was called D-optimality by Kiefer and Wolfowitz [5].  

The D-Optimality is the most common criterion due to numerous applications found in the literature; see for example, Latif  
and Zafar Yab [6]and Poursina and Talebi [8]. D-optimality criterion is just to maximize the determinant of the Fisher 

information matrix,  𝑋𝑇𝑋 , this means that the optimal design matrix𝑋∗ contains the n experiments which maximizes the 

determinant of 𝑋𝑇𝑋 . 

 Mathematically,                             XXXX TT
max

 

Maximizing the determinant of the information matrix 𝑋𝑇𝑋 is equivalent to minimizing the determinant of the dispersion 

matrix   1
XX T

. Using such an idea, the D-efficiency of an arbitrary design, X, is naturally defined as  
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A-Optimum Design 

A-optimality criterion introduced by Chernoff [1]; who showed that the employed criterion of optimality is the one that 
involves the use of Fisher's information matrix. Invariance under re-parameterization loses its appeal if the parameters of 
interest have a definite physical meaning. Then the average-variance criterion provides a reasonable alternative. If the 

coefficient matrix is partitioned into its columns,  sccK ,...,1 , then the inverse 11   can be represented as 
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This is the average of the standardized variances of the optimal estimatorsfor the scalar parameter systems  ''

1 ,..., scc  

formed from the columns of K. From the point of view of computational complexity, the criterion 1  is particularly simple 

to evaluate since it only requires the computation of the s diagonal entries of the dispersion matrix KAK ' .  

3. CDA- OPTIMUM DESIGN 

To obtainparameter estimation, minimizing the average variance and model estimation of the area under the curve, a new 
compound criteria called CDA is introduced.CDA is constructedby combing C, D and A-optimality. By maximizing a 
weighted product of the efficiencies 
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The terms containing

Dc  , and 


A are constants, a maximum is found over  . Hence, thecriterion that has to be 

maximized is given by  
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and the derivative function for CDA-optimality is 
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A CDA-optimum design, 𝜉𝐶𝐷𝐴
∗ , maximizes Φ𝐶𝐷𝐴 𝜉  or equivalently log Φ𝐶𝐷𝐴 𝜉 . The equivalence theorem can now be 

stated as follows: 

Theorem 1. 

i. A necessary and sufficient condition for a design 


CDA to be CDA-optimum is fulfillment of the inequality 

      xx CDA

CDA ,1, . 

ii. The upper bound of ),()( 

CDA

CDA x   is achieved at the points of the optimum design. 

iii. For any non-optimum design 1 that is a design for which 
      CDA

CDACDA   and 

   1,sup 


CDA

CDA

x

x 


. 

A measure of efficiency of a design 𝜉 relative to a CDA-optimum design is given by 

𝐸𝑓𝑓𝐶𝐷𝐾𝐿  𝜉 =
𝛷𝐶𝐷𝐴(𝜉)

𝛷𝐶𝐷𝐴(𝜉𝐶𝐷𝐴
∗ )

 

The proof can be made directly, since
  CDA

 , 10  k  is a convex combination of three optimum design criteria, 

so the CDA-criterion is also convex and satisfying convexity conditions. 
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Properties of CDA-Optimality  

A good design should give a small variance matrix, therefore the function   is related to the variance matrix, and should 
have following properties: 

i. Non-negativity:Φ𝐶𝐷𝐴 𝑀 ≥ 0, 

ii. Isotonicity: if  𝑀∗ − 𝑀  is a positive semi-definite matrix, then Φ 𝑀∗ ≥ Φ 𝑀 . 

iii. Positive homogeneity: Φ 𝑘𝑀 = k Φ 𝑀 ; 𝑘 > 0, 

iv. Superadditivity: Φ 𝑀 + 𝑀∗ ≥ Φ 𝑀 + Φ 𝑀∗ . 

The previous properties are important to define with a proper scaling the relative efficiency of an experiment (or a design 
with the matrix M) with respect to another reference experiment with𝑀∗. Pazman [7]discussed some other optimality 

properties for small samples. 

4. THE GENERALIZED CDA-OPTIMALITY: 

A generalized CDA-criterion will be introduced as: 
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where, liij candbsa ,,  are sets of non-negative coefficients reflecting the importance of the parts of the design criteria. 
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