
I S S N 2 3 4 7 - 1 9 2 1
V o l u m e 1 2 N u m b e r 3

 J o u r n a l o f A d v a n c e s i n M a t h e m a t i c s

5964 | P a g e c o u n c i l f o r I n n o v a t i v e R e s e a r c h

 A p r i l 2 0 1 6 w w w . c i r w o r l d . c o m

Branch and Bound Method to Solve Multi Objectives Function

Mohammed KadhimAl- Zuwaini1 , TahaniJabbarKahribt2
1
Department of Mathematics, College of Computerfor Science andMathematics

Thi-Qar University, Thi-Qar, Iraq

Mkzz50@ yahoo.com
2
Department of Mathematics,College of Education for Pure Science,

Thi-Qar University, Thi-Qar, Iraq

tahany@ yahoo.com

ABSTRACT

This paper presents a branch and bound algorithm for sequencing a set of n independent jobs on a single
machine to minimize sum of the discounted total weighted completion time and maximum lateness, this problems is NP-
hard. Two lower bounds were proposed and heuristic method to get an upper bound. Some special cases were proved
and some dominance rules were suggested and proved, the problem solved with up to 50 jobs.

Keywords

Single machine; Scheduling; Discounted total weighted completion time; Maximum lateness.

1.INTRODUCTION

We consider the scheduling n jobs on a single machine to minimize the bi-criteria problems. Our objective is to find a
schedule that minimize sum of discounted total weighted completion time and maximum lateness, with penalty of lateness
equal to one the extension of the problem when the penalty of lateness equal or more than one was consider also. The all
jobs are available at time zero. This problems is denoted by ∑ ()

 where and

∑ ()

 where (h represent the penalty of lateness).It is minimizing of total discounted weighted

completion time which it extends from the minimization of total weighted completion time, Rothkof (1966) [1]. Rothkopf and

Smith (1984) [2] considered the total discounted weighted completion time as 1//∑ ()
 . Their study was

more general cost function and discounted rate of r , of the problem can be solved as P-type optimally in
polynomial time by the Weighted Discounted Shorter Processing Time (WDSPT) rule. The rule that schedules the jobs in

non-decreasing order of ratio :

[3]. Wang et.al(2006) consider the problem ∑ ()
 is NP-hard [4].

Yunqiang Yin et al. (2012)[5] showed that the total weighted discounted completion time is polynomials solvable and
optimal by considering the effects of position-dependent learning and time-dependent deterioration simultaneously. The
problem total weighted discounted completion time studied by Lin Li et al. (2013) [6] showed the heuristics according to
the corresponding problems without learning effect. Guochen Sun andYuewu Li (2013) [7] showed the problem

 ⁄ ∑ ()
 ⁄ is past-sequence-dependent delivery time and deteriorating jobs. Hongjie Li et al.(2014) [8]

studies the problem
 ⁄

 ()
 .

/⁄
 considers a scheduling environment in which there are

two agents and a set of jobs, each of which belongs to one of the two agents and its actual processing time is defined as a
decreasing linear function of its starting time. Each of the two agents competes to process its respective jobs on a single
machine and has its own scheduling objective to optimize. The discounted cash flow (DCF) analysis is a method of
evaluating a project, company, or assessing using the concepts of the time value of money. All future cash flows are
estimated and discounted by using cost of capital to give their present values (PVs). The sum of all future cash flows both
incoming and outgoing, is the net present value (NPV) which is taken as the value or price of the cash flows. Discounted
cash flow calculations have been used in some form since money was first lent at interest in ancient times. Studies of
ancient Egyptian and Babylonian mathematics suggest that they used techniques similar to discounting of the future cash
flows. Following the stock market crash of 1929, discounted cash flow analysis gained popularity as an evaluation method
for stocks. Irving Fisher in his 1930 book The Theory of Interest and John Burr Williams's 1938 text The Theory of
Investment Value were the first who formally expressed the DCF method in modern economic terms. The DCF use has
increased substantially in institutional ,investment property and business valuation sectors. It is frequently required by
client, underwriters, financial advisers and administrators, and portfolio managers. It is used in investment finance, real
estate development, corporate financial management and patent valuation.

 The discounted cash flow formula is:

()

()

()

where CF: cash flow, r: discount rate, n: is the time in years before the future cash flow occurs.

 Discounted cash flow analysis is an extension of simple cash flow analysis that takes into account the time value of
money and the risks of investing in a project. DCF analysis can be divided into two main categories, the net present
value method (NPV) and the internal rate of return method (IRR). Today the DCF model is the most commonly used
tool among financial analysts when valuing a firm. It is documented that almost fifty percent of all financial analysts use a
DCF method when valuing potential objects to acquire (Hult, 1998). The problem is solved in O(n log n) time by

I S S N 2 3 4 7 - 1 9 2 1
V o l u m e 1 2 N u m b e r 3

 J o u r n a l o f A d v a n c e s i n M a t h e m a t i c s

5965 | P a g e c o u n c i l f o r I n n o v a t i v e R e s e a r c h

 A p r i l 2 0 1 6 w w w . c i r w o r l d . c o m

Jackson’s earliest due date (EDD) rule1 (i.e., by ordering the jobs according to non-decreasing due dates) Jackson
(1955) [9]. Lawler and Moore (1969) [10] showed that the optimal schedule for () in () time. Horn (1974)
[11] observed that (⁄) and (⁄) were solved by the extended Jackson’s rule. Lageweget

al. (1976) [12] showed that the problem ⁄ ⁄ and ⁄ can still be solved in

polynomial time. Simons (1978) [13] presented a more sophisticated approach to solve the problem (⁄).

Lenstra et al(1977) [14] showed the problem () which is strongly NP-hard. Various branch and bound methods

(BAB) exist for solving the problem (⁄), Baker and Su (1974) (1982) [15][16]. Sen and Gupta(1983) [17]

extended the method to the problem ∑

 is NP-hard. The problem ∑

 is NP-hard

and it's studied by Sen et al. (1988) [18] that developed a branch-and-bound algorithm and derived lower bounds by
means of the maximum potential improvement method. Hariri and Potts (1997) [19] proposed a branch and bound
(BAB) to solve the () problem.

 Some approaches used for the problem of ⁄ ⁄ considerations are given by (Potts and Kovalyov, 2000) [20] and

(Allahverdi et al., 2008) [21]. Christos and George (2010) [22] showed that the problem can be solved by

simple polynomial-time algorithms. Habibeh and Lai (2010) [23] used genetic algorithm for the problem .

RadostawRudek (2011) [24] proved that the problem maximum lateness is NP-hard even if job processing time are
described by linear function he proposed BAB algorithm and approximation to verify numerically their efficiency. Yunqiang
Yin et al. (2012) [5] showed that the maximum lateness is polynomial solvable and optimal by considering the effects of
position-dependent learning and time-dependent deterioration simultaneously. The problems maximum lateness studied
by Lin Li et al. (2013)[6] showed the heuristics according to the corresponding problems without learning effect. Suh-Jenq
Yang et al. (2013) [25] showed the problem of (⁄) is consider of past-sequence-dependent delivery times

and the effects of deterioration and learning. Morteza and Mehde (2015) [26] proposed a branch and bound (BAB) to
solve the problem ⁄ . Spyros T. and Alekos T. (1993) showed that can be found optimal schedule under the
condition of unit-length independent of no preemption jobs and identical or uniform machines with respect to the

criterion
 in () which is a significant extension of the well-known maximum lateness [27].

2.Problem formulation

We take into consideration the problem of scheduling n jobs on a single machine to minimize the total cost that can be
stated as follows: A set N={1,2,3,….,n} of n independent jobs has to be scheduled on a single machine in order to
minimize a given criterion. This study applies the one machine scheduling problem with multiple objective function: The

sum of discounted total weighted completion time and maximum lateness which is denoted by ∑ ()
 ⁄

 . Under the conditions: Preemption is not allowed, no precedence relation among jobs is assumed and only one job i

can be processed at a time. Given a schedule (1,……n), for each job j needs processing time and a positive weighted

 on the machine and ideally should be completed at its due date Discounted total weighted completion time

∑ ()
 and maximum lateness , can be respectively defined as: ∑ ()

 =∑ (

 ∑

) and { } { } j= 1,…….n.

Our scheduling problem can be stated mathematically more precisely as follows:

Given a schedule 𝛿 (1,2,3,….,n), then for each job 𝛿 can calculate the discounted total weighted completion time

∑ ()
 and maximum lateness . The objective is to find a schedule, 𝜎 (𝜎() 𝜎() 𝜎()) (belonging

to a neighborhood of𝛿(

That minimizes the total cost ∑ ()() ()

 .

Let S be a set of all schedules,| |= , then we can formulate our problem in mathematical form as:

 (𝜎) {∑ ()()

} ()

 () ()

 () () () }

 ()

}

 ()

Also the multiple criteria: sum of discounted total weighted completion time and penalty maximum lateness was

considered, which it signifies extension of the criteria ∑ ()() ()

 under the same condition (E),

furthermore is incurred as a penalty for late shipment. That’s the problem that the cost of completing job j at a time

 is denoted:

 (𝜎) {∑ ()()

 ()
 } ()

Where
 { } and 𝜎() denoted the position of job j in the ordering .

I S S N 2 3 4 7 - 1 9 2 1
V o l u m e 1 2 N u m b e r 3

 J o u r n a l o f A d v a n c e s i n M a t h e m a t i c s

5966 | P a g e c o u n c i l f o r I n n o v a t i v e R e s e a r c h

 A p r i l 2 0 1 6 w w w . c i r w o r l d . c o m

3. Decomposition of problem (A)

Because the complexity of problem (A) can be decomposed it into two subproblems which are a simple structure as the
follow.

i. ∑ ()
 the discounted total weighted completion time which is solved by WDSPT rule [3] and

the formulation mathematical form as:

 () {∑ ()(())

}

 () ()

 () () () }

 ()

ii. the maximum lateness which is solved by EDD rule [9] and the formulation mathematical form as:

 (){ ()}

 () ()

 () () }

 ()

Theorem (3.1)[28]:] + where and are the minimum objective function value of () () and

(A) respectively.

4. Special Cases

 A machine scheduling problem of type NP-hard is not easily solved and it is more difficult when the objective function
is multi objective. Using some Mathematical programming methods to find optimal solution for this kind of problem, such
as dynamic programming and branch and bound method. Sometimes special cases for this problem can be solved. A
special case for scheduling problem means finding an optimal schedule directly without using mathematical programming
techniques. A special case, if it exists, depends on satisfying some conditions in order to make the problem easily
solvable. These conditions depend on the objective function as well as the jobs [29]. In this section, some special cases
for problem (A) and (B) are given.

Case (1):

 If the jobs of a schedule ordered according to and satisfy (JIT) job , then gives optimal solution for the
problems (A) and (B).

Proof:Since then
 . But gives an optimal solution for ∑ (

).

So is optimal solution for the problem (A) and (B). ∎

Case (2):

The schedule gives an optimal solution for the problems (A) and (B) if and

(∑ (
)()) ∑ (

)()

Proof: Since rule is optimal solution for
 . But ∑ (

)()) ∑ (

)() (given). So gives an optimal to solution for problems (A) and (B). ∎

Case (3):

If Lawler algorithm () satisfy
 ()

 () then algorithm gives optimal value for the problem (B).

Proof: Since
 is minimized byLawler's algorithm but rule gives minimize to ∑ ()

 and

 ()

 () Hence algorithm gives an optimal solution for the problem (B). ∎

Case (4) :

If and Then is optimal for the problem (B).

Proof: Since and then any sequence gives so is optimal for the problem

 ⁄ ∑ ()

 . ∎

I S S N 2 3 4 7 - 1 9 2 1
V o l u m e 1 2 N u m b e r 3

 J o u r n a l o f A d v a n c e s i n M a t h e m a t i c s

5967 | P a g e c o u n c i l f o r I n n o v a t i v e R e s e a r c h

 A p r i l 2 0 1 6 w w w . c i r w o r l d . c o m

Case (5):

If rule satisfies then gives the optimal solution for the problem (A) and (B).

(is waited time for job j).

Proof:Since and Then (because) this means that for each job j, j is just

in time (JIT) that is
 . Then rule gives the optimal solution for the problem (A) and (B). ∎

Case (6):

If and then EDD rule gives an optimal solution for the problem (A) and (B).

Proof: Since and then any sequence gives optimal for ⁄ ∑ ()

problem. And EDD is optimal solution for ⁄ ∑ ()

 ⁄ because EDD is optimal for

 . ∎

Case (7):

If rule gives
 , then is optimal solution for the problem (B).

Proof:Since rule gives ∑ ()
 [3] and give

 (given). So WDSPT is optimal solution

for the problem (B). ∎

Case(8):

If () () then is optimal for the problem (A).

Proof:Since is minimized by rule and () (). Hence is optimal for the problem

(A). ∎

Case (9):

If and rule satisfies then rule is optimal for the problem (A) and (B).

Proof: Since ∑

 be the completion time of the job j and then that is

 . Hence is optimal for the problem (A) and (B). ∎

Case (10):

If schedule gives for each () then s optimal for the problem (A) and (B).

Proof: See proof case (9). ∎

Case (11):

If () then rule gives an optimal solution for the problem (A).

Proof: Since then any sequence gives So is optimal for the problem ∑ (

) .∎

5. Dominance Rule

Because of branching scheme, the size of the search tree is directly linked to the length of the current sequence (which
represents the number of nodes). Hence, a preprocessing step is performed in order to remove as many positions as
possible. Reducing the current sequence is done by using several dominance rules. Dominance rules usually specify
whether a node can be eliminated before its lower bound is calculated. Clearly, dominance rules are particularly useful
when a node can be eliminated which has a lower bound that is less than the optimum solution [29]. Some of dominance
rules are valid for minimization of the sum of discounted total weighted completion time and maximum lateness. As in the
preprocessing step, similar dominance rules are also used within the branch and bound procedure to cut nodes that is
dominated by others. These improvements lead to very large decrease in the number of nodes to obtain the optimal
solution.

Below are the three dominance rules that are stated in order to decrease the number of nodes in search tree as well as
decreasing the time.

Theorem (5.1):Let 𝛿 be a partial sequence which it’s jobs are schedule for ̅ and T be

completion time of the last job in k. If and . Then in optimal schedule for the problem

(B).

I S S N 2 3 4 7 - 1 9 2 1
V o l u m e 1 2 N u m b e r 3

 J o u r n a l o f A d v a n c e s i n M a t h e m a t i c s

5968 | P a g e c o u n c i l f o r I n n o v a t i v e R e s e a r c h

 A p r i l 2 0 1 6 w w w . c i r w o r l d . c o m

Proof:

Let =𝛿 be a sequence where i and j are two jobs with and Let T be completion time of

last job in 𝛿 .

Let ́ 𝛿 a new sequence obtained (by interchange job i and j in original sequence).

π

π

Fig. (1.1)The schedules π and π

For () = (())

 () = . ()/

 (()) . ()/ ……………(1)

For ́ () = . ()/

 () = . ()/

 . ()/ . ()/ ……………(2)

From (1) – (2) we get

 (()) . ()/ . ()/ . ()/

 ()

 ()
 ()

 ()

=
 ()

 ()
 ()

 ()

= (

 ()

 ()

= ,()
 ()

 -

= [

 (

 ()

]

=

 ()

=
 () (

)

 . /

 ………..(3)

And for :

 {

 }

Where
* +

 * ()+ * ()+

 { ()} { ()}

For schedule

 {

 }

 { (́)} { ()}

 { (́)} { ()}

Since ́ ́ , and

Then

 and

 𝛿

 𝛿

I S S N 2 3 4 7 - 1 9 2 1
V o l u m e 1 2 N u m b e r 3

 J o u r n a l o f A d v a n c e s i n M a t h e m a t i c s

5969 | P a g e c o u n c i l f o r I n n o v a t i v e R e s e a r c h

 A p r i l 2 0 1 6 w w w . c i r w o r l d . c o m

So

 ………………………(4)

From (3) and (4) we get

 in optimal solution for problem (B). ∎

Lemma (5.1):

 Let 𝛿 be a partial sequence which it’s jobs are schedule for ̅ and T be completion time of the last

job in k. If . Then in optimal schedule in the problem(A).

Proof:

 By theorem(2.5.1) and EDD rule in optimal for [9]. ∎

Lemma (5.2):

 Let 𝛿 be a partial sequence which it’s jobs are schedule for ̅ and T be completion time of the last

job in k. If

and . Then i j in optimal schedule in the problem (A).

Proof:

Since WDSPT in optimal for the discounted total weighted completion time [3] and EDD in optimal for [9]. ∎

6. Branch and Bound (BAB) Method [30]

 Our BAB method is based on forward sequencing branching rule for which nodes at level k of the search tree are
corresponding to initial partial sequence in case if jobs are sequenced in first k positions. The LB at any node is the cost
of scheduling jobs (this cost depends on the objective function) and the cost of un sequenced jobs (this cost depends on
derived lower bound (LB)). At any level of the BAB method, if a node has LB UB, then this node is dominated. If the
branching ends at a complete sequence of jobs then this sequence is evaluated, and if its value is less than the current
(UB), this (UB) is reset to take that value. The procedure is then repeated until all nodes have been considered by using
back tracking procedure. Backtracking procedure is the movement from the lowest level to the upper level in the BAB
method.

6.1Upper bound (UB) Procedure

 In this subsection, we propose a heuristic method which is applied once at the root node of search tree in (BAB) to find
an upper bound (UB) on the minimization value of problem (A) and (B).

Heuristic (UB)

The Simulated Annealing is suggested to obtain a sequences to be an upper bound (UB) for the problem (A) and (B).

Algorithm UB [31]:

Let 's term

 : Candidate schedule

 : Best schedule found so far

 : schedule constructed at K iteration (K= iteration counter)

 () : Value of best schedule

 () : Value of schedule constructed at K iteration

 () : Value of candidate schedule

 () (
 () ()

)

Where, x is a random variable having uniform distribution U[0; 1].

 is called cooling parameter in annealing terminology usually , where , -.

Step (1): Initialize

 Set K=1

 Let be a randomly create sequence

 Let

 Then () ()

I S S N 2 3 4 7 - 1 9 2 1
V o l u m e 1 2 N u m b e r 3

 J o u r n a l o f A d v a n c e s i n M a t h e m a t i c s

5970 | P a g e c o u n c i l f o r I n n o v a t i v e R e s e a r c h

 A p r i l 2 0 1 6 w w w . c i r w o r l d . c o m

Step (2): Generate a perturbed sequence with one of the neighborhoods operators and set .

Step (3): Evaluate the () values.

Step (4): If () (), then let , () (). Set and go to step 7.

Step (5): Generate a random number .

Step (6): If () (
 () ()

) , then let ,

Step (7): If , then go to step 2.

 Else

Let and .

Step (8): Stop best value of stored in best.

7. The Lower Bound (LB)

In this subsection, two lower bound and are derived for the problems (A) and (B) respectively.

7.1The Lower Bound For Problem (A)

The lower bound for the problem (A) is based on decomposing (A) of two sub problems () and () as was shown in
section (3). Then was calculated to be the lower bound for() by () rule (sequencing the jobs in non-
decreasing order of Weighted Discounted Shortest Processing Times) [3], and was calculated to be the lower bound
for() by () rule (sequencing the jobs in non-decreasing order of due date) [9] and then applying Theorem (3.1) to
get the first a lower bound for problem (A).

Algorithm

Step (1): Initialize order the un scheduling jobs by using WDSPT rule.

Step(2): Calculate the value of cost function where

 .∑ ()

Step (3): Re-order the jobs by using EDD rule.

Step(4): Calculate the value of cost function where

 .

 Calculate

Algorithm

Step (1) : Initialize order the un scheduling jobs by using WDSPT rule.

Step (2) : Calculate the value of cost function where

 ∑ ()
 .

Step (3) : Re-order jobs by using Lawler Algorithm ()[32].

Step (4) : Calculate the value of cost function where

Step (5) : .

Example (1): Data for the processing times, due dates, weighted times, denoted for lateness and discounted rate

0.1

Job 1 2 3 4 5

 2 4 9 9 1

 3 7 9 14 13

 5 7 7 3 5

 1 10 2 2 4

I S S N 2 3 4 7 - 1 9 2 1
V o l u m e 1 2 N u m b e r 3

 J o u r n a l o f A d v a n c e s i n M a t h e m a t i c s

5971 | P a g e c o u n c i l f o r I n n o v a t i v e R e s e a r c h

 A p r i l 2 0 1 6 w w w . c i r w o r l d . c o m

Solution:

 Sequences (5,1,2,3,4)

 UB= 35.6361

 13,6361 , 11

 24,6361.

 =13.6361 , =22

 35,6361

8. Computational Experience

 An intensive work of numerical experimentations has been performed. Subsection (8.1) shows how instances (test
problems) can be randomly generated.

8.1Test Problems

There exists in the literature a classical way to randomly generate test problems of scheduling problems[33].

 The processing time is uniformly distributed in the interval [1,10].

 The due date is uniformly distributed in the interval [P(1-TF-RDD/2),P(1-TF+RDD/2)]; where ∑

depending on the relative range of due date (RDD) and on the average tardiness factor (TF).

 The an integer weights were generated from uniform distribution [1,10].

 The an integer penalty were generated from uniform distribution [1,10].

For both parameters, the values 0.2, 0.4, 0.6, 0.8 and 1.0 are considered. For each selected value of n (where n is the
number of jobs), ten problems were generated.

8.2 Computational Experience with the Lower and Upper Bound of BAB Algorithm

The BAB algorithm was tested by coding it in MATLAB 7.10.0 (R2010a) and implemented on Intel (R) Core (TM) i7-
4500UCPU @ 1.80 GHz,2.40 Hz with RAM 8.00 GB(2.45GB usable) personal computer.

Tables (1.1) and (1.2) show the results for problems (A) and Table (1.3) shows the results for problems (B) obtained by
(BAB) algorithm. We list 10 problems for each value of n, where {5,10,15,20,25,30,35,40,45,50}, nϵ{5,10,11,12} and the
optimal value, upper bound (UB), initial lower bound (ILB), the number of generated nodes (Nodes), the computational
time in second (Time), and the number of unsolved problems (Status).The stopping condition for the BAB algorithm was
determined and we consider that the problem is unsolved (state is 1) that the BAB algorithm is stopped after a fixed period
of time that is here after 1800 seconds (i.e. after 30 minutes). We observed from tables (1.2) and (1.3), the heuristics of
upper bound is good algorithm. It gives the value for objective function equal to optimal or near optimal value for small
value of n.

Table (1.1): The performance of initial lower bound, upper bound, number of nodes with ten jobs for each n

n
Av. of opt.

UB LB

Av. of nodes Av. of time
no. of

 un sol. Av. of UB
no. of
opt.

Av. of LB
no. of
opt.

5 25.6578 25.6578 10 24.9073 3 10.9 0.00023 0

10 59.6866 60.0529 6 57.0832 0 192.5 0.01523 0

15 99.8799 101.052 7 97.4429 1 2941.4 0.354438 0

I S S N 2 3 4 7 - 1 9 2 1
V o l u m e 1 2 N u m b e r 3

 J o u r n a l o f A d v a n c e s i n M a t h e m a t i c s

5972 | P a g e c o u n c i l f o r I n n o v a t i v e R e s e a r c h

 A p r i l 2 0 1 6 w w w . c i r w o r l d . c o m

20 146.847 149.23 5 144.73 1 60826.2 3.26779 0

25 159.689 165.651 0 157.981 1 123916.5 7.57818 0

30 211.629 217.431 4 209.663 2 761409.8 53.5956 0

35 216.031 232.055 0 211.6 0 4139287.6 318.431 1

40 244.313 256.542 1 239.839 1 5253698.3 450.137 2

45 306.104 318.944 1 302.586 2 5423814.9 505.428 2

50 330.137 348.069 0 328.022 2 8449172 855.092 4

Table (1.2): The performance of initial lower bound, upper bound, number of nodes and computational time in second of

BAB algorithm for ∑ ()
 ⁄ problem n=50

n EX. Optimal UB LB Node Time Status

50

1 320.136 345.583 320.021 17719828 1800 1

2 298.433 324.387 298.377 1525686 153.765 0

3 285.128 321.918 278.514 17808736 1800.1 1

4 420.383 424.383 420.383** 196705 19.6478 0

5 332.393 357.206 322.388 4458796 470.553 0

6 407.199 411.19 407.19 4750232 491.484 0

7 359.522 367.898 357.898 18167237 1800 1

8 294.33 327.253 294.257 17702994 1800 1

9 222.313 231.336 209.657 993793 100.05 0

10 361.537 369.537 361.537** 1167713 115.404 0

Table (1.3): The performance of initial lower bound, upper bound, number of nodes and computational time in second of

BAB algorithm for ∑ ()
 ⁄

 problem n=12.

n EX. Optimal UB LB Node Time Status

12

1 185.808 191.109 182.653 20726565 1053.61 0

2 80.9048 80.9048* 80.6157 13763 0.67007 0

3 111.572 111.572* 108.088 2230161 109.249 0

4 47.1936 49.471 45.3982 368 0.01382 0

5 198.267 200.502 189.665 25751215 1265.49 0

6 128.352 128.698* 122.414 10951668 585.324 0

7 96.4971 96.4971* 93.8539 6136750 309.528 0

8 97.2861 99.0753 89.5095 3846561 187.801 0

9 101.935 102.901 94.2957 5466178 371.504 0

10 190.476 198.13 184.873 30070298 1491.93 0

Optimal = the optimal value obtained by BAB method.

UB = upper bound.

ILB = initial lower bound.

Nodes = the number of generated nodes.

Time = Computational time in seconds.

* = The upper bound gives the optimal value.

** = The initial lower bound gives the optimal value.

I S S N 2 3 4 7 - 1 9 2 1
V o l u m e 1 2 N u m b e r 3

 J o u r n a l o f A d v a n c e s i n M a t h e m a t i c s

5973 | P a g e c o u n c i l f o r I n n o v a t i v e R e s e a r c h

 A p r i l 2 0 1 6 w w w . c i r w o r l d . c o m

Status={

REFERENCES

 [1] Rothkopf, M.H, "Scheduling Independent Tasks on Parallel Processors", Management Science, Vol. 12, pp. 437–447,
(1966).

[2] Rothkopf, M.H and Smith S.A, "There are no Undiscovered Priority Index Sequencing Rules for Minimizing Total
Delay Costs", Operations Research, Vol. 32, pp. 451–456, (1984).

[3] Pinedo, M.L., "Scheduling theory, algorithms, and systems", Springer Science +Business Media, LLC., New York
(2012).

[4] Ji-Bo, W., Feng, S., Bo, J., and Li-Yan, W., "Permutation flow shop scheduling with dominant machines to minimize
discounted total weighted completion time", Applied Mathematics and Computation 182 947–954 (2006).

[5] Yunqiang, Y., Min, L., Jinghua, H., and Mengchu, Z., "Single-Machine Scheduling With Job-Position-Dependent
Learning and Time-Dependent Deterioration", Vol. 42, NO. 1, January (2012).

[6] Lin, L., Sheng-Wu Y,. Yu-Bin, W,. Yunzhang, H,. Ping, J., '' Single machine scheduling jobs with a truncated sum-of-
processing-times-based learning effect'', Int J AdvManufTechnol 67:261–267 (2013).

[7] Guochen, S., and Yuewu, L., '' Single-machine scheduling with past-sequence-dependent delivery times and
deteriorating jobs'' MathematicaAeterna, Vol. 3, No. 9, 799 – 806, (2013).

[8] Hongjie, L., Zeyuan, L., and Yunqiang, Y., "Some Single-Machine Scheduling Problems with Learning Effects and Two
Competing Agents", The Scientific World Journal Volume Article ID 471016 (2014).

[9] Jakson, J.R., "Scheduling a Production Line to Minimize Maximum Tardiness " , Res. Report 43 Management science
, Res. Project , University of California , Loss Angles, CA, (1955).

[10] Lawler, E.L., and Moore, J.M., ''A functional equation and its application to resource allocation and sequencing
problems", Management Sci. 1677-84 (1969).

[11] Horn, W. A., ''Some simple scheduling algorithms'', Naval Research Logistics Quarterly, 21(1):177-185 (1974).

[12] Lageweg, J.K., Lenstra and RinnooyKan, A.H.G., '' Minimizing maximum lateness on one machine : computational
experience and some applications'', StatisticaNeerlandica 30, 25-41 (1976).

[13] Simons, B., "A fast algorithm for single processor scheduling'', proc. 19th Ann. Symp. Foundations of computer
Science, pp. 246-252 (1978).

[14] Lenstra, J.K., RinnooyKan A.H.G., and Brucker, P., '' Complexity of machine scheduling problems'', Ann. Discrete
Math. 1, 343-362. (1977).

[15] Baker, R.K., and SU, Z., "Sequencing with due dates and early start time to minimize maximum tardiness",
Naval Res. Logist. Quart. 21171-176 (1974).

[16] Carlier, J., "The one-machine sequencing problem" , European J. oper. Res. I I 42-47 (1982).

[17] Sen, T., and Gupta, S.K., ''A branch-and-bound procedure to solve a bricriterion scheduling problem", llE
Trans. 15, 84-88 (1983).

[18] Sen, T., Raiszadeh ,F.M.E., and Dileepan, P., "A branch and-bound approach to the bicriterion scheduling
problem involving total flow time and range of lateness", Manage ment Sci. 34, 254-260 (1988).

[19] Hariri, A.M.A., and Potts, C.N., "Single machine scheduling with batch set-up times to minimize maximum
lateness", Annals of Ops. Res. O, 75-92 (1997).

[20] Potts, C. N., Kovalyov, M.Y., "Scheduling with batching: a review'' .European Journal of Operational Research 120,
228-249 (2000).

[21] Allahverdi, A., Ng, C. T., Cheng, T. C. E., and Kovalyov, M. Y., ''A survey of scheduling problems with setup times or
costs'', European Journal of Operational Research, 187, 985-1032(2008).

[22] Christos, K., and George J.K., ''Single-machine scheduling problems with past-sequence-dependent delivery times'',
Int. J. Production Economics 126. 264–266 (2010).

[23] Habibeh, N., and Lai, S.L., ''Solving Single Machine Scheduling Problem with Maximum Lateness Using a Genetic
Algorithm'', Journal of Mathematics Research Vol. 2, No. 3; August (2010).

I S S N 2 3 4 7 - 1 9 2 1
V o l u m e 1 2 N u m b e r 3

 J o u r n a l o f A d v a n c e s i n M a t h e m a t i c s

5974 | P a g e c o u n c i l f o r I n n o v a t i v e R e s e a r c h

 A p r i l 2 0 1 6 w w w . c i r w o r l d . c o m

[24] Radostaw, R., '' Minimizing maximum lateness in a single machine scheduling problem with processing time based
aging effects'', European J. Industrial Engineering Vol. x, No. x,xxxx Accepted 12 September (2011).

[25] Suh-Jenq, Y., Jia-Yuarn, G., Hsin-Tao, L., and Dar-Li, Y.,'' Single machine scheduling problem past sequence
dependent delivery times and deterioration and learning effects simultaneously'', ICIC International c ISSN 1349-4198
(2013).

[26] Morteza, S., and Mehde , S., '' Minimizing Maximum Lateness in a Single Machine Scheduling Problem with a
Fixed Availability Constraint'', Scientific Research Volume: 4, Issue: 1, Pages: 155-165 (January 2015).

[27] Spyros ,T., and Alekos, T., '' An optimal scheduling algorithmfor minimizing the maximum weightedlateness of
unit-length independent tasks'', Computers in Industry 22 283-289 (1993).

[28] Araibi, S.M., "Machine Scheduling Problem to Minimize Two and Three Objectives Function", M.Sc thesis, Dept. of
mathematics, college of Education for PurSciences,Thi-QarUniversity (2012).

[29] Husein, N.A.," Machine Scheduling Problem to Minimize Multiple Objective Function", M.Sc. thesis, Dept. of
mathematics, college of Education (Ibn AL-Haitham), Baghdad University (2012).

[30] Karrar, F., and Abdul-Razzaq, T.S., ''Solving Multi-criteria Scheduling Problems'', M.Sc. thesis University of Al-
mustansiriyah, College of science, Dep. Of Mathematics (2014).

[31] Sergio, F. Fulvio, C. Antonio, C. Alberto, F. "A Simulated Annealing Algorithm for Single Machine Scheduling
Problem with Release Dates, Learning and Deteriorating Effects", Proceedings of the World Congress on Engineering Vol
I, WCE 2013, July 3 - 5, London, U.K.

[32] Lawler, E.L., "Optimal sequencing of a single machine subject to precedence constraints", Management Science
19/5, 544-546 (1973).

[33] Abdul-Razaq, T.S., Potts, C.N. and Van Wassenhove., ''A survey of algorithms for the single machine total weighted
tardiness scheduling problem'', Discrete App. Math. 26(1990) 235-253.

