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ABSTRACT 

This  paper  presents  a  branch  and  bound  algorithm  for  sequencing  a  set  of  n independent  jobs  on  a  single  
machine  to  minimize sum of the discounted total weighted completion time and maximum lateness,  this problems is NP-
hard. Two lower bounds were proposed and heuristic  method to get an upper bound. Some special cases were  proved 
and some dominance rules were suggested and proved, the problem solved with up to 50 jobs. 
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1.INTRODUCTION 

We consider the scheduling n jobs on a single machine to minimize the bi-criteria problems. Our objective is to find a 
schedule that minimize sum of discounted total weighted completion time and maximum lateness, with penalty of lateness 
equal to one the extension of the problem when the penalty of lateness equal or more than one was consider also. The all 
jobs are available at time zero. This problems is denoted by    ∑   (       ) 

         where     and   

∑   (       )      
  

    where     (h represent the penalty of lateness).It is minimizing of total discounted weighted 

completion time which it extends from the minimization of total weighted completion time, Rothkof (1966) [1]. Rothkopf and 

Smith (1984) [2] considered the total discounted weighted completion time as   1//∑   (       ) 
   . Their study was 

more general cost function and discounted rate of r ,       of the problem can be solved as P-type optimally in 
polynomial time by the Weighted Discounted Shorter Processing Time (WDSPT) rule. The rule that schedules the jobs in   

non-decreasing order of ratio : 
    

    

   
    

[3]. Wang et.al( 2006) consider  the problem     ∑   (       ) 
    is NP-hard [4]. 

Yunqiang Yin et al. (2012)[5] showed that the total weighted discounted completion time is polynomials solvable and 
optimal by considering the effects of position-dependent learning and time-dependent deterioration simultaneously. The 
problem  total weighted discounted completion time  studied by Lin Li et al. (2013) [6] showed the heuristics according to 
the corresponding problems without learning effect. Guochen Sun andYuewu Li (2013) [7] showed  the problem 

   ⁄      ∑   (       ) 
   ⁄  is past-sequence-dependent delivery time and deteriorating jobs. Hongjie Li et al.(2014) [8] 

studies the problem    
 ⁄    

 (    )   
 .       

 

/⁄      
    considers a scheduling environment in which there are 

two agents and a set of jobs, each of which belongs to one of the two agents and its actual processing time is defined as a 
decreasing linear function of its starting time. Each of the two agents competes to process its respective jobs on a single 
machine and has its own scheduling objective to optimize. The discounted cash flow (DCF)  analysis is a method of 
evaluating a project, company, or assessing using the concepts of the time value of money. All future cash flows are 
estimated and discounted by using cost of capital to give their present values (PVs). The sum of all future cash flows both 
incoming and outgoing, is the net present value (NPV) which is taken as the value or price of the cash flows. Discounted 
cash flow calculations have been used in some form since money was first lent at interest in ancient times. Studies of 
ancient Egyptian and Babylonian mathematics suggest that they used techniques similar to discounting of the future cash 
flows. Following the stock market crash of 1929, discounted cash flow analysis gained popularity as an evaluation method 
for stocks. Irving Fisher in his 1930 book The Theory of Interest and John Burr Williams's 1938 text The Theory of 
Investment Value were the first who formally expressed the DCF method in modern economic terms. The DCF use has 
increased substantially in institutional ,investment property and business valuation sectors. It is frequently required by 
client, underwriters, financial advisers and administrators, and portfolio managers. It is used in investment finance, real 
estate development, corporate financial management and patent valuation. 

 The discounted cash flow formula is: 

    
   

(   ) 
 

   

(   ) 
    

   
(   ) 

 

where CF: cash flow, r: discount rate, n: is the time in years before the future cash flow occurs. 

 Discounted cash flow analysis is an extension of simple cash flow analysis that  takes into account the time value of 
money and the risks of investing in a project. DCF analysis can  be  divided into  two main categories,  the net  present 
value  method (NPV)  and  the internal  rate of return  method  (IRR). Today the DCF model is the most   commonly used 
tool among financial analysts when valuing a firm. It is documented that almost fifty percent of all financial analysts use a 
DCF method when valuing potential objects to acquire (Hult, 1998). The problem         is solved in O( n log n ) time by 
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Jackson’s  earliest due date (EDD) rule1 (i.e., by ordering the jobs according to non-decreasing due dates) Jackson 
(1955) [9]. Lawler and Moore (1969) [10] showed that the optimal schedule for (           ) in  (  ) time. Horn (1974) 
[11] observed that (   ⁄           ) and (      ⁄         ) were solved by the extended Jackson’s rule. Lageweget 

al. (1976) [12] showed that the problem      ⁄             ⁄  and      ⁄               can still be solved in 

polynomial time. Simons (1978) [13]  presented a more sophisticated approach to solve the problem (   ⁄           ). 

Lenstra et al(1977) [14] showed the problem (         ) which is strongly NP-hard. Various branch and bound methods 

(BAB) exist for solving the problem (     ⁄         ), Baker and Su (1974) (1982) [15][16]. Sen  and  Gupta(1983) [17] 

extended the  method to the problem    ∑   
    

      is NP-hard. The problem    ∑             
 
    is NP-hard 

and it's studied by Sen et al. (1988) [18] that developed  a  branch-and-bound  algorithm  and  derived  lower  bounds  by   
means  of the maximum  potential  improvement  method. Hariri and Potts (1997) [19]  proposed a branch and bound  
(BAB) to solve the (         ) problem. 

 Some approaches used for the problem of    ⁄     ⁄  considerations are given by (Potts and Kovalyov, 2000) [20] and 

(Allahverdi et al., 2008) [21]. Christos and George (2010) [22] showed that the problem            can be solved by 

simple polynomial-time algorithms. Habibeh and Lai (2010) [23] used genetic algorithm for the problem          . 

RadostawRudek (2011) [24] proved that the problem maximum lateness is NP-hard even if job processing time are 
described by linear function he proposed BAB algorithm and approximation to verify numerically their efficiency. Yunqiang 
Yin et al. (2012) [5] showed that the maximum lateness is polynomial solvable and optimal by considering the effects of 
position-dependent learning and time-dependent deterioration simultaneously. The problems maximum lateness studied 
by Lin Li et al. (2013)[6] showed the heuristics according to the corresponding problems without learning effect. Suh-Jenq 
Yang et al. (2013) [25] showed the problem of (         ⁄      ) is consider of past-sequence-dependent delivery times 

and the effects of deterioration and learning. Morteza and Mehde (2015) [26] proposed a branch and bound  (BAB) to 
solve the problem    ⁄        . Spyros T. and Alekos T. (1993) showed that can be found optimal schedule under the 
condition  of  unit-length independent of  no preemption  jobs  and  identical  or  uniform  machines with  respect to the 

criterion     
  in  (  ) which  is  a  significant  extension  of the  well-known maximum  lateness      [27]. 

2.Problem formulation 

We take into consideration the problem of scheduling n jobs on a single machine to minimize the total cost that can be 
stated as follows: A set N={1,2,3,….,n} of n independent jobs has to be scheduled on a single machine in order to 
minimize a given criterion. This study applies  the one machine scheduling problem with multiple objective function: The 

sum of discounted total weighted  completion time and maximum lateness which is denoted by   ∑   (       ) 
   ⁄  

    . Under the conditions: Preemption is not allowed, no precedence relation among jobs is assumed and only one job i 

can be processed at a time. Given a schedule (1,……n), for each job j needs processing time    and a positive  weighted 

   on the machine and ideally should be completed at its due date     Discounted total weighted completion time 

∑   (       ) 
    and maximum lateness     , can be respectively defined as:  ∑   (       ) 

    =∑   (   
   

   ∑   
 
   ) and        {  }     {     }  j= 1,…….n. 

Our scheduling problem can be stated mathematically more precisely as follows: 

Given a schedule 𝛿  (1,2,3,….,n), then for each job   𝛿 can calculate the discounted total weighted completion time 

∑   (       ) 
    and  maximum lateness     . The objective is to find a schedule, 𝜎  (𝜎( ) 𝜎( )    𝜎( )) (belonging 

to a neighborhood of𝛿(  

That minimizes the total cost  ∑   ( )(       )      ( )
 
   . 

Let S be a set of all schedules,| |=  , then we can formulate our problem in mathematical form as: 

  (𝜎)        {∑  ( )(       )

 

   

}       ( )

                                                                                                                       
  ( )    ( )                                          

                                                   
                                                   

  ( )       ( )      ( )                                                  }
 

 

  ( )

}
 
 
 
 

 
 
 
 

  ( ) 

Also the multiple criteria: sum of discounted total weighted completion time and penalty maximum lateness was 

considered,  which it signifies  extension of the criteria ∑   ( )(       )      ( )
 
     under the same condition (E), 

furthermore       is incurred as a penalty for late shipment. That’s the problem that the cost of completing job j at a time 

   is denoted: 

  (𝜎)        {∑  ( )(       )

 

   

     ( )
 } ( ) 

Where     
          {    } and 𝜎( ) denoted the position of job j in the ordering  . 
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3. Decomposition of problem (A)  

Because  the complexity of problem (A) can be decomposed it into two subproblems which are a simple structure as the  
follow. 

i.    ∑   (       ) 
    the discounted total weighted completion time which is solved by WDSPT rule [3] and 

the formulation mathematical  form as: 

       ( ) {∑  ( )(       ( ))

 

   

}

                                                                                         
  ( )    ( )                                                   

                                                            
  ( )       ( )      ( )                         }

 
 
 

 
 
 

 (   ) 

ii.         the maximum lateness which is solved by EDD rule [9] and the formulation mathematical  form as: 

       ( ){     ( )}

                                                                                    
  ( )    ( )                                                   

                                                          

  ( )      ( )                                      }
 
 

 
 

 (   ) 

Theorem (3.1)[28]:]    +       where       and    are the minimum objective function value of  (   ) (   ) and 

(A) respectively.  

4. Special Cases 

      A machine scheduling problem of type  NP-hard is not easily solved and it is more difficult when the objective function 
is multi objective. Using some Mathematical programming methods to find optimal solution for this kind of problem, such  
as dynamic programming and branch and bound method. Sometimes special cases for this problem can be solved. A 
special case for scheduling problem means finding an optimal schedule directly without using mathematical programming 
techniques. A special case, if it exists, depends on satisfying some conditions in order to make the problem easily 
solvable. These conditions depend on the objective function as well as the jobs [29]. In this section, some special cases 
for problem (A) and (B) are given. 

Case (1): 

 If the jobs of a schedule   ordered according to       and satisfy (JIT)   job    , then   gives optimal solution for the 
problems (A) and (B). 

Proof:Since              then              
   . But       gives an optimal solution for ∑   (        

   ). 

So   is optimal solution for the problem (A) and (B).                         ∎ 

Case (2):   

The     schedule gives an optimal solution for the problems (A) and (B) if            and 

(∑   (        
   )(   ))  ∑   (        

   )(     )  

Proof: Since     rule is optimal solution for             
 . But ∑   (        

   )(   ))  ∑   (   
   

     )(     ) (given). So     gives an optimal to solution for problems (A) and (B).       ∎ 

Case (3): 

If Lawler algorithm (  ) satisfy     
 (  )      

 (     ) then    algorithm gives optimal value for the problem (B). 

Proof: Since     
   is minimized byLawler's algorithm but       rule gives minimize to ∑   (       ) 

    and 

    
 (  )      

 (     )  Hence     algorithm gives an optimal solution for the problem (B). ∎ 

Case (4) : 

If      and            Then        is optimal for the problem (B).  

Proof: Since      and      then any sequence gives          so       is optimal for the problem 

   ⁄         ∑   (       )      
  

   .         ∎ 
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Case (5): 

If       rule satisfies                then       gives the optimal solution for the problem (A) and (B). 

(   is waited time for job j). 

Proof:Since              and            Then       (because       ) this means that for each job j, j is just 

in time (JIT) that is          
   . Then        rule gives the optimal solution for the problem  (A) and (B). ∎ 

Case (6): 

If      and              then EDD rule gives an optimal solution for the problem (A) and (B). 

Proof: Since       and         then any sequence gives optimal for    ⁄         ∑   (       ) 
    

problem. And EDD is optimal solution for   ⁄        ∑   (       )      
 
   ⁄  because EDD is optimal for    

    .                                   ∎ 

Case (7): 

If       rule gives        
 , then       is optimal solution for the problem (B). 

Proof:Since       rule gives ∑   (       ) 
    [3] and       give        

  (given). So WDSPT is optimal solution 

for the problem (B).                                                                                               ∎ 

Case(8): 

If     (     )      (   ) then       is optimal for the problem (A). 

Proof:Since      is minimized by     rule and     (     )      (   ). Hence       is optimal for the problem 

(A).   ∎ 

Case (9): 

If      and       rule satisfies                then       rule is optimal for the problem (A) and (B). 

Proof: Since    ∑   
 
    be the completion time of the job j and                       then      that is  

        . Hence       is optimal for the problem (A) and (B).          ∎ 

Case (10): 

If       schedule gives       for each   (      ) then       s optimal for the problem (A) and (B). 

Proof: See proof case (9).                                                         ∎ 

Case (11): 

If         (         )  then       rule gives an optimal solution for the problem (A).  

Proof: Since       then any sequence gives          So       is optimal for the problem        ∑   (   
   

     )      .∎ 

5. Dominance Rule 

Because of branching scheme, the size of the search tree is directly linked to the length of the current sequence (which 
represents the number of nodes). Hence, a preprocessing step is performed in order to remove as many positions as 
possible. Reducing the current sequence is done by using several dominance rules. Dominance rules usually specify 
whether a node can be eliminated before its lower bound is calculated. Clearly, dominance rules are particularly useful 
when a node can be eliminated which has a lower bound that is less than the optimum solution [29]. Some of dominance 
rules are valid for minimization of the sum of discounted total weighted completion time and maximum lateness. As in the 
preprocessing step, similar dominance rules are also used within the branch and bound procedure to cut nodes that is 
dominated by others. These improvements lead to very large decrease in the number of nodes to obtain the optimal 
solution. 

Below are the three dominance rules that are stated in order to decrease the number of nodes in search tree as well as 
decreasing the time. 

Theorem (5.1):Let 𝛿  be a partial sequence which it’s jobs are schedule     for       ̅      and T be 

completion time of the last job in k. If                   and      . Then     in optimal schedule for the problem 

(B). 
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Proof: 

Let   =𝛿    be a sequence where i and j are two jobs with                  and       Let T be completion time of 

last job in 𝛿 . 

Let  ́  𝛿    a new sequence obtained (by interchange job i and j in original sequence).  

π 

π   

 

Fig. (1.1)The schedules π and π
 
 

For     (       ) =   (     (    )) 

  (       ) =   .     (       )/ 

  (     (    ))    .     (       )/ ……………(1)   

For   ́   (       ) =   .     (    )/ 

  (       ) =   .     (      )/ 

  .     (    )/    .     (       )/ ……………(2)                   

From (1) – (2) we get 

  (     (    ))    .     (       )/    .     (    )/    .     (       )/ 

       
  (    )        

  (       )        
  (    )        

  (       ) 

=     
  (    )     

  (       )     
  (    )     

  (       ) 

=    (    
        

  (     )     
        

  (     ) 

=    ,(     ) 
  (     )     

        
    - 

=    [
     

 
 (     

 
   

       
   

 
 (     )

] 

=             
       

   

 
 (     )

 

=
  (      )   (   

   )

 
 .       /

  ………..(3)  

And for    : 

    
     {     

    
 } 

Where            
*    + 

  
  *  (     )+  *  (       )+ 

  
  {  (     )}  {  (          )} 

For schedule     

  
   
     {      

 
    

 
 } 

  
 
 

 {  ( ́    )}  {  (       )} 

  
 
  {  ( ́    )}  {  (          )} 

Since  ́   ́       ,       and        

Then   
 
    

 
    

 
    

  and    
 
    

  

    𝛿  

    𝛿  
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So   
   
      

       ………………………(4) 

From (3) and (4) we get  

    in optimal solution for problem (B).                                ∎ 

Lemma (5.1): 

 Let 𝛿  be a partial sequence which it’s jobs are schedule     for       ̅      and T be completion time of the last 

job in k. If                        . Then     in optimal schedule in the problem(A).                                                                                                                            

Proof: 

 By theorem(2.5.1)  and EDD rule in optimal for      [9].  ∎ 

Lemma (5.2): 

 Let 𝛿  be a partial sequence which it’s jobs are schedule     for       ̅      and T be completion time of the last 

job in k. If 
   

    

        
 

   
    

   
    

and      . Then i j in optimal schedule in the problem (A).                                                                                           

Proof: 

Since WDSPT in optimal for the discounted total weighted completion time [3] and EDD in optimal for      [9].  ∎ 

6. Branch and Bound (BAB) Method [30] 

  Our BAB method is based on forward sequencing branching rule for which nodes at level k of the search tree are 
corresponding to initial partial sequence in case if  jobs are sequenced in first k positions. The LB at any node is the cost 
of scheduling jobs (this cost depends on the objective function) and the cost of un sequenced jobs (this cost depends on 
derived lower bound (LB)). At any level of the BAB method, if a node has LB   UB, then this node is dominated.  If the 
branching ends at a complete sequence of jobs then this sequence is evaluated, and if its value is less than the current 
(UB), this (UB) is reset to take that value. The procedure is then repeated until all nodes have been considered by using 
back tracking procedure. Backtracking procedure is the movement from the lowest level to the upper level in the BAB 
method.  

6.1Upper bound (UB) Procedure 

   In this subsection, we propose a heuristic method which is applied once at the root node of search tree in (BAB)  to find 
an upper bound (UB) on the minimization value of problem (A) and (B). 

Heuristic (UB) 

The Simulated Annealing is suggested to obtain a sequences to be an upper bound (UB) for the problem (A) and (B).  

Algorithm UB [31]: 

Let 's term  

   : Candidate schedule 

    : Best schedule found so far 

    : schedule constructed at K iteration (K= iteration counter) 

 (  ) : Value of best schedule  

 (  ) : Value of schedule constructed at K iteration  

 (  ) : Value of candidate schedule  

    ( )      (
 (  )   (  )

  
) 

Where, x is a random variable having uniform distribution  U[0; 1].    

     is called cooling parameter in annealing terminology usually       , where   ,   -. 

Step (1): Initialize 

               Set  K=1 

               Let    be a randomly create sequence  

    Let        

    Then   (  )   (  ) 



I S S N  2 3 4 7 - 1 9 2 1  
V o l u m e  1 2  N u m b e r  3  

 J o u r n a l o f  A d v a n c e s  i n  M a t h e m a t i c s  

 

5970 | P a g e                                   c o u n c i l  f o r  I n n o v a t i v e  R e s e a r c h  

  A p r i l  2 0 1 6                                               w w w . c i r w o r l d . c o m  

Step (2): Generate a perturbed sequence   with one of the neighborhoods operators and set       . 

Step (3): Evaluate the  (  ) values. 

Step (4):  If   (  )   (  ), then let      ,  (  )   (  ). Set       and go to step 7. 

Step (5): Generate a random number  . 

Step (6): If      ( )      (
 (  )  (  )

  
) , then let       ,      

Step (7): If    , then go to step 2.  

                Else  

Let          and    . 

Step (8): Stop best value of    stored in best. 

7. The Lower Bound (LB) 

In this  subsection, two lower bound     and     are derived for the problems (A) and (B) respectively.  

7.1The Lower Bound For Problem (A) 

The lower bound for the problem (A) is based on decomposing (A) of two sub problems (   ) and (   ) as was shown in 
section (3). Then    was calculated to be the lower bound for(   ) by (     ) rule (sequencing the jobs in non-
decreasing order of Weighted Discounted Shortest Processing Times) [3], and    was calculated to be the lower bound 
for(   ) by (   ) rule (sequencing the jobs in non-decreasing order of due date) [9]  and then applying Theorem (3.1) to 
get the first a lower bound      for problem (A).  

Algorithm     

Step (1):  Initialize order the  un scheduling jobs by using WDSPT rule. 

Step(2): Calculate the value of cost function   where 

   .∑   (       ) 
    

Step (3): Re-order the  jobs by using EDD rule. 

Step(4):  Calculate the value of cost function   where  

       . 

  Calculate           

Algorithm     

Step (1) : Initialize order the  un scheduling jobs by using WDSPT rule. 

Step (2) : Calculate the value of cost function   where  

   ∑   (       ) 
   . 

Step (3) : Re-order jobs by using  Lawler Algorithm (  )[32]. 

Step (4) : Calculate the value of cost function  where         
  

Step (5) :         . 

Example (1): Data for the processing times, due dates, weighted times, denoted  for lateness and  discounted rate 

0.1 

Job 1 2 3 4 5 

   2 4 9 9 1 

   3 7 9 14 13 

   5 7 7 3 5 

   1 10 2 2 4 
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Solution: 

       Sequences (5,1,2,3,4) 

       UB= 35.6361 

    13,6361 ,      11 

       24,6361. 

  =13.6361 ,   =22 

     35,6361     

8. Computational Experience 

   An intensive work of numerical experimentations has been performed. Subsection (8.1) shows how instances (test 
problems) can be randomly generated. 

8.1Test Problems 

There exists in the literature a classical way to randomly generate test problems of scheduling problems[33]. 

 The processing time    is uniformly distributed in the interval [1,10]. 

 The due date    is uniformly distributed in the interval [P(1-TF-RDD/2),P(1-TF+RDD/2)]; where   ∑   
 
    

depending on the relative range of due date (RDD) and on the average tardiness factor (TF). 

 The an integer weights    were generated from uniform distribution [1,10]. 

 The an integer penalty    were generated from uniform distribution [1,10]. 

For both parameters, the values 0.2, 0.4, 0.6, 0.8 and 1.0 are considered. For each selected value of n (where n is the 
number of jobs), ten problems were generated. 

8.2 Computational Experience with the Lower and Upper Bound of BAB Algorithm 

The BAB algorithm was tested by coding it in MATLAB 7.10.0 (R2010a) and implemented on Intel (R) Core (TM) i7-
4500UCPU @ 1.80 GHz,2.40 Hz with RAM 8.00 GB(2.45GB usable) personal computer. 

Tables (1.1) and  (1.2) show the results for problems (A) and Table (1.3) shows the results for problems (B)  obtained by 
(BAB) algorithm. We list 10 problems for each value of n, where  {5,10,15,20,25,30,35,40,45,50}, nϵ{5,10,11,12} and the 
optimal value, upper bound (UB), initial lower bound (ILB), the number of generated nodes (Nodes), the computational 
time in second (Time), and the number of unsolved problems (Status).The stopping condition for the BAB algorithm was 
determined and we consider that the problem is unsolved (state is 1) that the BAB algorithm is stopped after a fixed period 
of time that is  here after 1800 seconds (i.e. after 30 minutes). We observed from tables (1.2) and (1.3), the heuristics of 
upper bound is good algorithm. It gives the value for objective function equal to optimal or near optimal value for small 
value of n. 

 

 

 

 

 

 

 

 

 

Table (1.1): The performance of initial lower bound, upper bound,  number of nodes with ten jobs for each n 

n 
Av. of opt. 

 

UB LB 

Av. of nodes Av. of time 
no. of 

 un sol.  Av. of UB 
no. of 
opt. 

Av. of LB 
no. of 
opt. 

5 25.6578 25.6578 10 24.9073 3 10.9 0.00023 0 

10 59.6866 60.0529 6 57.0832 0 192.5 0.01523 0 

15 99.8799 101.052 7 97.4429 1 2941.4 0.354438 0 
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20 146.847 149.23 5 144.73 1 60826.2 3.26779 0 

25 159.689 165.651 0 157.981 1 123916.5 7.57818 0 

30 211.629 217.431 4 209.663 2 761409.8 53.5956 0 

35 216.031 232.055 0 211.6 0 4139287.6 318.431 1 

40 244.313 256.542 1 239.839 1 5253698.3 450.137 2 

45 306.104 318.944 1 302.586 2 5423814.9 505.428 2 

50 330.137 348.069 0 328.022 2 8449172 855.092 4 

 

Table (1.2): The performance of initial lower bound, upper bound, number of nodes and computational time in second of 

BAB algorithm  for   ∑   (       ) 
   ⁄       problem n=50 

n EX. Optimal UB LB Node Time Status 

50 

1 320.136 345.583 320.021 17719828 1800 1 

2 298.433 324.387 298.377 1525686 153.765 0 

3 285.128 321.918 278.514 17808736 1800.1 1 

4 420.383 424.383 420.383** 196705 19.6478 0 

5 332.393 357.206 322.388 4458796 470.553 0 

6 407.199 411.19 407.19 4750232 491.484 0 

7 359.522 367.898 357.898 18167237 1800 1 

8 294.33 327.253 294.257 17702994 1800 1 

9 222.313 231.336 209.657 993793 100.05 0 

10 361.537 369.537 361.537** 1167713 115.404 0 

 

Table (1.3): The performance of initial lower bound, upper bound, number of nodes and computational time in second of 

BAB algorithm  for   ∑   (       ) 
   ⁄      

  problem n=12. 

n EX. Optimal UB LB Node Time Status 

12 

1 185.808 191.109 182.653 20726565 1053.61 0 

2 80.9048 80.9048* 80.6157 13763 0.67007 0 

3 111.572 111.572* 108.088 2230161 109.249 0 

4 47.1936 49.471 45.3982 368 0.01382 0 

5 198.267 200.502 189.665 25751215 1265.49 0 

6 128.352 128.698* 122.414 10951668 585.324 0 

7 96.4971 96.4971* 93.8539 6136750 309.528 0 

8 97.2861 99.0753 89.5095 3846561 187.801 0 

9 101.935 102.901 94.2957 5466178 371.504 0 

10 190.476 198.13 184.873 30070298 1491.93 0 

 

Optimal = the optimal value obtained by BAB method. 

UB = upper bound. 

ILB = initial lower bound. 

Nodes = the number of generated nodes. 

Time = Computational time in seconds. 

* = The upper bound gives the optimal value. 

** = The initial lower bound gives the optimal value. 
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