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Abstruct 

We have showed the results obtained in [1] are incorrect and the fractional complex transform is invalid to the fractional 

differential equation which contain modified Riemann-Liouville fractional derivative. 
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1. INTRUDUCTION  

Fractional differential equations are generalizations of classical differential equation. During the past decades, fractional 

differential equations appeared more and more frequently in various research areas of science and engineering [1]. 

Therefore, many authors want to find the exact analytical solutions or approximate analytical solutions of some fractional 

differential equations using different ways [2]. 

In [1], by using fractional complex transform, Zhang et al. studied the following frctional differential equation: 

                            ( , ) ( , ), ,t xu x t k u x t t R x R               (1) 

Subject to the initial condition  

                             ( ,0) 2 ,u x x                    (2) 

where k  is a positive coefficient, 0 1, 0 1,      ( , )u x t is the real-valued variable function, t

  and x

  

are modified Riemann-Liouville fractional derivatives.  

They obtained the following exact solution to the initial problems (1) and (2): 
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where p  and q  are free parameters satisfying 0.kp q   

In this note, we will showed that above solution (3) is not solution of  the problem (1)-(2) by counterexample, and 

therefore we can assert the fractional complem transform is false to the initial problem. 

2. Main result 

We first recall the dedinition of modified Riemann-Liouville fractional derivatives. 

Dedinition: Let ( )f x  is a continuous but not necessarily differentiable function, then its fractional derivative of 

order (0 1)    is defined by the following expression [2]: 
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From the above Definition, we can check the results obtaind in [1]. 

For simplicity, we take 
1 1

, , 1,
3 2

k    and 1.p q   

Thus the initial problem (1)-(2) becomes  
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                        （5） 

and the solution (3) becomes 

                   

2
1 21

3 32

2

3 3
4 ( ) 2 ( )

2 2( , ) 2 .
4 4

( ) ( )
3 3

u x t x x t t

 

  

 

                （6） 

But, by the formula (4), we have 
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From the above two expressions, we obtain : 

1 1

3 2( , ) ( , ).t xu x t u x t    

This shows that the function (6) does not the solution of the problem (5). Moreover, we see that the function (3) does not 

the solution of the problem (1)-(2), so that the fractional complex transform is invalid to the fractional differential equation 

which contain modified Riemann-Liouville fractional derivative. 

3. Conclusion 

We have showed the results obtained in [1] are incorrect and the fractional complex transform Is invalid to the problem 

(1)-(2). 
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