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ABSTRACT 

In this paper, the vibration of a micro-electromechanical resonator with positive position feedback controller is studied. The 
analytical results are obtained to the first order approximation by using the multiple scale perturbation technique. The 
stability of the steady-state solution is presented and studied applying frequency response equations near the 
simultaneous primary and internal resonance cases. The effects of the controller and some system parameters on the 
vibrating system are studied numerically. The main result of this paper indicates that it is possible to reduce the vibration 
for the resonator system. 
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INTRODUCTION  

In the area of mechanics and electronics, vibration controls of nonlinear parametrically excited system have been studied 

and illustrated in many researchers. Microelectromechanical (MEM) is one of the important topics in scientific researches 

of this problem. Siewe and Hegazy [1] studied the homoclinic bifurcation and the chaotic dynamics of a micromechanical 

resonator with electrostatic forces. They used different active vibration controllers to reduce the vibration of the 

micromechanical resonator system. Shaw et al. [2] investigated the dynamics of MEMS oscillators as frequency filters by 

using parametric resonance. El-Ganaini et al. [3] reported that the positive position feedback (PPF) controller is one of the 

most effective tools for the vibration control for nonlinear dynamical systems. Warminski et al. [4] presented active 

suppression of nonlinear composite beam vibrations by specific control algorithms. Hegazy [5] discussed the vibration 

control of an electromechanical seismograph system with time-varying stiffness by using cubic velocity feedback. 

Ahamed et al. [6] introduced dynamic compensation for control of a rotary wing unmanned aerial vehicle (UAV) applying 

positive position feedback controller. The Positive Position Feedback (PPF) controller applied for a flexible manipulator is 

presented by Shan et al. [7]. They presented several vibration modes in the control strategy taking into account a linear 

mathematical model of the plant. The (PPF) control has been compared with the algorithm of velocity feedback. An 

experimental study shows that only PPF algorithm is able to work properly while slewing process is realized. Amer and 

EL-Sayed, Eissa et. al., Kamel et. al. and EL-Sayed et. al. [8-13] studied the passive controller (absorber) under multi 

external and parametric excitations which used to reduce the vibration of the different non-linear dynamical system. EL-

Sayed and Bauomy [14] applied different type of controllers as passive and active control to reduce the torsional vibration 

of the nonlinear dynamical system using MSPT up to the second order approximation. This system is subjected to multi 

parametric excitation forces and modeled by the coupled nonlinear differential equations. 

The aim of this paper is to suppress the vibration in the micro-electromechanical resonator using the positive position 

feedback controller at simultaneous primary and internal resonance case.  

The present paper is prepared as follows. The equations of the problem which describes the vibration of MEMS resonator 
with PPF controller are shown in Section 2. In Sections 3 and 4, the mathematical treatments using multiple scales 
perturbation analysis and the stability of the equilibrium solutions are given to present the analytical solution of a second-
order nonlinear ordinary differential equations. The numerical simulations for the system without control and with the 
positive position feedback controller using time history and frequency-response functions are presented in Section 5. 
Comparison between analytical and numerical results is illustrated in Sections 6. Concluding remarks are presented in 
Section 7. 

2. Equations of the problem 

The nonlinear ordinary differential equation which defines the non-dimensional equation of motion for the MEMS resonator 

is derived in Ref. [1] as 
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      

 
        

   
  sin( ) ( )

( ) ( ) ( )
c
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x x x x x t F t

x x x
                           (1) 

Taking into account that  
2 21 1 2 3


   x x x  and  
2 21 1 2 3


   x x x  

We present a second order nonlinear controller (PPF), which designed to control the vibration of the main system (MEMS 

resonator). Then, the equation commanding the dynamics of the controller (PPF) is indicated as 

2

1 2 2 2
2      ( )

f
u u u F t                                                                                                                                      (2) 

We determine the control signal 
c
F u  and the feedback signal 

f
F x  so the closed loop system equations are 
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
      

 
        

   
  sin( )

( ) ( ) ( )

F
x x x x x t u
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                              (3) 

2

1 2 2 2
2     u u u x                                                                                                                                 (4) 

Where   and 1 are damping coefficient of the MEMS resonator and the PPF controller, F  and   are the forcing 

amplitude and the frequency of the system, 1  and 2  are natural frequencies of the main system and PPF controller, 

3 5,   and  are non-linear parameters, 1  and 2  are gains  and   is a small perturbation parameter. 

Fig. 1 show that the block diagram which describing equations (3) and (4) 
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Fig. 1 Bock diagram of the closed loop system. 

 

 

 

 

 

 

 

3. Mathematical Treatments (MSPT) 

The multiple scales method is used to obtain the asymptotic first-order approximate solutions for (3) and (4) which 

assumed in the forms: 

0 1 0 0 1 1 0 1
  ( , , ) ( , ) ( , )x T T x T T x T T                                                                                                                (5) 
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0 1 0 0 1 1 0 1
  ( , , ) ( , ) ( , )u T T u T T u T T                                                                                                                            (6) 

Where  ε  is a small perturbation parameter ( 0 1  ), 
0 1

 T t and T t are the fast and slow time scales, 

respectively. The time derivatives became 

0 1
  

d
D D

dt
                                                                                                                                           (7) 

2

2

0 0 12
2   ...

d
D D D

dt
                                                                                                                                   (8)  

Where 0 1


 


, ,
j

j

D j
T

                                                                                                   

Substituting (5) to (8) into (3) and (4), and equating the coefficients of equal power of   lead to: 

 0O : 

 2 2

0 1 0
0 D x                                                                                                                                                  (9)          

 2 2

0 2 0
0 D u

                                                                                                                                                           (10) 

 O : 

 2 2 3 5 2

0 1 1 0 1 0 0 0 3 0 5 0 0 0 0
2 2 1 2 3 4              ( ) ( )sin( )D x D Dx D x x x F x x t x  

                        
1 0
 u                                                                                                                                            (11) 

2 2

0 2 1 0 1 0 1 2 0 0 2 0
2 2      ( )D u D Du D u x                                                                                              (12) 

The general solution of equations (9) and (10) can be written in the following forms: 

0 0 1 1 1 1 0
 ( , ) ( )exp( ) .x T T A T i T cc                                                                                                               (13) 

0 0 1 2 1 2 0
 ( , ) ( )exp( ) .u T T A T i T cc                                                                                                              (14) 

Where 
1

1 2( ) ( , )
m
A T m  are unknown complex function in 

1
T  and cc  denotes the complex conjugate of the 

previous terms. 

Substituting equations (13) and (14) into equations (11) and (12), we get the following:  

 2 2 2 3 2

0 1 1 1 1 1 1 1 3 1 1 5 1 1 1 1 0
2 2 3 10 4               exp( )D x i D A i A A A A A A i T  

                             3 4 5

3 1 5 1 1 1 0 5 1 1 0 1 2 2 0
5 3 5               exp( ) exp( ) exp( )A A A i T A i T A i T  

                        
1 1 0 1 1 0 1 1 0

1 6
2

    
 

      
 

( ) exp( ) exp( ( ) ) exp( ( ) )
iF

A A i T iFA i T iFA i T  

                      
2 2

1 1

1 0 1 0

3 3
2 2

2 2
       exp( ( ) ) exp( ( ) ) .

iFA iFA
i T i T cc                                              (15) 

2 2 2

0 2 1 2 1 2 1 2 2 2 0 2 1 1 0
2 2           ( ) [ ]exp( ) exp( ) .D u i D A i A i T A i T cc                                           (16) 

For bounded solutions of equations (15) and (16), the secular terms, should be eliminated then the particular solutions of 

these equations are obtained as follows: 
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1 1 1 0 2 1 0 3 2 0 4 0 5 1 0
3 5          exp( ) exp( ) exp( ) exp( ) exp( ( ) )x E i T E i T E i T E i T E i T  

     
6 1 0 7 1 0 8 1 0

2 2           exp( ( ) ) exp( ( ) ) exp( ( ) ) .E i T E i T E i T cc                                    (17) 

1 9 1 0
 exp( ) .u E i T cc                                                                                                                                  (18) 

Where 1 2 9( , ,..., )
n
E n  are unknown complex function in 

1
T . (See Appendix) 

4 Stability Analysis 

In this paper, the case of the simultaneous primary and internal resonance case  1 1 2
    , , which is the worst 

resonance case, is considered to study the stability of the system of equations (3) and (4). Introducing the detuning 

parameters
1

  and 
2

  according to: 

1 1 2 1 2
        and                                                                                                                 (19) 

Substituting equation (19) into equations (15) and (16) and eliminating the secular terms, leads to the solvability conditions 

for the first order approximation, hence the following differential equations are obtained: 

 2 3 2

1 1 1 1 1 3 1 1 5 1 1 1 1 2 2 1
2 2 3 10 4               exp( )i D A i A A A A A A A i T      

                   
2

1

1 1 1 1 1 1

3
1 6

2 2
 

  
     
   

( ) exp( ) exp( )
iFAiF

A A i T i T                                                              (20) 

 2

2 1 2 1 2 2 2 1 2 1
2 2          exp( )i D A i A A i T                                                                                               (21) 

To analyze the solution of equations (20) and (21), it is convenient to express
1

( )
m
A T  in the polar form as:  

1

2
 exp( )

m m m
A a i                                                                                                                                                     (22) 

where 
m
a and 

m
are real and represent both the steady state amplitudes and phases of motions, respectively. Inserting 

equation (22) into equations (19) and (21) then equating the real and the imaginary parts, we get the following:  

21

1 1 2 2 1 1

1 1 1

3

2 2 8


  

  

 
      

 

 sin( ) cos( )
F F

a a a a                                                                               (23) 

3 5 21

1 1 3 1 5 1 1 2 2 1 1

1 1 1 1 1 1

3 10 2 9

8 32 2 2 8


     

     

 
       

 
 cos( ) sin( )

F F
a a a a a a                                  (24) 

2

2 1 2 2 1 2

2
2


 


   sin( )a a a                                                                                                                       (25) 

2

2 2 1 2

2
2


 


  cos( )a a                                                                                                                                  (26) 

where 
1 1 1 1 2 2 1 2 1
          ,T T                                                                                                        (27) 

By differentiating equation (27) with respect to t we can eliminate 
1

  and 
2

  from equations (24) and (26) as the 

following: 

   1 1 1 2 1 2 2 1
               ,                                                                                                         (28) 



I S S N  2 3 4 7 - 1 9 2 1  

V o l u m e  1 2  N u m b e r  1 1  

J o u r n a l  o f  A d v a n c e s  i n  M a t h e m a t i c s  

6825 | P a g e                                        

D e c e m b e r  2 0 1 6                                             w w w . c i r w o r l d . c o m  

From equations (23) to (26) and (28), the amplitude and phase modulating equations are 

21

1 1 2 2 1 1

1 1 1

3

2 2 8


  

  

 
      

 

 sin( ) cos( )
F F

a a a a                                                                               (29) 

2 4 1

1 1 3 1 5 1 2 2 1 1

1 1 1 1 1 1 1 1

3 10 2 9

8 32 2 2 8


      

     

 
        

 

 cos( ) sin( )
F F

a a a a
a a

                           (30) 

2

2 1 2 2 1 2

2
2


 


   sin( )a a a                                                                                                                        (31) 

2 4 2 1 1 2

2 2 3 1 5 1 2 2 1 1

1 1 1 2 2 1 1 1 1 1

3 10 2 9

8 32 2 2 2 8

 
       

      

   
            

   

 cos( ) cos( ) sin( )
a a F F

a a a
a a a

                         (32) 

The steady-state solution of our dynamical system corresponding to the fixed point of equations (29) to  (32) is obtained 

when  

0 0  ,
m m
a                                                                                                                                                  (33)  

Inserting equation (33) into equations (29) to (32) we obtain: 

21

1 2 2 1 1

1 1 1

3

2 2 8


  

  

 
    

 
sin( ) cos( )

F F
a a a                                                                                          (34) 

3 5 21

1 1 3 1 5 1 1 2 2 1 1

1 1 1 1 1 1

3 10 2 9

8 32 2 2 8


     

     

 
        

 
[ ] cos( ) sin( )

F F
a a a a a a                                    (35) 

2

1 2 2 1 2

2
2


 


  sin( )a a                                                                                                                               (36) 

2

1 2 2 1 2

2
2


  


  ( ) cos( )a a                                                                                                                       (37) 

Squaring and adding equations (36) and (37) we get the first frequency response equation: 

2

2 2 2 2 2 22

1 2 2 1 2 2 12

2
4


   


  ( )a a a                                                                                                         (38) 

From equations (36) and (37) we have: 

 

 

2

1 2 2

2

2 1

2





sin( )

a

a
                                                                                                                                       (39) 

1 2 2 2

2

2 1

2   




 


( )
cos( )

a

a
                                                                                                                           (40) 

Inserting equations (39) and (40) into equations (34) and (35) 

2 2

21 2 2 1

1 1 1

2 1 1 1 1

3

2 8

 
 

   

 
    

 
cos( )

a F F
a a

a
                                                                                                (41) 
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2

3 5 21 2 2 2 1

1 1 3 1 5 1 1 1 1

1 1 1 2 1 1 1 1

3 10 2 9

8 32 2 8

   
    

      

 
       

 

( )
[ ] sin( )

a F F
a a a a a

a
                                    (42) 

Squaring and adding equations (41) and (42) we get the second frequency response equation: 

2 2 2 2
2 2 2

2 3 5 21 2 2 1 1 2 2 2 1

1 1 1 1 3 1 5 1 1 1

2 1 1 1 1 1 1 1 2 1 1 1 1

9 3 10 2 3

2 8 8 32 2 8

     
    

          

       
                

       

( )
[ ]

a aF F F F
a a a a a a a

a a
2 2

2 2

1 1

1 1 1 1

9 3

2 8 2 8   

   
       
   

F F F F
a a                                                                                                          (43) 

To determine the stability of the nonlinear solution, one lets 

         
0 1 0 1

     ,   m m m m m ma a a                                                                             (44) 

where 
0 0
 and m ma  are the solutions of equations (29)-(32) and 

1 1
,m ma  are perturbations which are assumed to be 

small compared to 
0 0
 and m ma . Substituting equation (44) into equations (29)-(32) and keeping only the linear terms in 

1 1
 and m ma , we obtain that 

2 1 1

11 10 10 11 10 10 10 11 20 21 20 20 21

1 1 1 1 1

3 3

4 2 8 2 2

 
       

    

       
             
       

 cos sin sin sin cos
F F F

a a a a a a                             (45) 

31

11 3 10 5 10 10 11 10 10 10 11

10 1 1 1 10 1 10 1 1

9 50 2 9 9

8 32 4 2 8


       

     

   
         
   

 sin cos cos
F F F

a a a a
a a a

     

1 1

20 21 20 20 21

10 1 10 1
2 2

 
  

 

   
    
   

cos sina a
a a

                                                                                            (46) 

 2 2

21 20 11 1 2 21 10 20 21

2 2
2 2

 
   

 

   
        
   

 sin cosa a a a                                                                   (47) 

32 1

21 20 3 10 5 10 10 11 10 10 10 11

20 2 10 1 1 1 10 1 10 1 1

9 50 2 9 9

2 8 32 4 2 8

 
        

      

   
           
   

 cos sin cos cos
F F F

a a a a
a a a a

           

    2 1 1 2 1

20 21 10 20 20 20 21

20 10 1 20 2 10 1
2 2 2

    
   

  

   
      
   

cos sin sina a a
a a a a

 

Equations (45) to (48) can be represented in the following matrix form: 

 

  11 11 21 21 11 11 21 21
      
  

T T

a a J a a                                                                                                 (49) 

The eigenvalue equation of the Jacobian matrix  J  can be obtained as 

4 3 2

1 2 3 4 0R R R R                                                                                                                                      (50) 

where ( 1 2 4, ,...,R R R ) are functions of the parameters ( 1 2 1 2 1 2 1, , , , , , , ,a a         3 5 1 2 1 2, , , , , , ,F       ). If 

the real part of each eigenvalue of the Jacobian matrix  J  of the right-hand side of (45)–(48) is negative; otherwise, it is 
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unstable. According to the Routh-Hurwitz criterion, the necessary and sufficient conditions for all the roots of equation (50) 

to have negative real parts are  

  2

1 1 2 3 3 1 2 3 1 4 40, 0, 0, 0R R R R R R R R R R R                                                                                  (51) 

5 Numerical discussions 

In this section, the differential equations of the MEMS resonator without and with two PPF controller are solved 

numerically (applying Runge-Kutta 4th order method using MATLAB 7.0 software) at the simultaneous primary and 

internal resonance case. Fig. 2 and Fig. 3 show the results at the selected values 

(
1 2 1 1 1

1      , , , 0.00005,  1 3 1

9

5

53.675 10 1.3506 10.005, , , 0.044 00 , .8,         

2 0.8,  0.0087F  )           

Fig. 2 shows that the response for MEMS resonator without PPF controller where the steady state amplitude ( x ) is 

increased to about 1150 % of the excitation force amplitude (F ) with multi limit cycles. 

Fig. 3 illustrates the behavior of the MEMS resonator with PPF controller, where the steady state amplitude ( x ) is 

reduced to about 2.3 % of the excitation force amplitude (F ). The steady state amplitude of the PPF controller (u ) are 

about 115 % of the excitation force amplitude (F ). It is worth to notice that from the Figs. 2 and 3 that the steady-state 

amplitude of the MEMS resonator with PPF controller was reduced to about 99.8% from its value without PPF controller. 

This means that the effectiveness of the controller aE ( aE = steady state amplitude of the MEMS resonator without 

controller / steady state amplitude of the MEMS resonator with controller) is about 500 for the main system ( x ). 

 

     Fig. 2  Response of the MEMS resonator without controller at primary resonance case (
1 1

  ) 
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Fig. 3 Response of MEMS resonator with PPF controller at simultaneous primary an internal resonance case 

(
1 1

 
2 1

 , ) 

 

The effects of different parameters were investigated by solving the frequency response equations (38) and (43). The 

results are illustrated graphically in Figs. (4 to 14). From the obtained figures, the steady state amplitudes 1a and 2a  are 

presented against detuning parameters 
1

  and 
2

  for the selected practical case (
1 2

0 0 ,a a ). The solid lines 

stand for the stable solution as shown in the figures.  

Fig. 4 shows the frequency response curves of the main system with controller, where Fig. 4a shows the 

frequency response curve for the MEMS resonator (main system) and Fig. 4b shows the frequency-response curves for 

PPF controller. It is clear that the minimum steady-state amplitude of the main system 
1
a  occurs when 

1
0  . 

 

Fig. 4 Frequency-response curves of: (a) the main system (
1a ) and (b) the controller (

2a ) 

Fig. 5 shows that the steady state amplitudes for both the main system and the PPF controller are increased according to 

the increasing values of the excitation force amplitude F . 

 

 

a b
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Fig. 5 Effect of the excitation force F  on: (a) the main system (
1a ) and (b) the controller (

2a ) 

Fig. 6 shows that when the PPF controller’s damping coefficient 
1

  values increases, the peak amplitudes of the main 

system and the PPF controller are decrease. Also, at Fig.7 we find the same effect of the system damping coefficient  . 

 

 

Fig. 6 Effect of the damping coefficients 
1  on: (a) the main system (

1a ), and (b) the controller (
2a ) 

 

Fig. 7 Effect of the damping coefficients   on: (a) the main system (
1a ), and (b) the controller (

2a ) 

Fig. 8 appears that for increasing values of the linear natural frequency of the main system
1

 , the peak amplitudes of the 

main system and the PPF controller are decrease and the vibration reduction frequency bandwidth of the control for the 

amplitudes of the main system and the PPF controller are narrower.  

0.0087F 

0.05F 

0.087F 

0.0087F 

0.05F 

0.087F 
a b

1 0.1 

1 0.05 

1 0.005 

1 0.1 

1 0.05 

1 0.005 
a b

0.05 

0.025 

40.5 10  

0.05 

0.025 

40.5 10  a b
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Fig. 8 Effect of the natural frequency 
1  on: (a) the main system (

1a ), and (b) the controller (
2a ) 

Fig. 9 illustrates that for decreasing and negative value of the nonlinear parameter  , the curves are shifted to right and 

when it was positive with increasing value, the curves are shifted to left. 

 

Fig. 9 Effect of the nonlinear parameter   on: (a) the main system (
1a ), and (b) the controller (

2a ) 

Figs. 10, 11 present the same effect of the feedback signal gain
1 2
 , . As shown in Fig. 10 and Fig. 11 for increasing 

values of 
1 2
 , , the vibration reduction frequency bandwidth of the control for the amplitudes of the main system and the 

PPF controller are wider.  

 

Fig. 10 Effect of the control signal gain 
1  on: (a) the main system (

1a ), and (b) the controller (
2a ) 

Furthermore for increasing the value of nonlinear parameter 3 , the amplitudes of the main system and PPF control are 

decreases with small shift to left as shown in Fig. 12.  

1 3 

1 2 

1 1 

1 3 

1 2 

1 1 a b

0.2 
0.044 

0.2  

0.2 

0.044 
0.2  

a b

1 0.2 

1 0.8 1 1.8 

1 0.2 

1 0.8 
1 1.8  a b
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Fig. 12 Effect of the nonlinear parameter 
3  on: (a) the main system (

1a ), and (b) the controller (
2a ) 

From Fig. 13(a) and (b), we found that the frequency response curve is bent to the right when 5  > 
91.3506 10 , 

indicating a hardening-type spring nonlinearity and bent to the left when 5  < 
91.3506 10 , indicating a softening-type 

spring nonlinearity.  

 

Fig. 13 Effect of the nonlinear parameter 
5  on: (a) the main system (

1a ), and (b) the controller (
2a ) 

 

Fig. 14 shows the frequency response-curves of both the main system and the controller for three different values 

of the internal detuning parameter 2 . Here, Fig. 14 show that for 2 0.5   , the minimum main system steady-state 

amplitude and the controller occur when 1 0.5   , for 2 0   the minimum main system steady-state amplitude and 

the controller occur when 1 0   and for 2 0.5  , the minimum main system steady-state amplitude and the 

controller occur when 1 0.5  . Based on Fig. 11, the minimum main system steady-state amplitude and the controller 

occur when 1 2  . 

 

Fig. 14 Effect of the detuning parameter 
2  on: (a) the main system (

1a ), and (b) the controller (
2a ) 

 

5

3 3.675 10 

3 5 

3 20 

5

3 3.675 10 

3 5 

3 20 

a b

5 50  
9

5 1.3506 10 

5 50 

5 50  

9

5 1.3506 10 

5 50 
a b

2 0.5  

2 0 
2 0.5 

2 0.5  

2 0 2 0.5  a b
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6 Comparison between analytical and numerical solutions  

Fig. 15, represent the comparison with a good agreement between the numerical solution of equations (3-4) and analytical 

solution given by equations (29-32) for MEMS resonator with PPF controller for chosen values of the system parameters 

are presented graphically in Fig. 2. The dashed lines show the analytical solution and the continuous lines represent 

numerical solution. 

 

Fig. 15 Time response of: (a) MEMS resonator, and (b) PPF controller 

 

7 Conclusions 

     The vibration in MEMS resonator is controlled with PPF controller. The system is studied near the simultaneous 

primary and internal resonance case by the method of multiple scales. The stability of the system under the simultaneous 

resonances is studied applying the frequency response equation method. The effects of the different parameters of the 

system and the controllers are studied numerically.  

From the above study the results may be concluded:  

1. The worst resonance cases of the system is the simultaneous resonance case: 
1   and 

1 2   . 

2. The effectiveness of the controller aE  are about 500 for ( x ).  

3. The vibration reduction controller frequency bandwidth may be wider as 
1 2 1
  , ,  are increases.  

4. The steady state amplitudes of the main system ( x ) are monotonic increasing function to  F . 

5. The steady state amplitudes of the main system ( x ) are monotonic decreasing function to  
1

 , . 
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