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Abstract 

 In this paper, symbolic analytical expressions for the solution of hyperbolic form of  Kepler’s equation will be established 

.Mathematica  procedure for the expressions is also established to together with some of its output.   
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1- INTRODUCTION 

The hyperbolic form of Kepler's equation plays an important role in dynamical astronomy. Many instances of hyperbolic 
orbits occur in the solar system and recently, among the artificial satellites, lunar and solar probes. . 

The hyperbolic orbits not only exist naturally, but can also be used to solve some critical orbital situations [1]. 

Due to the importance of the hyperbolic form of Kepler's equation as mentioned briefly in the above, it now urgent needed 
to establish accurate expressions for its solution. Towards this goal the present paper is devoted. 

 To achieve this goal, we established  symbolic analytical expressions for the solutions, because, the analytical formulae   
are usually offering  much deeper insight into the nature of the problems to which they refer On the other hand, these  
expressions are obtained from utilizing  exact  theorems for their formulations. Mover, the symbolic analytical expressions 
could also be implemented for digital computations. Finally a Mathematica procedure for the expressions is also 
established together with some of its output.   

2-BASICFORMULATIONS 

2-1 Hyperbolic form of Kepler’s equation 

The position–time relation in hyperbolic orbits is known as Kepler’s equation for the hyperbolic case and is written as: 

                           HHesinh M  ,                                                              (1)                                                                               
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The quantity M, called  the mean  anomaly  H  the  hyperbolic eccentric  anomaly, e  the  eccentricity of the orbit )1e(  , 

μ  the gravitational parameter, n the mean motion a  the    semi-major axis of the orbit ( 0a  ), t  the time, and τ  is the 

time of passage  through pericenter. 

2-2 Lagrange Expansion Theorem 

 Consider the functional equation 

                     )φ(y αxy   ,                                                           (3) 

where α  is to be considered a small parameter – originally identified with a planetary eccentricity .Then y could be 

expanded in terms of x and α  as 
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Lagrange's series is, of course, the Taylor series representation of the root of the functional equation

0φ(x) αxy  Sufficient conditions for a unique root are obtained by a direct application of Rouche’s theorem for 

analytical function of a complex variable [2]. 

3- ANALYTICAL SOLUTION FOR HYPERBOLIC  FORM OF KEPLER'SEQUATION 

Write the hyperbolic form of Kepler's Equation (1) as: 

H
e

1

e

M
sinhH  ,                                          (5)                                                                   

with,  
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Lagrange’s expansion theorem of Equation (4) yields: 
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Up to the fourth order in )e / 1( , we can write the last equation as: 
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Now let us evaluate each term of the equation 
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Where the prime is the derivatives w. r. t. x. Then, 
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Since, 
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Using Equations (8) into Equation (7) we get: 
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By using Equation (5) for the left hand side of the above equation, we get the Analytical Solution for Hyperbolic form of 
Kepler’s Equation on the form  
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Where,  

e

BM
ln

e

M
sinhA 1 

 
                                                                           (10) 

And, 

22 eMB                                                     (11) 

4- MATHEMATICA PROCEDURE 

Equation (2) could be written as: 
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Where,  
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The following procedure computes the G's coefficients. 

4-1 Mathimatica procedure: KeplerHypSeries 

 Purpose 
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 To find analytical expression for the coefficient jG of 








e

M
sinh 1

 in the m terms series solution for Kepler’s hyperbolic 

orbits equation. 

 Input 

1- m (integer) the maximum number of terms for the series solution of Kepler’s  equation for hyperbolic  orbits   

       2- s (integer) m is number of the required term of the series. 

 Output 

          G's coefficients 

 Needed  procedures 

          None 

 List of the  procedure 

𝐾𝑒𝑝𝑙𝑒𝑟𝐻𝑦𝑝𝑆𝑒𝑟𝑖𝑒𝑠 𝑚_, 𝑠_ ≔ [  ,𝛷 = 𝐴𝑟𝑐𝑆𝑖𝑛ℎ 𝑥 ;𝑄 = 𝑇𝑎𝑏𝑙𝑒 𝐷 𝛷𝑛 ,  𝑥,𝑛 − 1  ,  𝑛, 1,𝑚  ;𝑦

=  
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∗
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𝑚
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,𝐴𝑟𝑐𝑆𝑖𝑛ℎ 𝑥 → 𝐴 
;

𝑚

𝑛=1

𝑃𝑖

≔ 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑦,𝐴𝑖 //𝐹𝑢𝑙𝑙𝑆𝑖𝑚𝑝𝑙𝑖𝑓𝑦;  𝐷𝑜[𝑃𝑟𝑖𝑛𝑡 𝐺𝑖 , " = ",𝑃𝑗  .  𝑗, 1, 𝑠 ] 

 

4-2 List of G's coefficients 
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𝐺4 =
1

24
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1

 𝑒2 + 𝑀2 9
 15𝑀2  −12376− 5005 𝑒2 + 𝑀2 − 1716 𝑒2 + 𝑀2 2 − 462 𝑒2 + 𝑀2 3

− 84 𝑒2 +𝑀2 4 − 7 𝑒2 + 𝑀2 5 − 8008𝑒 1 +
𝑀2

𝑒2 − 3003 𝑒2 + 𝑀2  1 +
𝑀2

𝑒2

− 924𝑒 𝑒2 + 𝑀2 2 1 +
𝑀2

𝑒2
− 210𝑒 𝑒2 + 𝑀2 3 1 +

𝑀2
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 𝑒2 + 𝑀2 8 (42315 + 19305 𝑒2 + 𝑀2 + 7590 𝑒2 + 𝑀2 2

+ 2349 𝑒2 +𝑀2 3 + 525 𝑒2 + 𝑀2 4 + 55 𝑒2 +𝑀2 5 + 29029𝑒 1 +
𝑀2

𝑒2

+ 12375𝑒 𝑒2 + 𝑀2  1 +
𝑀2

𝑒2 4410𝑒 𝑒2 + 𝑀2 2 1 +
𝑀2

𝑒2 + 1190𝑒 𝑒2 +𝑀2 3 1 +
𝑀2

𝑒2

+ 195𝑒 𝑒2 + 𝑀2 4 1 +
𝑀2

𝑒2 + 9𝑒 𝑒2 + 𝑀2 5 1 +
𝑀2

𝑒2
 ) 

In conclude the present paper, we stress that, symbolic analytical expressions for the solution of hyperbolic form of 
Kepler’s equation are established .Mathematica procedure for the expressions is also established to together with some of 
its output.   
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