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Abstract 

The aim of this paper is to present a reliable and efficient algorithm Elzaki projected differential transform method (EPDTM) 
to obtain the explicit solution of vibration equation for a very large membrane with given initial conditions. By using initial 
conditions, explicit series solutions for six different cases have been derived for the fast convergence of the solution. 
Numerical results show the reliability, efficiency and accuracy of Elzaki projected differential transform method (EPDTM). 
Numerical results for the six different cases are presented graphically. 
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1. Introduction 

In many problems arises in area of science and engineering for large membranes, vibration analysis plays an important 
role to determine the properties and behavior of vibrations. Vibration arises in music, acoustics membranes, microphones, 
speaker and numerous other devices. Human tissues and eardrum also shows vibrational characteristics and hearing aid 
devices are designed after understanding the vibrational behavior of membranes. Linear combination of the modes of 
structure can be used to explained vibrations. Alternatively propagation of wave travelling in a membrane structure, 
vibration can also cause the destruction of membrane structure in engineering, so characteristics of vibration of membrane 
and its dynamic response under the effect of external force become a great important scientific issue and number of 
researchers studied propagation, transmission and reflection of vibrations, like Tapaswini and Chakraverty studied non 
probabilistic solution of vibration equation using ADM [10], Yidrim studied the solution of vibration equation of a large 
membrane using HPM [7], Mohyud-din and Yildrim studied and analyzed the fractional vibrational equation for large 
membrane [9], further can studied in literature. In this paper we apply Elzaki projected differential transform method 
(EPDTM) [1, 2, 3] to solve the vibration equation and different cases has been discussed, numerical and graphical results 
are found with the help of Maple. In section 2, basic idea of Elzaki transform and projected differential transform method is 
explained. Solution of the problem can be studied in section 3 and some results and conclusion are discussed in section 4. 

Basic idea of the method 

1.1 Elzaki Transformation 

Elzaki transform was introduced by Tarig. M. Elzaki in [3]. From the classical Fourier integral, Like Sumudu transform, 
Laplace transform and Fourier transform, Elzaki transform is used to simplify the process of solving ordinary and partial 
differential equations in the time domain. Mathematical formulation of Elzaki transformation is as follows: 
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For a given function in set A, the constant M must be finite number k1, k2 maybe finite or infinite. Elzaki transform is 
denoted by E (.) and defined by the integral equation, 
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Where variable „v‟ is used in the transformation to the factor the variable„t‟ in the argument of the function. 

2.2 Projected Differential Transform Method 

The basic idea of Projected Differential Transform Method (PDTM) was given by Tarig. Elzaki in [1, 2], by letting f (u1, u2,..., 
un) is defined as 
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such that )u,...u,u(f n21 is the given function and )k,u,...u,u(f 1n21  is the projected transformed function, and the 

Inverse differential transform of )k,u,...u,u(f 1n21  is defined as 
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Some fundamental theorems [1] is given below 
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2. Solution of Vibration equation using EPDTM 

Consider an open disk of radius „x‟ centered at origin representing a shape of „still‟ drum head. Due to circular geometry 

of disk we use cylindrical co-ordinates so the mode of vibration of radially symmetric circular drum having radius „x‟, then 

the function ϕ does not depend on angular displacement  „‟θ‟‟ , so the vibration equation simplifies to the equation 
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Where ϕ(x, t) represents the displacement of finding a particle at the point „x‟ in the instant t, c is the wave velocity of free 

vibration. To solve Eq. (5) by Elzaki projected differential transform method, first we apply the Elzaki transform on both 
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by applying the inverse Elzaki transform 
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and so on. 

3.1 Particular cases 

Case I: 

when f(x) = x and g(x) = 1 

so by Eq. (9), 
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The above series will be convergent for 1x/t   i. e. for a small range of time and large membrane 

Case II: 

when f(x) = x
2 
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now A2=0 and B2=0 
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The above series will be convergent for 1x/t  . i. e. for a small range of time and large membrane 

Case IV: 

When f(x) = x
2
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As Case I and III the above series is also convergent for 1x/t  . 

Case V: 

When f(x) = x
2
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thus we have the solution of the form, 
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as of case I, III and IV the above series is also convergent for 1x/t  . 

For Cases I, III, IV and VI, convergence ratio of the series x/t is to be small. for Case I and VI, displacement is inversely 

proportional „x‟ and directly proportional to„t‟. But in Case IV displacement is directly proportional to both „x‟ and„t‟. In Case 

II and V, the series consist of finite number of terms, in these cases )t,x( does not depend on the ratio x/t . In both 

cases displacement increases with the increase in x and t for a fixed value of c = 2. FIGURE (4). (10) depicts that with the 
increase in t and c displacements increases for a fixed value of x = 25. Rate of increase of displacement is fast in Case V 
than in Case II. 

Conclusion 
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The Elzaki projected differential transform method (EPDTM) is very powerful tool in order to find the solution of various 
linear and nonlinear problems, showing its application for vibration of very large membrane. Elzaki Projected differential 
transform method can be used to solve the physical and engineering problem both analytically and numerically. EPDTM 
also gives rapidly converging solutions. Numerical results also show the higher degree of accuracy of method. 
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FIGURES 

FIGURE 1: Plot of ф (x, t) with respect to x and t at c = 8 for Case I 
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FIGURE 2: Plot of ф (x, t) vs. t for different values of c at x = 25 for Case I 
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FIGURE 3: Plot of ф (x, t) with respect to x and t at c = 8 for Case II 

 

 

FIGURE 4: Plot of ф (x, t) vs. t for different values of c at x = 25 for Case II 
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FIGURE 5:  Plot of ф (x, t) with respect to x and t at c = 4 for Case III 

 

 

FIGURE 6: Plot of ф (x, t) vs. t for different values of c (c = 2, 3, 4) at x = 25 for Case III 
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FIGURE 7: Plot of ф (x, t) with respect to x and t at c = 8 for Case IV 

 

 

FIGURE 8: Plot of ф (x, t) vs. t for different values of c at x = 10 for Case IV 
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FIGURE 1: Plot of ф (x, t) with respect to x and t at c = 4 for Case V 

  

 

 

 

 

FIGURE 10: Plot of ф (x, t) vs. t for different values of c (c = 2, 3, 4) at x = 25 for Case V 
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FIGURE 11:  Plot of ф (x, t) with respect to x and t at c = 8 for Case VI 

 

 

FIGURE 12:  Plot of ф (x, t) vs. t for different values of c at x = 10 for Case VI 

 


