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Abstract 

This article devoted to present results on convergence of  Fibonacci-Halpern scheme (shortly, FH) for monotone 

asymptotically n -nonexpansive  mapping (shortly, ma n -n mapping) in partial ordered Banach space (shortly, 

POB space). Which are auxiliary theorem for demi-close's proof of this type of mappings, weakly convergence 

of increasing FH-scheme to a fixed point with aid monotony of a norm and 
1

, min{ , (1 )}n n n n

n

h h 
+

=

= + = −  

where  (0,1)nh   is associated with FH-scheme for an integer 𝒏 > 𝟎 more than that, convergence amounts 

to be strong by using Kadec-Klee property and finally, prove that this scheme is weak- 
2w stable up on suitable 

status.  

Keywords: Banach space, fixed point, monotone mapping, α-nonexpansive mapping, iterative scheme. 

Introduction  

Let A be a normed space and :G D A D → , a mapping G is called nonexpansive if  

Gr Ge r e−  −  ,r e D   (1) 

Aoyama et al. [8] presented a class of  -hybrid mappings in a Hilbert space, meaning, a mapping G is called 

 -hybrid if  

2 2
2(1 ) ,Gr Ge r e r Gr e Ge−  − + − − −   (2) 

and showed a fixed point theorem. Obviously, a nonexpansive mapping is  -hybrid mapping (if 𝜆 = 1). 

Aoyama and Kohsaka[7] also presented the class of -nonexpansive mappings, meaning, a mapping G is   -

nonexpansive if for all , ( )r e D G  

2 2 2 2
(1 2 )n n n n

n n nG r G e G r e G e r r e  −  −  − + − −   (3) 

where 𝛼<1 and gave fixed point results. A nonexpansive mapping and is 𝛼-nonexpansive (𝛼 = 0) and a  -

hybrid mapping is 
1

2





−

−
-nonexpansine if <2 in Hilbert space. 

The concept of a monotone nonexpansive mapping is introduced by Bachar and Khamisi [10] in a POB space 

with the order “≾” and then common approximate fixed points are realized of monotone nonexpansive 

semigroups. Recalling, a mapping :G D A D → is said to be monotone nonexpansive if G is monotone 

(𝐺𝑟 ≾ 𝐺𝑒 if 𝑟 ≾ 𝑒) and  

Gr Ge r e−  − with  𝑟≾𝑒 (4) 

Note that, the continuity of monotone nonexpansive mapping may be not achieved, see [33] or [4].  At the 

beginning of studying the existence of fixed point for the nonexpansive mapping G, Mann formed the 

following iterative scheme which was later known by his name, Mann’ iteration:  
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for any  1 1, (1 )n n n n na D a a Ga + = + −
 

1n   (5) 

where (0,1)n  is a sequence with certain conditions. 

Later, many researchers introduced results on convergence of the Mann scheme and its modified versions for 

differe classes of mappings such as nonexpansine, pseudo-contractions, total asymptotically nonexpansive 

mappings ... etc. For example, see [1-3], [5-6],[12],[14],[18] and see [22-23],[24],[26], [31], [34], [35].  Recently, 

there are some convergence theorems of such a scheme in an POB (A,≾). Dehaish and Khamsi [13] obtained 

the weak convergence of the Mann scheme for a monotone nonexpansive mapping provided n

[ , ] (0,1)a b  , but their result do not entail  
1

1
n

n
 =

+
. Motivated by the above findings, Song et al. [28] 

considered the weak convergence of the Mann iteration scheme for a monotone nonexpansive mapping G, 

{ }nr  defined by  

for integer 1n  ,where { } (0,1)n                                 (6) 

with condition  
1

(1 )n n

n

 


=

− =  , which include 
1

1
n

n
 =

+
as a special case. Here, we present ma n -n 

mapping there is the existence theorem of fixed points for a ma n -n mapping G and showed the 

weak\strong convergence of the FH-scheme to a fixed point with 
1

, min{ , (1 )}n n n n

n

h h 
+

=

= + = − where 

  (0,1)nh    for 1n   . 

Theorem (1.1): Let D be a nonempty and closed convex subset of a uniformly convex Banach space and 

:G D D→ be a monotone nonexpansive mapping. Assume that A satisfies Opial condition and the sequence 

{ }nr is define by (6) with 𝑟1 ≾ 𝐺𝑟1 (or 𝐺𝑟1 ≾ 𝑟1). If ( )F G  and s ≾ 𝑟1 (or 𝑟1 ≾ s )for some ( )s F G . Then

{ }nr weakly converges to a fixed point r


of G. 

During 2010-2020,  Abed and Malih[19-21] established weak and strong convergence results of random 

Fibonacci-Mann and random Fibonacci-Ishikawa scheme to random fixed points of monotone random 

asymptotically nonexpansive mappings. 

In this paper, indicate to a Banach space by A with the norm . , its dual A
and the partial order “≾”. Let 

( ) { , }F G r A Gr r=  = is the set of all fixed point of mapping G. Let D be closed convex subset of A and 

[𝑟, 𝑒] = {𝑡 ∈ 𝐷: 𝑟 ≾ 𝑡 ≾ 𝑒}is an order interval for all ,r e D  which is closed and convex.  The convexity of 

[ , ]r e  implies that 𝑟 ≾ 𝑡𝑟 + (1 − 𝑡)𝑒 ≾ 𝑒 for all ,r e D with 𝑟 ≾ 𝑒. The fixed point set with depending on 

partial orders denoted by  

 ( ) ( ) :rF G s F G s r =   for some r D and  ( ) ( ) :rF G s F G s r =   , for some r D . 

Sometime, we assume a norm . is monotone which define by [27], i.e. r e  for all ,r e A and 0 r e   

In the following the definition of a monotone asymptotically n -nonexpansive mapping:  

Definition (1.2): Let :G A A→  be a mapping G is called ma n -n mapping if for ,r e A with 𝑟 ≾ 𝑒 ,

2 2 2 2
(1 2 )n n n n

n n nG r G e G r e G e r r e  −  −  − + − − .           
 

And then prove some convergence and stability results about FH-scheme
 

0r D and (0,1)nh  , 
( )

1 (1 ) f n

n n n n nr h r h G r+ = + −                                       (7) 

1 (1 )n n n n nr r Gr + = + −
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where { }if is sequence of Fibonacci numbers and ( ) ( 1) ( 2),f i f i f i i= − + −  1. 

Definition (1.3): [30] A Banach space ( , . )A is said to be uniformly convex (shortly, UCBS) if   >0, ∃δ>0 

and for r, e ∈ A if 1, 1r e   and r e −  then 2(1 )r e +  −   

Definition (1.4): [21] Let A be a Banach space. Then a function :[0,2] [0,1]A → is said to be the modulus of 

convexity of A if  

( ) inf 1 : 1, 1,
2

A

r e
r e r e  

 + 
= −   −  

 
.  

Definition (1.5): [17] Let A be a Banach space satisfying Kadec-Klee property if for every sequence  nr in A 

converging weakly to (r) together  with nr converging strongly to r imply that  nr  converges strongly to 

a point r  A . 

Any uniformly convex Banach space is reflexive and has the Kadec-Klee property [9]. 

Definition (1.6): [11] A mapping :G B A→  is said to be demi closed with respect to  s A  if for any 

sequence    ,n nr B r converges weakly to r  and ( )nG r converges strongly to s .Then r B and 

( )G r s= . 

Lemma (1.7): [30] Let A be a reflexive Banach space, ∅ ≠D⸦A and A be a closed , assume that 

: ( , )f D→ −  is coercive and proper convex lower semi-continuous function. Then there exists r D

such that ( ) inf ( )e Df r f e=
 

Proposition (1.8): [25] Let A be a uniformly convex Banach space with the modulus of convexity (.)A .Then 

∀ t > 0 and ,r e A with ,r t e t  , 

 (1 ) 1 2min ,1 ( )A

r e
r e t

t
    

 − 
+ −  − − 

 
, (0,1)   

If, 
1

2
 =

 

then 1
2

A

r er e
t

t


  − +
 −  

     

Proposition (1.9): [29] Let A be POB space and nr , ne  are two sequence in A such that 𝑟𝑛 ≾ 𝑒𝑛, for an 

integer 0n  . 

If  nr and ne weakly converges to r and e respectively, then 𝑟 ≾ 𝑒. 

 
Fixed point result 

Starting with following proposition  

Proposition (2.1): Let D be a nonempty closed convex subset of POB space (𝐴, ≾) and :G D D→  be ma n

-n mapping, then  

(1) 
n nG r G s r s−  −  ( )s F G  

(2) For every ,r e D with 𝑟 ≾ 𝑒 (or, 𝑒 ≾ 𝑟)   
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2 22 22
( )

1 1

nn n n n n nn

n n

G r G e r e G r r G r r r e G r G e


 
−  − + − + − − + −

− −
 

Proof (1): Let ( )s F G ,
 
by the definition of ma n -n mapping  

2 2 2 2
(1 2 )n n n n

n n nG r G s G r s G s r r e  −  − + − + − −  

2 2
(1 )n

n nG r s r e  − + − −   

2 2
(1 ) (1 )n

n nG r s r e − −  − −  

2 2n nG r G s r s−  − .Then 
n nG r G s r s−  −  

Proof (2):  If n  >0   

2 2 2 2
(1 2 )n n n n

n n nG r G e G r e G e r r e  −  − + − + − −  

2 2( ) ( )n n n n

n nG r r r e G e G r G r r  − + − + − + − +
2

(1 2 )n r e− −   

2 22
2n n n n

n n n nG r r G r r r e r e G e G r    − + − − + − + −  

2 2
2 (1 2 )n n n n

n n nG e G r G r r G r r r e  + − − + − + − −  

2 22 2 2
( )

1 1

n n n n n nn n

n n

G r G e r e G r r G r r r e G r G e
 

 
−  − + − + − − + −

− −
 

If n < 0  

2 22 2( ) ( ) (1 2 )n n n n n n

n n nG r G e G r r r e G e G r G r r r e  −  − − − + − − − + − −  

2 22
2n n n n

n n n nG r r G r r r e r e G e G r    − − − − + − + −  

2 2
2 (1 2 )n n n n

n n nG e G r G r r G r r r e  − − − + − + − −  

( )
2 22

(1 ) (1 ) 2 2n n n n n n

n n n nG r G e r e G r r G r r r e G r G e   − −  − − + − − − − + −  

2 22 2 2
( )

1 1

n n n n n nn n

n n

G r G e r e G r r G r r r e G r G e
 

 

−
−  − + − + − − + −

− −
. 

Then, for all ,r e D with 𝑟 ≾ 𝑒 

2 22 22
( )

1 1

nn n n n n nn

n n

G r G e r e G r r G r r r e G r G e


 
−  − + − + − − + −

− −
 

If 0n =   

2 2 2 2
(1 2 )n n n n

n n nG r G e G r e G e r r e  −  − + − + − −  



Journal of Advances in Mathematics Vol 20 (2021) ISSN: 2347-1921                 https://rajpub.com/index.php/jam 

360 

2 2n nG r G e r e−  − .Then 
n nG r G e r e−  −  

Theorem (2.2): Let A be UCBS and D A  , D is closed convex.  Let :G D D→ be a  ma 
n -n 

mapping, and the norm . is monotone, If nr in D is weakly converges to r with  𝑟𝑛 ≾ 𝐺𝑛𝑟𝑛 ≾ 𝑟  (or  𝑟 ≾

𝐺𝑛𝑟𝑛 ≾ 𝑟𝑛 ) and lim 0n

n n
n

r G r
→

− = , then Gr r= . 

Proof: Suppose that 𝑟𝑛 ≾ 𝐺𝑛𝑟𝑛 ≾ 𝑟 , for an integer n > 0. Let  ; nK e D r e=   .Then 
1 nn

K K


=
=I where 

 ;n nK e D r e=   since nr K , then nK is nonempty. Let 1 2, ne e K , that mean 1 2,n nr e r e  , 

and 1 2, (1 ) (1 )n nr e r e    −  − , by combining two inequalities, getting 1 2(1 )nr e e  + − ,then 

1 2(1 ) ne e K + −  ,so nK is convex . 

Now, let e be a limit point of 𝐾𝑛, then m n me K e e   → , since , n mm r e  and me is increasing 

sequence me e m  , then nr e , so ne K that implies nK is closed. Since  nr is weakly converges 

then  nr  is bounded. From lim 0n

n n
n

r G r
→

− =  the sequences{ }nr and  n

nG r are equivalent, then  n

nG r  

is bounded.  

   Now, put a function as follows ( ) limsup n
n

e r e e K
→

= −   . Clearly,   is proper, coercive, convex and 

continuous function.  By Lemma (3.1.1) z K  such that ( ) limsup inf ( )n e K
n

z r z e t 
→

= − = = . By 

definition of K and Proposition (3.1.3), we get 𝑟𝑛 ≾ 𝑧, 𝑟𝑛 ≾ 𝑟 ≾ 𝑧 , and hence 0 n nr r z r −  −  n , that 

mean n nr r z r−  − and so, ( ) ( )r z  . Then, ( ) ( ) lim inf .n
n e D

r z r r t 
→ 

= = − = =  

Since G is monotone and 𝑟𝑛 ≾ 𝐺𝑛𝑟𝑛 ≾ 𝐺𝑛𝑟 , hence 
nG r K . Convexity of K gives that 

2

nr G r+
 K , and 

( ) ( )
2

nr G
t r 

+
=  and ( ) ( )nt r G r =                                                    (7) 

By Proposition (3.1.5) getting  

2 22 22
( )

1 1

nn n n n n nn
n n n n n n n n

n n

G r G r r r G r r G r r r r G r G r


 
−  − + − + − − + −

− −


2 2(limsup ) (limsup )n n

n n
n n

G r G r r r
→ →

−  −            limsup limsup ( )n n

n n
n n

G r G r r r r
→ →

−  − = .

 

The inequality 
n n n n

n n n nr G r r G r G r G r−  − + − implies                

( ) limsupn n

n
n

G r r G r
→

= −  

limsup limsup ( )n n

n n
n n

G r G r r r r t
→ →

 −  − = =
                                              

(8)  
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So, the inequality
1 1

2 2 2

n
n

n n n

r G r
r r r r G r

+
−  − + − implies 

 

1
( ) limsup

2 2

n

n
n

r G r
r r

→

+
 − +  

1
limsup limsup ( )

2

n

n n
nn

r G r r r r t
→→

−  − = =                                              (9) 

Then by (7),(8) and (9),gives that ( ) ( ) ( ) 0
2

n
n r G r

r G r t  
+

= = =   

To prove 
nr G r= , assume that 0t = . Then lim lim 0n

n n
n n

r G r r r
→ →

− = − = , that mean 
nr G r= . 

If 0t = , then ∀∈>0,∃j>0  such that 
n

nr G r t −  + and  nr r t − +  n j   

Proposition (3.1.2) yields 

 (10) 

 

 

without loss of generality restrict t ∈ >1 without loss of generality. So (10) can be rewritten as follow 

( ) 1
2 1

nn

n A

r G rr G r
r t

t
 
  −+
  −  + −

  +
  

, 

subsequently, 

( ) limsup ( ) 1
2 2 1

nn n

n A
n

r G rr G r r G r
t r t

t
  

→

  −+ +
  = = −  + −

  +
  

 

( ) .
1 1

n n

A A

r G r r G r
t t t r

t t
    

   − −
     +  + − =
   + +
   

 

Since is arbitrary, 0
1

n

A

r G r

t


 −
  =
 +
 

, which imply 
nr G r= . Then ,Gr r n=   

If 𝑟 ≾ 𝐺𝑛𝑟𝑛 ≾ 𝑟𝑛 ∀n > 0, we need the set  ; nK e D r e=   .The rest of the proof is the same. 

Convergence results 

Theorem (3.1): Let A be UCBS. Let D A  , D is closed convex. Let :G D D→ be ma n -n mapping. 

Suppose that the norm . is monotone and the sequence { }nr  define by (7) with 𝑟1 ≾ 𝐺𝑟1  and ( )rF G  . 

1 1
( ) ( ) ( ) 1

2 2 2

nn
n

n n n A

r G rr G r
r r r r G r t

t
 



  −+
  − = − + −  + −

  +
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If the iteration condition { nh } (0,1) satisfy 
1

, min{ , (1 )}n n n n

n

h h 
+

=

= + = − for an integer n >0, then 

{ }nr weakly converges to a some fixed point  1 ( )rr F G and 𝑟𝑛 ≾ 𝑟 ∀𝑛. 

Proof : Firstly ,we prove that𝑟𝑛 ≾ 𝑟𝑛+1 ≾ 𝑠 ,where 1 ( )rs F G  

We used the mathematical induction in proved .Since 1 ( )rs F G that mean 𝑟1 ≾ 𝑠. Hence G is monotone 

then 𝑟𝑛 ≾ 𝐺𝑓(𝑛)𝑟1 ≾ 𝐺𝑓(𝑛)𝑠 ≾ 𝑠 ,and by definition (7) 

(1)

2 1 1 1 1(1 ) fr h r h G r= + − , 
(1)

1 1

fG r Gr=
 

𝑟1 ≾ 𝑟2 ≾ 𝐺𝑟1 ≾ 𝑠. Assume that 𝑟𝑛 ≾ 𝑠
 
then𝐺𝑓(𝑛)𝑟𝑛 ≾ 𝐺𝑓(𝑛)𝑠 = 𝑠,and from definition  (7) getting 

𝑟𝑛 ≾ 𝑟𝑛+1 ≾ 𝐺𝑓(𝑛)𝑟𝑛 ≾ 𝑠. 

Then the sequence { }nr is increasing and bounded, since s is upper bound. 

Secondly, to prove that lim n
n

r s
→

− exists, from Proposition (2.1),and by define of G, getting  

( )

1 ( ) (1 )( )f n

n n n n nr s h r s h G r s+ −  − + − −  

 
( )(1 ) f n

n n n nh r s h G r s − + − −  

 (1 )n n n nh r s h r s − + − −  

 nr s − . . . 1r s −  

So 1 ( )rs F G 
 
,
 
{ }nr s− is bounded and non-increasing, which mean lim n

n
r s

→
− exists by [27, Theorem 

2]. Hence, the sequences  nr and ( )f n

nG r  are bounded w.r.t norm, 

Since A is UCBS then it is reflexive, and  nr is bounded, so by [30,Theorem 9], then nr is weakly sequentially 

compact. Implying ∃   
ln nr r such that  

lnr is weakly converge to r. For any fixed n, there exists large 

enough ln  such that 𝑟𝑛 ≾ 𝑟𝑛𝑖
  By Proposition (1.9) 𝑟𝑛 ≾ 𝑟. 

To show that { }nr  converges to r weakly. If not,  then there is a subsequence { }
jnr of { }nr where{ }

jnr weakly 

converge to w, such that w r . For any fixed n, ∃ jn  such that 𝑟𝑛𝑖
≾ 𝑟𝑛𝑗

. And 𝑟𝑛𝑖
≾ 𝑤 (by Proposition (1.9)). 

Since { }
lnr weakly converges to r, thus 𝑟 ≾ 𝑤.Using the same method of proof to have 𝑤 ≾ 𝑟  .Then w r=  , 

which is a contradiction. Then 
w

nr r⎯⎯→ . 

 Thirdly, to prove ( )liminf 0f n

n n
n

r G r
→

− = , assume that lim n
n

r s c
→

− = ,if 0c = the conclusion is trivial. If c 

> 0, then there exists ,u v ,and some M >0 such that  

0 ,nu r s v n M −    . Otherwise, by Proposition (1.8), let nt r s= − and nh = , n M   

( )

1 ( ) (1 )( )f n

n n n n nr s h r s h G r s+ −  − + − −  
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( )

1 2min{ ,1 }

f n

n n

n n n A

n

r G r
r s h h

r s


  −
   − − −

  −
  

 

( )

1 2

f n

n n

n n A

r G r
r s

v
 

  −
   − −

  
  

, 

that mean  

( ) ( )

12

f n f n

n n n n

n A n n A n n

r G r r G r
u r s r s r s

v v
    +

   − −
    −  − − −
   
   

 

Then, getting  

( )

1 1

1 1

( )

f n
i i

n n

n A n n M i

n M n M

r G r
u r s r s r s r s

v
  + +

= + = +

 −
   − − − = − − −
 
 

  , 

and therefore 

( )

1

1

lim

f n

n n

n A M i
i

n M

r G r
u r s r s

v
 

+

+
→+

= +

 −
   − − −  +
 
 

 . 

Hence,  

( )

liminf 0

f n

n n

A
n

r G r

v


→

 −
  =
 
 

hold, if not then 

( )

liminf 0

f n

n n

A
n

r G r

v


→

 −
 
 







 

0q  and p>0, then 

( )

0

f n

n n

A

r G r
q n

v
p

 −
   
 


 

  

( )f n

n n

n A n

r G r
u uq

v
  

 −
  
 
 

.by condition 
1

n

n

u
+

=

= +  

( )

1

f n

n n

n A

n

r G r

v
 

+

=

 −
  = +
 
 

 , 

which contradiction. So, 

( )

liminf 0

f n

n n

A
n

r G r

v


→

 −
  =
 
 

 

The properties of modulus of convexity

 

implies 

( )liminf 0f n

n n
n

r G r
→

− =

  
 

It is easy to see { }nr is weakly converges, Since { } { }nj nr r  , where ( )lim 0f n

nj nj
n

r G r
→

− =
 
and { }njr weakly 

converges to r .so { }nr weakly converges to r. Then, by Theorem (2.2), Gr r= i.e., 1 ( )rr F G .

    A same proved method using in the following 

Theorem(3.2) : Let A be UCBS. Let D A  , D is closed convex and :G D D→ be ma n -n mapping. 

Suppose that the norm . is monotone and the sequence { }nr  define by (7) with 𝐺𝑟1 ≾ 𝑟1  and ( )rF G  . 
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If the iteration condition { nh } (0,1) satisfy 
1

, min{ , (1 )}n n n n

n

h h 
+

=

= + = − for every positive integer n, 

then { }nr weakly converges to a some fixed point 1 ( )rr F G  and 𝑟 ≾ 𝑟𝑛 . 

     Recall normal cone to state the next corollary, a cone P is called normal [27], if ∃K > 0, such that 

0 r e r K e     for all 
,r e A

 

Corollary (3.3): Let A be UCBS (𝐴, ≾) w.r.t. the normal cone P, and D be a nonempty closed convex subset of 

A. Let :G D D→ be a ma
n -n mapping. Suppose that the sequence { }nr  define by (4) with 𝐺𝑟1 ≾ 𝑟1  and 

( )rF G 
 
or 𝑟1 ≾ 𝐺𝑟1 

and ( )rF G  . If the iteration condition{ℎ𝑛} (0,1) satisfy 

1

, min{ , (1 )}n n n n

n

h h 
+

=

= + = − for an integer n>0, then { }nr weakly converges to a some fixed point 

( )r F G  . 

Theorem (3.4): Let A be UCBS, D A  , D is closed convex and :G D D→ be ma n -n mapping 

.Suppose that the norm . is monotone and the sequence { }nr  define by (7) with 0   𝐺𝑟1 ≾ 𝑟1  and 

( )rF G  . If the iteration condition { nh } (0,1) satisfy 
1

, min{ , (1 )}n n n n

n

h h 
+

=

= + = − for an integer 

n >0, then { }nr strongly converges to a some fixed point  1 ( )rr F G and 𝑟 ≾ 𝑟𝑛. 

Proof: Depending on the Theorem (3.1) that { }nr weakly converges to r , since 1 ( )rr F G
 

then 𝑟1 ≾ 𝑟 and 𝑟1 ≾  𝐺𝑓(𝑛)𝑟1 ≾ 𝐺𝑓(𝑛)𝑟 = 𝑟,from definition (4) 

( )

2 1 1 1 1 1(1 ) f nr h r h G r Gr= + − =  so 𝑟1 ≾ 𝑟2 ≾ 𝐺𝑟1.  

Let 𝑟𝑛 ≾ 𝑟 , then 𝐺𝑓(𝑛)𝑟1 ≾ 𝐺𝑓(𝑛)𝑟 = 𝑟  

and by definition (4) we have 𝑟𝑛 ≾  𝑟𝑛+1 ≾ 𝐺𝑓(𝑛)𝑟𝑛 ≾ 𝑟.Then  

 0 ≾ 𝑟1 ≾ 𝑟𝑛 ≾ 𝑟𝑛+1 ≾ 𝑟, for an integer n > 0.  

Since the . is monotone, then 1 10 ,n nr r r r n+      

Note that, the sequence { }nr of real number is bounded and monotone increasing. Then lim n
n

r
→

 exists and 

lim n
n

r r
→

  

Hence, liminf limn n
n n

r r r r
→ →

 =  , which imply lim n
n

r r
→

=  , by the weakness of lower semi-

continuity of the norm. Since A is UCBS, then it has Kadec-Klee property ,i.e., 

w

nr r⎯⎯→  and nr r→ implies lim n
n

r r
→

= . 
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Theorem (3.5): Let A be UCBS, D A  , D is closed convex and :G D D→ be 

 ma n -n mapping. Suppose that the norm . is monotone and the sequence { }nr  define by (7) with 𝐺𝑟1 ≾ 𝑟1 

and ( )rF G  . If the iteration condition { nh } (0,1) satisfy 
1

, min{ , (1 )}n n n n

n

h h 
+

=

= + = − for every 

positive integer n, then { }nr strongly converges to a some fixed point 1 ( )rr F G   and 𝑟 ≾ 𝑟𝑛∀𝑛. 

Proof: Depending on the Theorem( 3.1) that { }nr weakly converges to r ,since 1 ( )rr F G
 

then 𝑟 ≾ 𝑟1 and 𝑟 = 𝐺𝑓(𝑛)𝑟 ≾ 𝐺𝑓(𝑛)𝑟1 ≾ 𝑟1, from definition (4) 

( )

2 1 1 1 1 1(1 ) f nr h r h G r Gr= + − = . So, 𝑟 ≾ 𝐺𝑟1 ≾ 𝑟2 ≾ 𝑟1. Let, 𝑟 ≾ 𝑟𝑛   then 𝐺𝑓(𝑛)𝑟 = 𝑟 ≾ 𝐺𝑓(𝑛)𝑟𝑛 , and by definition 

(7) we have 𝑟 ≾ 𝐺𝑓(𝑛)𝑟𝑛 ≾ 𝑟𝑛+1 ≾ 𝑟𝑛. Then  

0≾ 𝑟 ≾ 𝑟𝑛+1 ≾ 𝑟𝑛 ≾ 𝑟1for an integer n > 0.  

Then, 0 ≾ −𝑟1 ≾ −𝑟𝑛 ≾ −𝑟𝑛+1 ≾ −𝑟, ∀𝑛.
 

Since the norm . is monotone, then 1 10 ,n nr r r r n+      

The rest of the proof is the same as Theorem (3.4). 

Corollary (3.6): Let A be UCBS w.r.t. the normal cone P and D A  , D is closed convex. Let :G P P→  

be a ma n -n mapping. Suppose that { }nr  as in  (7) with 1 0r =   and ( )F G  .  If the iteration condition {

nh } (0,1) satisfy 
1

, min{ , (1 )}n n n n

n

h h 
+

=

= + = − for every positive integer n, then { }nr strongly 

converges to ( )r F G . 

Proof: It’s clear that
0 1( ) ( ) ( )F G F G F G = = . Since 1 0r =  and ( )G P P , then𝑟1 = 0 ≾ 𝐺0 = 𝐺𝑟1. 

Consequently, the conclusion comes directly from Theorem (3.4). 

Stability of FH-iterative Scheme 

   Recall the following definitions:  

Definition (4.1): [25] A sequence  ne is an approximate of the sequence nr ⇔there exists a decreasing 

sequence of positive number  n converging to 0  such that ,n nr e n k−     for any k  

 Definition (4.2): [25] Let ( , )A be a normed space, :G A A→ be a mapping and  nr  defined by 0r A

and 1 ( , )n nr f G r+ = , 0n  . Suppose that  nr converges to fixed point s of G. If for any approximate 

sequence  ne A of  nr , 1lim ( , ) 0n n
n

e f G e+
→

− =  implies lim n
n

e s
→

= , then  nr is said to be weakly 

stable w.r.t.  G. 

Definition (4.3): [16] The sequences  nr  and  ne  are called equivalent if lim 0n n
n

r e
→

− =  

Definition (4.4): [32] Let nr  be iterative scheme converges strongly to ( )s F G . If for any equivalent 

sequence  ne A  of  nr  , 1lim ( , ) 0n n
n

e f G e+
→

− =  implies lim n
n

e s
→

= ,  then the iteration sequence nr   

is said to be weak-w2 stable w.r.t G. 
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Example (4.5):  Let :[0,1] [0,1]G → , define byGr ={
0, 𝑟 ∈ [0,

1

2
]  

1

2
   𝑟 ∈ (

1

2
, 1]

  

where [0,1] is endowed with the usual metric. G is continuous at every point of [0,1] except at 
1

2
and 0 is the 

only fixed point of G. We will show that the Mann iteration is weak –stable. Let 0r  [0,1]  and 

1 (1 )n n n n nr h Gr h r+ = + −  , (0,1)nh  ,with 
1

2
nh

n
=

+
0,1,2...n =  

0 00, 0r Gr= = ,
0

1

2
h = 1

1 1
(1 ) 0 0 0

2 2
r = −  +  =   

then 0nr = . 

Suppose that  ne approximate sequence of  nr .Then, there exists a decreasing sequence of nonnegative 

numbers  n converging to some 0  for n →  

such that n n nr e −  , n k .Then n n n nr e −  +  ,which mean n n n n nr e  − +  + +  

0 n n nr e  + + , 0 n n ne r n k  +   .Since 0nr = 10 max{2, }n ne n k k     = .Choose { }n such 

that 
1

1
,

2
n n k  

1
0

2
ne   .So 0nGe = . Then 1 ( , )n n ne f G e += −  

3
(1 )

2
n n n n

n
h e Ge h

n n

+
− − +

+
=

2

2 2

4 4

n

n n

−

+
and 

2

2 2
lim 0

4 4n

n

n n→

−
=

+
 

Now, lim 0n
n


→

=  which implies lim 0n
n

e
→

= , so the Mann iteration is weakly stable w.r.t G.  

Theorem (4.6): Let A be UCBS and D A  , D is closed convex and :G D D→ be ma 
n -n with 

fixed point s. Suppose that  nr define by (4) with 𝑟0 ≾ 𝐺𝑟0, ℎ𝑛 ∈ (0,1) and 𝑠 ≾ 𝑟0. If  ne be any equivalent 

sequence of  nr with 𝑟𝑛 ≾ 𝑒𝑛 (or 𝑒𝑛 ≾ 𝑟𝑛  ),then { }nr is weak- 
2w stable w.r.t G. 

Proof: Consider { }ne to be an equivalent sequence of { }nr . Let 𝑟𝑛 ≾ 𝑒𝑛  by monotonicity of G 𝐺𝑓(𝑛)𝑟𝑛 ≾

𝐺𝑓(𝑛)𝑒𝑛. 

Set 1 ( , )n n ne f G e += − . Let 0n → as n → .Then  

1 1 1 1( , ) ( , )n n n n n ne s e f G e f G e r r s+ + + +−  − + − + −  

( ) ( )

1( (1 ) ) ( (1 ) )f n f n

n n n n n n n n n nh e h G e h r h G r r s + + + − − + − + −  

( ) ( )

1

f n f n

n n n n n n nh e r G e G r r s + + − + − + −  

( ) ( ) ( ) ( )

1(1 ) f n f n f n f n

n n n n n n n nh e r h G e G s G s G r r s +
  + − + − − + − + −
 

 

( )

( ) ( ) ( )(1 ) (1 2 )f n

n n n n n f n n f n n f n nh e r h G e s e s e s     + − + − − + − + − −
 

 

+
( )

( ) ( ) ( ) 1(1 2 )f n

f n n f n n f n n nG r s r s r s r s   +
 − + − + − − + −
 

 

Let limn→on both side. Then 1lim 0n
n

e s+
→

− = . So  nr is weak -
2w stable w .r. t G. 
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In the following example, we present a compression between the behaviors of FH-scheme and two different 

iterative schemes. 

Example (2.10): Let G: R → R, G(s) =
𝑠+3

2
 

be a function with fixed point s=3.Consider the following three  

  x1 ∈ [0, ∞), xn+1 = hn xn + (1 − hn)G
f(n)

𝐺(𝑥𝑛) 

 y
1
 ∈ [0, ∞), 𝑦𝑛+1 = hn y

n
+ (1 − hn)G

n(𝑦𝑛)      (see, [22]) 

  𝑧 1 ∈ [0, ∞), z𝑛+1 = hn zn + (1 − hn)𝐺(𝑧𝑛)       (see, [22]) 

Fix   x1 =  y
1

=  𝑧1 = 20 and ℎ𝑛 =
1

√𝑛+1
 . By using Math lap, we show in tables (1-2) 

 and figures (1-2) that {x
n

} is faster than {𝑦𝑛} and {𝑧𝑛} where  

In case 1  𝑥1 = 𝑦1 = 𝑧1 = 0.1. 

case 2  𝑥1 = 𝑦1 = 𝑧1 = −1.5 . 

case 3  𝑥1 = 𝑦1 = 𝑧1 = 20. 
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