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1 Introduction

Almost contact metric subersions constitute a wide class of Riemannian submersions whose total space is an almost
contact metric manifold. This study has been initiated by D. Chinea [2, 3]. Independetly from Chinea, Watson [12],
also studied two types of such a class of submersions.

In the sense of Watson, submersions of type I are those whose base space is an almost contact metric manifold
while those of type II have almost Hermitian manifold as base space. Thus, the study of Watson intertwines almost
contact and almost Hermitian structures. It seems understanding to intertwine almost contact and almost paracontct
structures via Riemannian submersions.

Note that in [6], Y. Gündüzalp and B. Sahin have introduced the study of submersions considering that the total and
the base space are almost paracontact structures.

In this paper, we introduce the concept of conjugaison in contact geometry. This concept allows to define new structures
that we use as base space of Riemannian submersions. With these new structures, considering that the total space
remains almost contact metric, we study new three types of almost contact submersions whose base space is:

(i) conjugated almost contact metric manifold;

(ii) almost paracontact metric manifold;

(iii) almost para-Hermitian manifold.

This paper is organized in the following way:

§2 is devoted to the preliminary on manifolds where a large part is reserved to new structures.

In §3 we give some examples of the new structures.

§4 deals with the study of various types of almost contact metric submersions where we degage fundamental properties,
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structure of the fibers and the base space. We then have shown that

If the base space is a conjugated almost contact or an almost paracontact manifold, then the fibres are almost Hermitian
manifolds.

The above result shows that the under consideration manifolds have some common properties which force the fibres
to lie in the class of almost Hermitian manifolds. It resembles to that of Gündüzalp and Sahin [6, Prop 3.5].

In the same manner, another result states that

If the base space is an almost Hermitian or an almost para-Hermitian manifold, then the fibres are almost contact
metric manifolds.

This result shows that almost Hermitian and almost para-Hermitian manifolds have some common properties which
force the fibres to lie in the class of almost contact manifolds.

2 Preliminaries on manifolds

2.1 Almost Hermitian and para-Hermitian manifolds

By an almost Hermitian manifold, one understands a Riemannian manifold, (M, g), of even dimension 2m, furnished
with a tensor field , J, of type (1, 1) satisfying the following two conditions:

(i) J2D = −D, and

(ii) g(JD, JE) = g(D,E), for all D,E ∈ Γ(M).

The tensor field J is called almost complex structure. A differentiable manifold, equipped with an almost complex
structure is called an almost complex manifold. The above condition (ii) means that the Riemannian metric g is
compatible with the almost complex structure J. In this case, g is an almost Hermitian metric. Then, (M2m, g, J), is
an almost Hermitian manifold.

Any almost Hermitian manifold admits a differential 2-form, Ω, called the fundamental form or the Kähler form,
defined by

Ω(D,E) = g(D,JE).

A local J-basis of an open subset of M is

{E1, ..., Em, JE1, ..., JEm}.

Extending the Levi-Civita connection ∇ to all tensorial algebra of M, one obtains many tensor fields such as ∇DJ ,
∇DΩ and so on which occur in the defining relations of various classes of almost Hermitian manifolds obtained by
Gray and Hervella in [5].
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Let us recall some remarkable identities obtained by the use of the following known Koszul formula

2g(∇EG,D) = E.g(G,D) +Gg(D,E)−Dg(E,G)− g(E, [G,D])

+ g(G, [D,E]) + g(D, [E,G]), (2.1)

(∇DJ)E = ∇DJE − J∇DE, (2.2)

(∇DΩ)(E,G) = g((∇DJ)E,G) = −g(E, (∇DJ)G), (2.3)

3dΩ(D,E,G) = G {(∇DΩ)(E,G)} , (2.4)

(∇DΩ)(E,G) = (∇DΩ)(JE, JG), (2.5)

where G denotes the cyclic sum over D, E and G.

The codifferential, δ, of Ω is given by

δΩ(D) = −
m∑
i=1

{(∇Ei
Ω)(Ei, D) + (∇JEi

Ω)(JEi, D)} (2.6)

Let us recall that the Lee form of an almost Hermitian manifold is a 1-form θ, given by

θ(D) =
1

m− 1
δΩ(JD). (2.7)

The Nijenhuis tensor, NJ , of the almost complex structure J is a tensor field of type (1, 2) given in [?, p. 63] by

NJ(D,E) = J2[D,E] + [JD, JE]− J [JD,E]− J [D,JE]. (2.8)

When NJ(D,E) = 0, the almost complex structure J is said to be integrable; in this case, the almost Hermitian
manifold is called Hermitian.

Almost Hermitian structures have been completely classified by A. Gray and L.M. Hervella [5]. We just recall the
defining relations of some classes which will be used in this study.

An almost Hermitian manifold (M2m, g, J) is said to be :

(1) Kählerian if dΩ(D,E,G) = 0 and NJ = 0, where NJ denotes the Nijenhuis tensor of J ;

(2) almost Kählerian (or W2-manifold) if dΩ(D,E,G) = 0;

(3) nearly Kählerian (or W1-manifold) if (∇DΩ)(D,E) = 0;

(4) W3-manifold if (∇DΩ)(E,G)− (∇JDΩ)(JE,G) = 0 = δΩ;

(5) semi-Kählerian (or W1 ⊕W2 ⊕W3 −manifold) if δΩ = 0;

(6) W1 ⊕W3-manifold if (∇DΩ)(D,E)− (∇JDΩ)(JD,E) = 0 = δΩ;

(7) G1-manifold if (∇DΩ)(D,E)− (∇JDΩ)(JD,E) = 0;

(8) Hermitian or (W3 ⊕W4-manifold) if NJ = 0 or equivalently

(∇DΩ)(E,G)− (∇JDΩ)(JE,G) = 0;

(9) a G2-manifold or (W2 ⊕W3 ⊕W4-manifold) if

G{(∇DΩ)(E,G)− (∇JDΩ)(JE,G)} = 0 or G{g(NJ(D,E), JG)} = 0;
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(10) quasi Kählerian or (W1 ⊕W2-manifold) if

(∇DΩ)(E,G) + (∇JDΩ)(JE,G) = 0;

(11) W2 ⊕W3-manifold if
G {(∇DΩ)(D,E)− (∇JDΩ)(JD,E)} = 0 = δΩ;

(12) locally conformal almost Kähler (W2 ⊕W4-manifold) if

dΩ = ΩΛθ or G
{

(∇DΩ) (E,G)− 1

m− 1
Ω (D,E) δΩ (JG)

}
= 0;

(13) locally conformal Kähler (W4-manifold) if

(∇DΩ)(E,G) =
−1

2(m− 1)
{g(D,E)δΩ(G)− g(D,G)δΩ(E)}

+
−1

2(m− 1)
{−g(D,JE)δΩ(JG) + g(D,JG)δΩ(JE)} ;

(14) W1 ⊕W4-manifold if

(∇DΩ)(D,E) =
−1

2(m− 1)
{g(D,D)δΩ(E)− g(D,E)δΩ(D)− g(JD,E)δΩ(JD)};

(15) W1 ⊕W2 ⊕W4-manifold if

(∇DΩ)(E,G) + (∇JDΩ)(JE,G) =
−1

m− 1
{g(D,E)δΩ(G)− g(D,G)δΩ(E)}

+
−1

m− 1
{−g(D,JE)δΩ(JG) + g(D,JG)δΩ(JE)}; (2.9)

LetM2m be a smooth manifold of even dimension 2m. Consider an almost para complex structure J such that J2 = I,
where I is the identity transformation. If there exists on M a metric tensor g such that g(JD, JE) = −g(D,E),

then the couple (g, J) is called an almost para complex metric structure (or an almost para-Hermitian metric). So,
(M2m, g, J) is an almost para-Hermitian manifold.

As in the case of almost Hermitian manifolds, the fundamental 2−form Ω, of the structure (g, J) is given by
Ω(D,E) = g(D,JE). If further, J is parallel along the Levi-Civita connection ∇, (meaning that ∇J = 0), then the
manifold is said to be para-Kählerian.

Let us note some remarkable classes of almost para-Hermitian structures susceptible to be used in this study.

Following Gray and Hervella [5], see also [11], an almost para-Hermitian manifold is called:

(1) para-Kählerian if ∇J = 0;

(2) almost para- Kählerian if dΩ(D,E,G) = 0;

(3) quasi para- Kählerian if (∇DΩ)(E,G) + (∇JDΩ)(JE,G) = 0;

(4) nearly para- Kählerian if (∇DΩ)(D,E) = 0.

Let M be a differentiable manifold of dimension 2m+ 1. An almost contact structure on M is a triple (ϕ, ξ, η), where:

(1) ξ is a characteristic vector field,
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(2) η is a 1−form such that η(ξ) = 1, and

(3) ϕ is a tensor field of type (1, 1) satisfying

ϕ2 = −I + η ⊗ ξ,

where I is the identity transformation. If M is equipped with a Riemannian metric g such that

g(ϕD,ϕE) = g(D,E)− η(D)η(E),

then (g, ϕ, ξ, η) is called an almost contact metric structure. So, the quintuple (M2m+1, g, ϕ, ξ, η) is an almost con-
tact metric manifold. As in the case of almost Hermitian manifolds, any almost contact metric manifold admits a
fundamental 2−form, φ, defined by

φ(D,E) = g(D,ϕE).

If the tensor field ϕ is such that ϕ2 = −I − η ⊗ ξ, then (ϕ, ξ, η) is called a conjugated almost contact structure. If in
addition, there exists a tensor metric g such that g(ϕD,ϕE) = g(D,E) + η(D)η(E), then (ϕ, ξ, η, g) is a conjugated
almost contact metric structure. So, the quintuple (M2m+1, ϕ, ξ, η, g) is a conjugated almost contact metric manifold.

As in the case of almost contact metric manifold, there exists a fundamental 2−form φ, defined by φ(D,E) = g(D,ϕE).

Let us say something about the classification of these structures.

Let (M2m+1, ϕ, ξ, η, g) be a conjugated almost contact metric manifold and R the real line. Let us consider the
manifold product M̄ = M × R. Vector fields on M̄ are of kind (D, a ddt ) where D ∈ Γ(M), a is a function on R and t
is a real variable.

As in Oubiña [8], we define an almost Hermitian structure (J̄ , ḡ) by setting

J̄(D, a
d

dt
) = (ϕD − aξ, η(D)

d

dt
), (2.10)

ḡ((D, a
d

dt
), (E, b

d

dt
)) = g(D,E) + ab. (2.11)

Denoting by Ω̄ the Kähler form of M̄, ∇̄ the Riemannian connection of ḡ and δ̄ the codifferential, we have

Theorem 2.1. Let (M̄, ḡ, J̄) be the manifold product of a conjugated almost contact metric manifold with the real
line. Then:

(i) Ω̄((D, a ddt ), (E, b
d
dt )) = φ(D,E)− bη(D) + aη(E);

(ii) 3dΩ̄((D, a ddt ), (E, b
d
dt ), (G, c

d
dt )) = 3dφ(D,E,G)−

2 {cdη(D,E) + adη(E,G) + bdη(G,D)} ;

(iii) ∇̄(D,a d
dt )

(E, b ddt ) = (∇DE,
{
D(b) + adbdt

}
d
dt );

(iv) (∇̄(D,a d
dt )
J̄)(E, b ddt ) = ((∇Dϕ)E − b∇Dξ, (∇Dη)E d

dt );

(v) (∇̄(D,a d
dt )

Ω̄)((E, b ddt , (G, c
d
dt ) = (∇DΦ)(E,G)− c(∇Dη)E + b(∇Dη)G;

(vi) δΩ̄(D, a ddt ) = δφ− aδη.
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Proof. See Oubiña [8]

Following Theorem 2.1, one obtains a classification of conjugated almost contact metric structure (ϕ, ξ, η, g) from the
Gray-Hervella classification [5] of almost Hermitian structures.

With this in mind, we say that a conjugated almost contact metric structure is: conjugated almost cosymplectic,
conjugated cosymplectic, conjugated semi-cosymplectic or conjugated semi-cosymplectic normal, if and only if, the
almost Hermitian structure (ḡ, J̄) is almost Kähler, Kähler, semi-Kähler or a W3−manifold respectively.

Theorem 2.2. Let (M2m+1, ϕ, ξ, η, g) be a conjugated almost contact metric manifold. Then, it is:

(a) conjugated almost cosymplectic if dφ = 0 and dη = 0 ;

(b) conjugated cosymplectic if ∇ϕ = 0;

(c) conjugated semi-cosymplectic if δφ = 0 and δη = 0;

(d) conjugated semi-cosymplectic normal if δΦ = 0 = δη and
(∇Dϕ)E − (∇ϕDϕ)ϕE + η(E)∇ϕDξ = 0.

Proof. Consider (a). By Theorem 2.1 (ii), it is clear that if dφ = 0 = dη, then dΩ̄ = 0 wich shows that (J̄ , ḡ) is an
almost Kählerian structure. Thus, M is a conjugated almost cosymplectic manifold.

Other statements are established in the similar way.

Note that in the case of Sasakian geometry, illustrations are obtained by the use of the conform metric go defined by
go = e2σg where

σ : M × R −→ R such that σ(x, t) = t.

If the tensor field ϕ is such that ϕ2 = I − η ⊗ ξ, then (ϕ, ξ, η) is called an almost paracontact structure in the sense of
Sato [9] and [10]. As in the case of almost contact metric manifolds, if the manifold is equipped with a metric tensor
g such that g(ϕD,ϕE) = −g(D,E) + η(D)η(E), then (M2m+1, ϕ, ξ, η, g) is said to be an almost paracontact metric
manifold.

For some remarkable classes, we have the following defining relations.

An almost paracontact manifold is said to be:

(1) normal if Nϕ − 2dη ⊗ ξ = 0, where Nϕ is the Nijenhuis tensor of ϕ.

(2) para-contact if φ = dη,

(3) para-K-contact if it is para-contact and ξ is Killing,

(4) para-cosymplectic if ∇η = 0 and ∇φ = 0,

(5) almost para-cosymplectic if dφ = 0 and dη = 0,

(6) para-weakly-cosymplectic if dφ = 0, dη = 0 and
[R(D,E), ϕ] = R(D,E)ϕ− ϕR(D,E) = 0,

(7) para-Sasakian if φ = dη and M is para-normal,
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(8) quasi para-Sasakian if dφ = 0 and M is para-normal,

(9) quasi para-K-cosymplectic if

(∇Dϕ)E + (∇ϕDϕ)ϕE − η(E)(∇ϕDξ) = 0;

(10) almost para-Kenmotsu if dφ(D,E,G) = 2
3G {η(D)φ(E,G)} , where G denotes the cyclic sum over D,E,G;

(11) para-Kenmotsu if dφ(D,E,G) = 2
3G {η(D)φ(E,G)} , dη = 0 and N (1) = 0;

(12) quasi para-Kenmotsu if

(∇Dφ)(E,G) + (∇ϕDφ)(ϕE,G) = η(E)φ(G,D) + 2η(G)φ(D,E)

and dη = 0;

(13) nearly para-Kenmotsu if (∇Dϕ)D = −η(D)ϕD and dη = 0.

3 Examples of conjugated almost contact manifolds

3.1 Examples of conjugated manifold

Let (R3, g, ϕ, ξ, η) where η = ydx− dz; ξ = − ∂
∂z ;

ϕ =


0 1 0

−1 0 0

0 y 0

 and g = η ⊗ η + (dx)2 + (dy)2.

Easily it is checked that η ⊗ ξ =


0 0 0

0 0 0

−y 0 1

 ;

and ϕ2 =


−1 0 0

0 −1 0

−y 0 0

=


−1 0 0

0 −1 0

0 0 −1

-


0 0 0

0 0 0

y 0 −1


This gives ϕ2 = −I − η ⊗ ξ which shows that (ϕ, ξ, η) is a conjugated almost contact structure.

3.2 Example of a conjugated almost paracontact manifold

Let (R3, g, ϕ, ξ, η) where η = ydx− dz; ξ = − ∂
∂z ;

ϕ =


1 0 0

0 1 0

y 0 0

 and g = η ⊗ η + (dx)2 + (dy)2.

One can verifie that η ⊗ ξ =


0 0 0

0 0 0

y 0 −1

 ; η(ξ) = −1
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and ϕ2 =


1 0 0

0 1 0

y 0 0

=


1 0 0

0 1 0

0 0 1

+


0 0 0

0 0 0

y 0 −1


We then derive that ϕ2 = I + η ⊗ ξ which shows that (ϕ, ξ, η) is a conjugated almost paracontact structure.

4 Almost Contact Metric Submersions

In [7], O’Neill has defined a Riemannian submersion as a surjective mapping

π : M −→ B

between two Riemannian manifolds such that

(i) π is of maximal rank;

(ii) π∗|(Kerπ∗)⊥ is a linear isometry.

The tangent bundle T (M), of the total space M, admits an orthogonal decomposition

T (M) = V (M)⊕H(M),

where V (M) and H(M) denote respectively the vertical and horizontal distributions. We denote by V and H the
vertical and horizontal projections respectively. A vector field X of the horizontal distribution is called a basic vector
field if it is π−related to a vector field X∗ of the base space B. Such a vector field means that X∗ = π∗X.

On the base space, tensors and other objects will be denoted by a prime ’ while those tangent to the fibres will be
specified by a carret .̂ Herein, vector fields tangent to the fibres will be denoted by U, V and W.

Let (M2m+1, g, ϕ, ξ, η) be an almost contact metric manifold. Consider that (M ′2m
′+1, g′, ϕ′, ξ′, η′) is a conjugated

almost contact metric or an almost paracontact metric manifold. By an almost contact metric submersion, one
understands a (ϕ,ϕ′)−holomorphic map

π : M2m+1 →M ′2m
′+1

satisfying

(i) π∗ϕ = ϕ′π∗,

(ii) π∗ξ = ξ′.

When the base space is an almost para-Hermitian manifold, (M ′2m
′
, g′, J ′), we say that the submersion is (ϕ, J)−holomorphic

map. In this case, we have π∗ϕ = J ′π∗.

Various classes of Riemannian submersions are presented in [4].

4.1 Fundamental Properties

Now, we overview some of the fundamental properties of these submersions.
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Proposition 4.1. Let π : M2m+1 −→ M ′2m
′+1 be an almost contact metric submersion. If the base space is a

conjugated or an almost paracontact metric manifold, then:

(a) π∗φ′ = φ;

(b) π∗η′ = η;

(c) η(U) = 0 for all U ∈ V (M);

(d) H(∇Xϕ)Y is the basic vector field associated to (∇′X∗ϕ
′)Y∗ if X and Y are basic.

Proof. It is an adaptation of Watson [12].

Proposition 4.2. Let π : M2m+1 −→M ′2m
′
be an almost contact metric submersion. If the base space is an almost

para-Hermitian manifold, then

(a) π∗Ω′ = φ;

(b) η(X) = 0 for all X ∈ H(M);

(c) H(∇Xϕ)Y is the basic vector field associated to (∇′X∗J
′)Y∗ if X and Y are basic.

Proof. See again Watson [12].

4.2 Structure of the fibres and the base space

Theorem 4.1. Let π : M2m+1 −→ M ′2m
′+1 be an almost contact metric submersion. If the base space M ′ is

a conjugated almost contact manifold, an almost paracontact manifold or a conjugated almost paracontact metric
manifold, then the fibres are almost Hermitian manifolds.

Proof. It is clear that the dimension of the fibers is 2p if we put m−m′ = p. Considering that J = ˆ(ϕ) on the fibers,
let us show that J2 = −I. In fact if U is a vertical vector fields tangent to the fibers, then J2U = ˆ(ϕ)U. On the
other hand, ˆ(ϕ)

2
U = −U + ˆ(η)(U). Since η̂(U) = 0 acording to Proposition 11 we deduce that (̂ϕ)2U = −U which

leads to J2U = −I. and shows that J is an almost complex structure. It remains to establish the compatibility of
J with the Riemannian structure ˆ(g). Considere two vertical vector fields U and V tangent to the fibers, one has
ˆ(g)(JU, JV ) = ˆ(g)(U, V ) which shows the compatibility of g with ˆ(g); thus ĝ, J) is an almost Hermitian structure.

Theorem 4.2. Let π : M2m+1 −→ M ′2m
′
be an almost contact metric submersion whose base space is an almost

conjugated para Hermitian manifold, then the fibers are almost contact metric manifolds.

Proof. As in the above Theorem 4.1, it is clear that the dimension of the fibers is 2p+ 1 which shows that the fibers
can be suspected to have an almost contact structure.

Theorem 4.3. Let π : M2m+1 −→M ′2m
′+1 be an almost contact metric submersion whose total space is a conjugated

almost contact metric manifolfd. If it is conjugated almost cosymplectic (resp. conjugated cosymplectic, conjugated
semi-cosymplectic, conjugated semi-cosymplectic normal) then the base space M ′ is respectively almost cosymplectic,
cosymplectic, semi-cosymplectic or semi-cosymplectic normal..
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Proof. Let us consider the case where the total space is furnished with a conjugated cosymplectic structure. For the
cases of manifolds defined by the use of codifferentials, δφ and δη;, such as conjugated semi-cosymplectic, we can refer
to the equations of Chinea. Recal that, in [4], Cinea has established the following structure equations

Using the tensor A, Chinea [3] has defined an associated tensor A∗ on horizontal vector fields by setting

A∗(X,Y ) = AXϕY −AϕXY,

and has established the following structure equations

δφ(U) = δφ̂(U) +
1

2
g(trA∗, U), (4.1)

δφ(X) = δφ′(X∗) + g(H,ϕX), (4.2)

δη = δη′ ◦ π − g(H, ξ), (4.3)

where, trA∗ is the trace of A∗.

In the case under consideration, equations, equations 4.2 and 4.3 will be with helpfull.

Concerning the Lee forms ω and θ, we have the following.

Lemma 4.1. Let π : M2m+1 −→M ′2m
′+1 be an almost contact metric submersion, then ω(U) = m−m′−1

m θ(U) if and
only if trA∗ = 0.

Proof. Let us recall that on the total space M2m+1, the Lee form is

ω(D) =
1

m
{δ(ϕD)− η(D)δη}

and the Lee form on the fibres is given by

θ(U) =
1

m−m′ − 1
δφ̂(ϕU).

Now, using equation (4.1)

ω(U) =
1

m
δφ(ϕU) =

1

m
(δφ̂(ϕU) +

1

2
g(trA∗, U))

=
m−m′ − 1

m
θ(U) +

1

2m
g(trA∗, U)

.

Thus ω(U) = m−m′−1
m θ(U) if and only if trA∗ = 0.

References

[1] Blair, D. E., Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, Vol.203,
Birkhäuser, New York, 2002.

[2] Chinea, D., Almost contact metric submersions, Rend. Circ. Mat. Palermo, 34(1985),89-104.

354



Journal of Advances in Mathematics Vol 20 (2021) ISSN: 2347-1921 https://rajpub.com/index.php/jam

[3] Chinea, D., Almost contact metric submersions and structure equations, Publicationes Mathematicae, Debrecen
34 (1987), 207-213.

[4] Falcitelli, M., Ianus, S. and Pastore, A.M., "Riemannian submersions and related topics", World Sci. Pub.Co.
2004.

[5] Gray, A. and Hervella, L. M., The sixteen classes of almost Hermitian manifolds and their linear invariants,
Ann. Mat. Pura Appl., 123 (1980), 35-58.
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