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Abstract: In this paper, we are concerned with a hybrid hyperbolic dynamic system formulated by partial differential
equations with initial and boundary conditions. First, the system is transformed to an abstract evolution system in
an appropriate Hilbert space, and spectral analysis and semigroup generation of the system operator is discussed.
Subsequently, a variable structural control problem is proposed and investigated, and an equivalent control method is
introduced and applied to the system. Finally, a significant result that the state of the system can be approximated by
the ideal variable structural mode under control in any accuracy is derived and examined.
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1 Introduction

A great attention has been paid to the dynamics and control of flexible beam (see [1]-[8]). In this paper, we are
concerned with the following general hyperbolic dynamic system with static boundary condition in one space variable
in normal form studied in [1]-[3]:

∂
∂t

[ u(x, t)

v(x, t)

]
+K(x) ∂

∂x

[ u(x, t)

v(x, t)

]
+ C(x)

[ u(x, t)

v(x, t)

]
= 0, 0 < x < 1, t > 0,

v(1, t) = Du(1, t), u(0, t) = Ev(0, t)

(1.1)

where

(H1) K(x) = diag{λ1(x), λ2(x), · · · , λm(x), µ1(x), µ2(x), · · · , µk(x)} is a diagonal n× n, (n = m+ k), matrix with
real entries λj(x), µj(x) ∈ C1[0, 1], λj(x) > 0, µi(x) < 0, ∀ x ∈ [0, 1], i = 1, 2, · · · , k, j = 1, 2, · · · ,m.

(H2) C(x) = diag{c1(x), c2(x), · · · , cn(x)} is an n× n diagonal matrix with continuous entries in x ∈ [0, 1];

(H3) u(x) = [u1(x), u2(x), · · · , um(x)]> is a column vector in Rm (or Cm) and v(x) = [v1(x), v2(x), · · · , vk(x)]> is
a column vector in Rk (or Ck);

(H4) D,E, F and G are real (or complex) constant matrices of appropriate size.

In order to investigate the variable structural control problem for the system, first, let’s transfer the system to an
abstract Cauchy problem in an appropriate Hilbert space, then discuss the spectral properties and semigroup generation

96



Journal of Advances in Mathematics Vol 20 (2021) ISSN: 2347-1921 https://rajpub.com/index.php/jam

of the system operator.

2 Spectral Analysis and Semigroup Generation

We start this section with considering the system (1.1) in the underlying Hilbert space H =
(
L2(0, 1)

)2. Define the
operator A : D(A)(⊂ H)→ H by

A

[
u(x)

v(x)

]
= −K(x)

∂

∂x

[ u(x)

v(x)

]
− C(x)

[ u(x)

v(x)

]
,

D(A) = {[u, v]> ∈
(
H1(0, 1)

)m × (H1(0, 1)
)k
, u(0) = Ev(0), v(1) = Du(1)}.

(2.1)

Then the system (2.1) can be written an an evolution equation in H:

dW (t)

dt
= AW (t), t > 0 (2.2)

with W (t) = [u(·, t), v(·, t)]>.

Lemma 2.1 The operator A defined by (2.2) has compact resolvent and hence σ(A) consists only isolated eigenval-
ues.

Proof. Given (f, g, b) ∈ X, we solve

(λ−A)(u, v, d) = (f, g, b)

that is,


∂
∂x

[ u(x, t)

v(x, t)

]
= −K−1(x)[λ+ C(x)]

[ u(x, t)

v(x, t)

]
+K−1(x)

[ f(x)

g(x)

]
, 0 < x < 1, t > 0,

v(1, t) = Du(1, t), u(0, t) = Ev(0, t)

(2.3)

Let’s denote by M(x, y, λ) the fundamental matrix of the system

d

dx

[ u(x)

v(x)

]
= −K−1(x)[λ+ C(x)]

[ u(x)

v(x)

]
(2.4)

It follows from (2.3) that[ u(x)

v(x)

]
= M(x, 0, λ)

[ E
I

]
v(0) +

∫ x

0

M(x, y, λ)K−1(y)
[ f(y)

g(y)

]
dy (2.5)

On the other hand, we see from the boundary condition in (2.1) that

b = (−λD − F, λ−G)
[ u(1)

v(1)

]
= (λD − F, λ−G)M(1, 0, λ)

[ E
I

]
v(0)

+(λD − F, λ−G)

∫ 1

0

M(1, y, λ)K−1(y)
[ f(y)

g(y)

]
dy
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Subsequently,

H(λ)v(0) = b+

∫ 1

0

(λD + F,G− λ)M(1, y, λ)K−1(y)
[ f(y)

g(y)

]
dy (2.6)

where

H(λ) = −(λD + F,G− λ)M(1, 0, λ)
[ E
I

]
Defining h(λ) = detH(λ), we see that λ ∈ σ(A) if and only if λ is a zero of the entire function h(λ). When h(λ) 6= 0,
λ ∈ ρ(A) and R(λ,A)(f, g, b)=(u, v, d) where (u, v) is given by (2.5) with v(0) determined by (2.6) and d = v(1)−Du(1).
It can be eventually seen from (2.5) that R(λ,A) is compact for any λ ∈ ρ(A).

Theorem 2.2. The operator A defined by (2.1) generates a C0-semigroup T (t) on H.

Proof. We need only to prove the assertion for the case C ≡ 0 because is a bounded operator by assumption (H2),
and bounded perturbations do not affect C0-semigroup generations. For the sake of simplicity, we assume that H is real.
The idea is to define an equivalent norm on H by properly choosing some positive weighting functions fi(x), 1 ≤ i ≤ N
and gi(x), N + 1 ≤ i ≤ n, namely, define the norm on H as

‖(u, v, d)‖p =

N∑
i=1

∫ 1

0

fi(x)|ui(x)|pdx+

n∑
j=N+1

∫ 1

0

gj(x)|vj(x)|pdx+

n∑
j=N+1

|dj |p (2.7)

It is easily verified that H∗, the dual space of H, consisting of all elements (u∗, v∗, d∗) with

u∗i (x) = ‖((u, v, d)‖2−p|ui(x)|
p
q sign(ui(x)), 1 ≤ i ≤ N,

v∗j (x) = ‖((u, v, d)‖2−p|vj(x)|
p
q sign(vj(x)), N + 1 ≤ j ≤ n,

d∗j (x) = ‖((u, v, d)‖2−p|dj |
p
q sign(dj), N + 1 ≤ j ≤ n.

where q denotes the conjugate number of p, which satisfies 1
p + 1

q = 1.

For any (u, v, d) ∈ D(A), (u, v, d) 6= 0 and any (u∗, v∗, d∗) ∈ F ((u, v, d)) ⊂ H, where F denotes the duality set. A
direct calculation shows that

‖(u, v, d)‖p−2〈(u∗, v∗, d∗), A(u, v, d)〉

=

N∑
i=1

∫ 1

0

−λi(x)fi(x)
d

dx
|ui(x)|pdx+

n∑
j=N+1

∫ 1

0

−µj(x)gj(x)
d

dx
|vj(x)|pdx

+〈Fu(1) +Gv(1), [v(1)−Du(1)]′′〉

= −
N∑
i=1

λi(1)fi(1)|ui(1)|p −
n∑

j=N+1

µj(1)gj(1)|vj(1)|p

+

N∑
i=1

λi(0)fi(0)|ui(0)|p +

n∑
j=N+1

µj(0)gj(0)|vj(0)|p

+

N∑
i=1

∫ 1

0

|ui(x)|p d

dx
[λi(x)fi(x)]dx+

n∑
j=N+1

∫ 1

0

|vj(x)|p d

dx
[µj(x)gj(x)]dx

+〈Fu(1) +Gv(1), [v(1)−Du(1)]′′〉 = I1 + I2 + I3 + I4.

We estimate Ii separately. It is clear from the expression of I3 that

I3 ≤ C0‖(u, v, d)‖p (2.8)
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where C0 = max i, j maxx∈[0,1]{ d
dx [λi(x)fi(x)], d

dx [µj(x)gj(x)]dx]}. Nothing that ui(0) =

n∑
j=N+1

eijvj(0), we see that

I2 =

N∑
i=1

λi(0)fi(0)|ui(0)|p +

n∑
j=N+1

µj(0)gj(0)|vj(0)|p

≤
n∑

j=N+1

[µj(0)gj(0) +

N∑
i=1

λi(0)fi(0)(

n∑
k=N+1

|eik|q)
p
q ]|vj(0)|p.

(2.9)

Because λi(0) > 0 and µj(0) < 0 from (H1) , we can always find gj(0) > 0 and fi(0) > 0 such that

µj(0)gj(0) +

N∑
i=1

λi(0)fi(0)(

n∑
k=N+1

|eik|q)
p
q ] ≤ 0, N + 1 ≤ j ≤ n (2.10)

holds, which implies that I2 ≤ 0.

We now estimate I4 by means of the inequalities (|a|+ |b|)p ≤ 2p(|a|p + |b|p) and |a|
1
p |b|

1
q ≤ |a|p + |b|

q which hold for
any real a and b, we have

I4 ≤
n∑

j=N+1

|
N∑
i=1

fjiui(1) +

n∑
i=N+1

gjivi(1)||vj(1)−
N∑
i=1

djiui(1)|
p
q

≤ 1
p

n∑
j=N+1

|
N∑
i=1

fjiui +

n∑
i=N+1

gjivi(1)|p +
1

q

n∑
j=N+1

|vj(1)−
N∑
i=1

djiui(1)|p

≤ 2p

p

n∑
j=N+1

[
|
N∑
i=1

fjiui(1)|p + |
n∑

i=N+1

gjivi(1)|p
]

+
1

q
‖(u, v, d)‖p

≤ 2p

p

n∑
j=N+1

(
N∑
i=1

|fji|p
) p

q N∑
i=1

|ui(1)|p +
2p

p

n∑
j=N+1

(
N∑
i=1

|gji|p
) p

q n∑
i=N+1

|vi(1)|p +
1

q
‖(u, v, d)‖p

=

N∑
i=1

αi|ui(1)|p +

n∑
j=N+1

βj |vj(1)|p +
1

q
‖(u, v, d)‖p

with αi and βj denoting the obvious constants. Subsequently, it can be seen that

I1 + I4 − 1
q‖(u, v, d)‖p

≤
N∑
i=1

[−λi(1)fi(1) + αi]|ui(1)|p +

n∑
j=N+1

[βj − µj(1)gj(1)]|vj(1)|p

≤
N∑
i=1

[−λi(1)fi(1) + αi]|ui(1)|p + 2p
n∑

j=N+1

|βj − µj(1)gj(1)||vj(1)−
N∑
i=1

djiui(1)|p

+2p
n∑

j=N+1

|βj − µj(1)gj(1)||
N∑
i=1

djiui(1)|p

≤
N∑
i=1

[−λi(1)fi(1) + αi]|ui(1)|p +

n∑
j=N+1

2p|βj − µj(1)gj(1)||vj(1)−
N∑
i=1

djiui(1)|p
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+2p
n∑

j=N+1

|βj − µj(1)gj(1)|

(
N∑
i=1

|dji|q
) p

q N∑
i=1

|ui(1)|p

=

N∑
i=1

−λi(1)fi(1) + αi + 2p
n∑

j=N+1

|βj − µj(1)gj(1)|

(
N∑
i=1

|dji|q
) p

q

 |ui(1)|p

+

n∑
j=N+1

2p|βj − µj(1)gj(1)||vj(1)−
N∑
i=1

djiui(1)|p.

If we choose fi(1) > 0, gj(1) > 0 such that
−λi(1)fi(1) + αi + 2p

n∑
j=N+1

|βj − µj(1)gj(1)|

(
N∑
i=1

|dji|q
) p

q

≤ 0

2p|βj − µj(1)gj(1)| ≤ C

(2.11)

for any 1 ≤ i ≤ N and N + 1 ≤ j ≤ n, then

I1 + I4 ≤ (C +
1

q
)‖(u, v, d)‖p.

The estimations of Ii above show that there exists a constant M such that

〈(u∗, v∗, d∗), A(u, v, d)〉 ≤M‖(u, v, d)‖2 (2.12)

Now we choose a weighting functions fi(x) and gi(x) such that they satisfy (2.10) and (2.11), and hence define a norm
in H according to (2.3). Because A−M is dissipative and A has the properties stated in the Lemma 2.1, we can assert
from [9] and [11] that A generates a C0-semigroup on H, and the Theorem 2.2 is established now.

3 A Variable Structural Control

Let’s establish and discuss a structural control problem for the hybrid hyperbolic system (2.2)


dW (t)
dt

= AW (t) +Bu(W (t), t)

W (0) = W0
(3.1)

where B is a bounded linear operator from H to H, u(W, t) is the control of the beam system (2.2) that is not continuous
on the manifold S = CW = 0, and C is a bounded linear operator with S = S(W ) = CW ∈ Rn.

Now, let’s consider the δ-neighborhood of sliding mode S = CW = 0, where δ > 0 is an arbitrary given positive
number. Using a continuous control ũ(W, t) to replace u(W, t) in the system (3.1) yields

 Ẇ = AW +Bũ(W, t)

W (0) = W0
(3.2)

where Ẇ = ∂W/∂t, and the solution of (3.2) belongs to the boundary layer ‖S(W )‖ ≤ δ
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Let Ṡ(W ) = CẆ = 0. Applying C to the first equation of (3.2) leads to the following the equivalent control:

ueq(W, t) = −(CB)−1C(AW )

with assumption that (CB)−1 exists. Substitute ueq(W, t) into (3.1) to find

Ẇ = [I −B(CB)−1C]AW . (3.3)

Denote P = B(CB)−1C and A1 = (I − P )A, then (3.1) becomes

Ẇ = A1W, W (0) = W0 (3.4)

In the rest part of this paper, we are going to show that the actual sliding mode W (t) will approach uniformly to
the ideal sliding mode W̄ (t) under certain conditions.

Lemma 3.1 If (CB)−1 is a compact operator and PA = AP , then A1 = (I − P )A generates a C0-semigroup T2(t)

in H and T2(t) = (I − P )T1(t), where T1(t) is the C0-semigroup generated by A.

Proof: Inasmuch as (CB)−1 is a compact operator, B and C are bounded linear operators, we see from the
definition of P that P is compact, and therefor the range of I − P is a closed subspace of H. Since P 2 = P and
(1−P )2 = I−P , I−P can be viewed as the identity operator on (I−P )H. It can be easily seen that T2(t) = (I−P )T1(t)

is a C0-semigroup in (I − P )H.

Next, we shall prove that the infinitesimal generator of T2(t) is (I − P )A and D((I − P )A) = (I − P )D(A).

In fact, for every x ∈ (I − P )D(A), there is a x1 ∈ D(A) such that x = (I − P )x1. It should be noted that T1(t)

and I − P are commutative because A and P are commutative. We see that

lim
t→0+

T2(t)x− x = lim
t→0+

(I − P )T1(t)(I − P )x1 − (I − P )x1

= lim
t→0+

(I − P )2T1(t)x1 − (I − P )x1

= lim
t→0+

(I − P )T1(t)x1 − (I − P )x1

= (I − P ) lim
t→0+

T1(t)x1 − x1

= (I − P )Ax1.

Let Ã denote the infinitesimal generator of T2(t). Since the limit on the left exists, we can assert that x ∈ D(Ã) and
(I − P )D(A) ⊆ D(Ã).

On the other hand, for any x ∈ D(Ã), since D(Ã) ⊆ (I − P )H, there exists x̃ ∈ H, such that x = (I − P )x̃, and

lim
t→0+

T2(t)x− x = lim
t→0+

T2(t)(I − P )x̃− (I − P )x̃

= lim
t→0+

(I − P )T1(t)x̃− (I − P )x̃

= (I − P ) lim
t→0+

T1(t)x̃− x̃

= (I − P )Ax̃.
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Since the limit of the left hand side exists, and so the limit of the right hand side exists, and x̃ ∈ D(A) which implies
that D(Ã) ⊆ (I − P )D(A). Thus, D(Ã) = (I − P )D(A) and Ã, the infinitesimal generator of T2(t), is (I − P )A. The
proof of the lemma is complete.

Theorem 3.2 Suppose that in the hyperbolic system (3.1),

1. (CB)−1 exists and it is compact,

2. PA = AP , where P = B(CB)−1C.

Then for any solution W (t) of the system (3.4) satisfying S(W̄0) = 0, W̄0 ∈ D(A1) and ‖W0 − W̄0‖ ≤ δ, W0 ∈ D(A),
we have

lim
δ→0
‖W (t)−W (t)‖ = 0

uniformly on [0, T ] for any positive number T .

Proof: It should be noted from the Theorem 2.3 and Lemma 3.1 that A and A0 = (I − P )A are infinitesimal
generators of C0-semigroups T1(t) and T2(t) respectively. By virtue of theory of semigroup of linear operators, we see
that there are positive constants M1, M2, ω1 and ω2 such that

‖T1(t)‖ ≤M1e
ω1t, ‖T2(t)‖ ≤M2e

ω2t. (0 ≤ t ≤ T ) (3.5)

In the boundary layer ‖T1(t)‖ ≤ δ, let’s introduce the equivalent control as follows

ueq(W, t) = −(CB)−1CAW + (CB)−1CẆ (3.6)

Substitute (3.6) into (3,1) to find

Ẇ = (I − P )AW + PẆ (3.7)

Hence, the solution of (3.7) can be expressed as follows:

W (t) = T2(t)W0 +

∫ t

0

T2(t− s)PẆ (s)ds, (3.8)

and therefore, the solution of (3.4) can be written as

W (t) = T2(t)W 0. (3.9)

Subtracting (3.9) into (3.8) yields

W (t)−W (t)

= T2(t)(W0 −W 0) +

∫ t

0

T2(t− s)PẆ (s)ds
(3.10)

Since PA = AP , we see that PT1(t) = PT1(t). It should be emphasized that (I − P )P = 0 and T2(t) = (I − P )T1(t),
and consequently,

∫ t

0

T2(t− s)PẆ (s)ds =

∫ t

0

(I − P )T1(t− s)PẆ (s)ds

=

∫ t

0

T1(t− s)(I − P )PẆ (s)ds

= 0,
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and so it implies from (3.10) and (3.5) that

‖W (t)− W̄ (t)‖ ≤ ‖T2(t)‖‖W0 − W̄0‖ ≤M2e
ω2T ‖W0 − W̄‖,

Since ‖W0 − W̄0‖ ≤ δ, we have
‖W (t)− W̄ (t)‖ ≤M2e

ω2T δ.

Thus,

lim
δ→0
‖W (t)− W̄0‖ = 0.

The proof of the theorem is complete.

We see from the Theorem 3.2 that the solution of the beam system can be approximated by ideal sliding mode in
any accuracy.

4 Conclusion

In the present paper, a variable structural control problem for a hybrid hyperbolic dynamic system dominated by
partial differential equations subject to the boundary shear force feedback is investigated. An evolution equation
corresponding to the beam system is established in an appropriate Hilbert space. A spectral analysis and semigroup
generation of the system operator for the system are studied. Finally, a variable structural control is proposed, and a
significant result that the solution of the system can be approximated by the ideal variable structural model under the
control is obtained.
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