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Abstract:

In this work we present and investigate three new subclasses of the function class X of bi-univalent functions
in the open unit disk A defined by means of the Horadam polynomials. Furthermore, for functions in each of
the subclasses introduced here, we obtain upper bounds for the initial coefficients |a,| and |as]. Also, we
debate Fekete-Szego inequality for functions belongs to these subclasses.
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Introduction

Symbolized by A the function class of the shape:

f@)=z+ z a,z" D

which are holomorphic in the open unit disk 4 ={z:z € Cand |z| < 1} and normalized under the conditions
indicated by f(0) = f'(0) — 1 = 0. Furthermore, symbolized by § the class of all functions in A which are
univalent in U.

The Koebe One-Quarter Theorem [ 4 ] shows that the image of 4 includes a disk of radius ¥4 under each
function f from S. Thereby each univalent function of this kind has an inverse f~* which fulfills

@)=z (ze)

and

1
FOrr ) =w (1wl <m0 () = 5)
where
f1w) = gw) =w — a,w? + (243 — az)w® — (5a3 — 5a,a; + a,)w* + . 2

The function f € A is considered bi-univalent in 4 if together £~ and f are univalent in A. Indicated by the
Taylor-Maclaurin series expansion (1), the class of all bi-univalent functions in A can be symbolized by X . In
the year 2010, Srivastava et al. [ 10 ] refreshed the study of various classes of bi-univalent functions.
Moreover, many penmans explored bounds for different subclasses of bi-univalent functions ( see, for example
[ 3,5,6,11 ]). The coefficient estimate problem involving the bound of |a,| (n € N\{1,2},N = {1,2,3,...}) is still
an open problem.

For two functions D and Y, holomorphic in the open unit disk A, we say that the function D(w) is
subordinate to Y(w) in 4, and write

D(w) <YWw) (w € 2),
if there exists a Schwarz function T'(w), holomorphic in 4, with

TO)=0and |T(w)| <1 (weAl),
such that
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DW) =Y(TW) (wea.
In special, if the function Y is univalent in 4, the above subordination is equivalent to
D(0) =Y(0) and D(4) c Y(4).
The following recurrence relation gives the Horadam polynomials h,,(x) (see (8))
hp(x) = pxhy_1(x) + gh,_5(x), (x € R, ne N\{1,2},N ={1,2,3,..}), 3)

with hy(x) = k, hy(x) = bx and h;(x) = pbx? + kq where k, b, p and q are some real constants. The
characteristic equation of repetition relationship (3) is t> — pxt — q = 0. There are two real roots of this
equation

2 = 2

The generating function of the Horadam polynomials h, (x) is indicated by

1

_ px+pix? +4q and a px —\/p*x? + 4q
= > )

k+ (b —kp)xz

. 4
1—pxz — qz? )

a(x,2) = Z hy, ()21 =
n=1

It should be noted that for specific values of k, b, p and q, the Horadam polynomial h, (x) leads to different
polynomials, among those, we list a few cases here ( see, [ 7, 8 ], for more details ) :

a)Ifk =b =p = q =1, then we get the Fibonacci polynomials F, (x).

b)If k =2 and b = p = q = 1, then we have the Lucas polynomials L, (x).

) If k =q=1and b =p = 2, then we attain the Pell polynomials B,(x).

d)If k =b =p=2and q =1, then we have the Pell-Lucas polynomials Q,,(x).
e)Ifk=b=1,p=2andq = —1, then we obtain the Chebyshev polynomials T, (x) of the first kind.
f)lf k =1,b = p = 2 and q = —1, then we attain the Chebyshev polynomials U, (x) of the second kind.

Coefficient bounds and Fekete-Szegd inequality for the class 7C; (B, x)

Definition 1 A function f € ¥ is said to be in the class X;(8,x) for 0 < <1 and x €R, if the following
conditions of subordination are satisfied:

zf"(2)
f'(2)

(1—ﬁ)f’(z)+ﬁ<1+ )<!2(x,z)+1—k 5)
and

wg" (w)
g'w)

(1—,8)g’(w)+[3<1+ ><.(2(x,w)+1—k, (6)
where the function g = f~1 is indicated by (2) and k is real constant.

Remark 1

For B = 0, the class %5 (8, x) shortens to the class X’ presented and investigated by Alamoush [ 2 ].

For B = 1, the class ¥ (B, x) shortens to the class ¥ (x) presented and investigated by Abiramietal. [1].
Theorem 1 Let the function f € X indicated by (1) be in the class K5 (B, x). Then

|bx|y/|bx]|

<
VIIB = B)b — 4p]bx? — 4kq|
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and

0] < b%x? N |bx| 8

B> 36+ ®
and forsome p € R,

|bx|
36+ 7
I[(3 — B)b — 4p]bx? — 4kq|
=1l< 3(B + 1)b%x?
laz — pa3l < 9

|bx|? |1 — 1] .

(G = B)b — 4plbx? —akql

I[(3 — B)b — 4p]bx? — 4kq|
3(8 + Db?x?

lu—11=

Proof. Let f € K;(B,x), 0 < B <1 and x € R. Then there are two holomorphic function v,u: 4 - 4 indicated
by

v(z) = t1z + tyz% + t323 + - (z€ 4)
and
u(w) = s;w + s,w? + s;w3 + - (w € 4),
with v(0) = u(0) =0, |v(z)| < 1 and |[u(w)| < 1, z,w € 4, such that

A-8f'= +,8<1+Z]]:,”%> <0xvE)+1-k

and

wg" (w)
g'w)

(1—ﬁ)g'(w)+ﬁ<1+ ><!2(x,u(w))+1—k.

Or, in equivalent way,

A-B)f'(2)+B (1 + Z;:%) =14 hy(x) — k + hy(x)v(2) + hs()[v(2)]* + - (10)
and
(1-B)g'W) + B (1 + le(lv(v")’)) =14 by () — k + By ()uw) + hs () [uW)]? + ---. (11)
From (10) and (11), we attain
(1= B)f'(2) + B (1 + Z}f(g)) = 14 hy ()2 + [y (X, + hs (X)E2]22 + - (12)
and
1-Rg W) +p (1 + %) =1+ hy,(x)s;w + [hy(x)s, + ha(x)sE]w? + ---. (13)
Notice that if
[v(2)| = |t1z + t,z2 + t3z3 + | < 1 (z € 1)
and
[uw)| = Issw + s,w? + s;wi + | <1 (wEe ),
then
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[til <1land|s;|<1 (i€eN).

It follows from (12) and (13) that

2a, = hy(x)t,,

3(1+ B)a; — 4Baz = hy(x)t, + hy(x)tZ,

—2a, = hy(x)s;
and

=3(1+ B)as + 2(B + 3)az = h,(x)s, + hs(x)s?.
From (14) and (16), we find that

t, = —5
and
8aj = [h,(X)]?(¢f + sP).

If we add (15) to (17), we get

(6 —2B)a3 = hy(x)(t; + s,) + ha(X) (7 + s7).
By using (19) in equation (20), we have

8h3(x) B
(6—2p) RO a5 = hy(x)(t; +s7),
which yields
|bx|y/|bx|

= TG = b - aploe — akal
Next, if we deduct (17) from (15), we get
6(B + D(as — a3) = hy(x)(t; — 52) + hs () (& — s7).
In view of (18) and (19), equation (22) becomes
[y )12 (¢ +57) | ha () (2 = 5,)

3 = 8 TG+ D
Now, with the help of equation (3), we deduce that
0] < b%x? N |bx|
B> 36+

Finally, by using (21) and (22) for some u € R, we get

o hy (x)(t; — s7) n [h,)IP(1 — w)(t; +57)
BTRETTEE D (6-28)[h(0]? — 8hy(x)

- hZT(x) [(IP(‘“’ x) + @) ta+ (IP(H’ x) = 3(B1+1)) 52]’

where

[h,()]*(1 — 1)
(3 = Plhy(x)]* — 4hs(x)

Y(u,x) =

Thus, we conclude that
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M if 0<|lp( x)|<;
0y — a2 < 38+ 1) = WXL =361

12O G0l if 190001 2 305y

and with respect to (3), it evidently completes the proof of the theorem (1).

Remark 2 If we put 8 = 0in Theorem (1), we get the outcomes which were indicated by Alamoush [ 2 ]. In
addition, if we put 8 = 1 in Theorem (1), we get the outcomes which were indicated by Abiramietal. [1].

Coefficient bounds and Fekete-Szegd inequality for the class W;(«a, x)

Definition 2 A function f € X is said to be in the class Wy (a, x)for 0 < « < 1 and x € R, if the following
conditions of subordination are satisfied:

zf'(z) + 2a®* — a)z*f""(2)
4(a —a®)z+ Qa? —a)zf'(z) + Qa? —3a+ 1)f(2)

<QMx,z2)+1-k (23)

and
wg'(w) + 2a® — a)w?g" (W)
4(a —a?)w+ QRa? —a)wg'w) + 2a? —3a+ 1)g(w)

<0N0x,w)+1-k, (24)

where the function g = f~1 is indicated by (2) and k is real constant.

Remark 3 For a = 0, the class W;(a, x) shortens to the class Wy (x) introduced and investigated by Srivastava
etal.[9].

Theorem 2 Let the function f € X indicated by (1) be in the class Wy (a, x). Then

|bx|y/|bx|

la,| < 05
JI[(A2a* — 28a3 + 15a2 + 2a + 1)b — (1 + 3a — 2a2)2p]bx2 — (1 + 3a — 2a2)2kq|
and
PR . SR ... 26
T 3e-2a  2@a D) (26)
and forsome u € R,
|bx| ,
2(2a%2+1) lf
| 1 < |[(120!4—28613+15a2+2a+1)b—(1+3a_2a2)2p]bxz_(1+3a_2a2)2kq|
# - - 2 242
|a3 _‘uagl S < |bx|3|u2—(12|a e (27)
I[(12a*-28a3+15a2+2a+1)b—(1+3a—2a2)2p]bx2—(1+3a—2a2)2kq| if
| 1> |[(120(4—280(3+15a2+2a+1)b—(1+3a—2a2)2p]bx2_(1+3a_2a2)2kq|
# - - .

2(2a2+1)b2x2

Proof. Let f € Wy(a,x), 0 < a < 1 and x € R. Then there are two holomorphic function v,u: 4 - A indicated
by

v(z) =tz + ty2% + t323 + - (z€ 4
and
u(w) = s;w + s,w? + syw3 + - (w € 4),
with v(0) = u(0) =0, |v(2)| < 1 and |[u(w)| < 1, z,w € 4, such that

zf'(z) + (2a® — a)z*f" (2)
4(a —a®)z+ a2 —a)zf'(z2) + Qa? —3a+ 1)f(2)

<Qx,v(z)+1-k

and
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wg'(w) + (2a® — a)w?g" (w)
4(a —a?)w+ Qa? — a)wg' (w) + 2a? —3a+ 1)g(w)

Or, in equivalent way,

zf'(z) + 2a? — a)z?f""(2)
4(a—a?)z+ a2 —a)zf'(z2) + Qa? —3a+1)f(2)

=1+hx —-k+h,&®vE@) +h;®[v(@)]* + -

and
wg'w) + 2a® — a)w?g" (w)
4(6‘{ — aZ)W + (2(,{2 — a)Wg'(W) + (Zaz —3a+ l)g(w)
=1+ h(x) — k+ h(X)uWw) + hy(x)[u(w)]? + --.

From the equations (28) and (29), we attain

zf'(z) + Qa® — a)z*f"' (2)
4(a—a®)z+ QRa?—a)zf'(z) + Qa? —3a+ 1)f(2)

=1+ hy(X)tyz + [hy (x)t, + h3(X)tZ]22 + -

and

wg'w) + 2a® — a)w?g" (w)
4(a — a?)w + QRa? —a)wg’'(w) + 2a? —3a+ 1)g(w)

=1+ hy(X)s;w + [hy(x)s; + hy(x)sEIw? + ---.

Notice that if
[v(2)| = |t1z + t,z2 + t3z3 + | < 1 (z € )
and
[uw)| = |syw + s;w?2 +s;w3 + | <1 (w € 4),
then
[ti| <1land|s;]<1 (i€eN).
It follows from (30) and (31) that
1+ 3a—2a?)a, = hy(x)t,,
(12a* — 28a® + 11a? + 2a — 1)a2 + (4a? + 2)a; = h,(xX)t, + hy(x)t2,
—(1 4 3a —2a®a, = h,(x)s;
and
(12a* — 28a® + 19a? + 2a + 3)a? — (4a? + 2)a; = h,(x)s, + hy(x)s?.
From (32) and (34), we find that
t, = —s;
and
2(1 4 3a — 2a?)?a3 = [h,(x)]%(t? + s2).
If we add (33) to (35), we get

(24a* — 56a® + 30a? + 4a + 2)a2 = h,(x)(t, + 5,) + hy (x)(t? + s2).

By using (37) in equation (38), we have

2(1+3a —2a*)hs ()] , _
[h, ()2 a; = hy(X)(t; + ),
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which yields

|bx|y/|bx|

S .
\/l[(12a4 —28a3 + 15a? + 2a + 1)b — (1 + 3a — 2a?)?p]bx? — (1 + 3a — 2a?)?kq|

la,|

Next, if we deduct (35) from (33), we obtain
42a% + 1)(az — a3) = hy(X)(t; — 55) + hs(X)(tf — s). (40)
In view of (36) and (37), equation (40) becomes

[P +57) | R (0)(t; — 5,)
%= 20 +3a-2a22 " 4Q2at+ 1)

Now, with the help of equation (3), we deduce that
] < b%x? N |bx|
B> 0 +3a-2a22 " 2Ca2+ 1)

Finally, by using (39) and (40) for some u € R, we get
2 _ hy (%) (t; — s7) [h, ()P (1 = W(t; +52)

G THEZ =T 0a2z 1 1) | (24t — 56a° + 30aZ + 4a + 2)[hy(X)]% — 2(1 + 3a — 2a?)?hs(x)
hy (x) 1 1
- 2z [(lp(ﬂ’ x) + 2(2a2+1)) ta + (lp(‘u' x) = 2(2a2+1)) 52]’
where
h,(x)]%(1 —

(12a* — 28a3 + 15a2 + 2a + D)[h,(x)]? — (1 + 3a — 2a?)2h5(x)

Thus, we conclude that

s if 0 W@Yl < 5o
0 — paz| < | 2@+ D) = PWXL= 90+ 1)
3 21 =

| ] _
k |h2(x)||qj(.u!x)| lf |q"(ll:x)| 2 2(2“2 + 1)

and with respect to (3), it evidently completes the proof of the theorem (2).

Remark 4 If we put @ = 0 in Theorem (2), we get the outcomes which were indicated by Srivastava et al. [ 9 ].

Coefficient bounds and Fekete-Szego inequality for the class Ny (a,y, x)

Definition 3 A function f € X is said to be in the class Nz (a,y,x) for0 < a < 1,y € C\{0} and x € R, if the
following conditions of subordination are satisfied:

+1[az3f”’(z) + (1 +20)z%f"(2) + zf ' (2)

” (D) + 2 @) - 1] <0xz)+1-k (41)

and

1 3 111 + 1 + 2 2 11 + !
14 LT + A+ 20w g W) ¥ wg W) | oy g, (42)
aw?g" (w) + wg'(w)
where the function g = f~1 is indicated by (2) and k is real constant.
Theorem 3 Let the function f € X indicated by (1) be in the class Nz (a,v,x). Then

ly[1bx|y|bx]|

| <
’ JIly(2 + 4a — 4a®)b — 4(1 + @)2plbx? — 4(1 + a)2kq]|

la (43)
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and

lyI*b?x*  lyllbx]|

<
lasl < 30 ¥ "o+ 200 (44)
and forsome u € R,
lyllbx] .
6(1+2a) f
1] < |[y(l+2a—2a2)3b|—2(1+a)zpz]b;cz—2(1+0c)2kq|
2 yl(1+2a)b?x
|a3 _H'azl S 9 |.y|2|bx|3|#_1| (45)
if
|ly(2+4a—4a2)b—4(1+a)?plbx2—4(1+a)?kq|
_ [[y(1+2a-2a?)b-2(1+a)?p]bx?—2(1+a)?kq|
|” 1= 3lyl(1+2a)b2x2 '
Proof. Let f € N;(a,y,x), 0 < a <1,y € C\{0} and x € R. Then there are two holomorphic function
v,u: 4 - 4 indicated by
v(z) = t1Z2 + t,z% + t323 + - (z € 1)
and
u(w) = s;w + s,w? + s;w3 + - (w € 4),
with v(0) = u(0) =0, |v(2)| < 1 and |[u(w)| < 1, z,w € 4, such that
1az?f""(z2) + (1 + 2a)z%f"(2) + zf'(2)
1+—[ a2 (@) + 2f () -1 <2@xvE@)+1-k
and
1faw3g"”' (W) + (1 + 2a)w?g"”" (W) + wg'(w)
- -1 0] 1-k.
y[ aw?g"(w) + wg'(w) < a(eutn) +1-k
Or, in equivalent way,
1+ 1az3f""(2) + (1 + 2a)2%f"(2) + zf'(2) L
14 az?f"(z) + zf'(z)
=1+ h(x)—k+h,(x)v(2) + ha(x)[v(2)]? + - (46)
and
- 1law3g”' (W) + (1 + 20)w?g" (W) + wg' (W) L
Y aw?g"(w) + wg'(w)
=14 h ) —k+ h()uw) + hs(x)[u(w)]? + . 47
From (46) and (47), we get
N 1az3f""(2) + (1 + 2a)2%f"(2) + zf'(2) L
14 az?f"(z) + zf'(z)
= 1 + hz(x)tlz + [hz(x)tz + h3(x)t12]22 + (48)
and
N 1aw3g”"' (W) + (1 + 2a)w?g" (W) + wg'(w) .
14 aw?g" (w) +wg'(w)
=14 hy(x)s;w + [h,(x)s, + hg(x)sZw? + ---. (49)

Notice that if
[v(2)| = |t1z + t,z2 + t3z3 + | < 1 (z € 1)
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and
[uw)| = |syw + sw?2 +s;w3 + | <1 (w € 4),
then
[til<1land|s;|<1 (i€eN).
It follows from (48) and (49) that

Maz = hy(x)ty, (50)
2
6(1 Jyr 20) 40 ;, D 33 = hy )ty + ha(EL, oY
2(1+a) ay = hy(x)s, (52)
and
2
U420 sy M i, st -

From (50) and (52), we find that

t, = —s; (54)
and
wa% = [h, ()I?(¢F + sD). (55)
If we add (51) to (53), we get
mga—_mz)ag = h,(x)(t; + s5) + ha(x)(tf + s7). (56)

By using (55) in equation (56), we have

(4+8a—8a%) 8(1+a)h;(x)] ,
y - )/Z[hz (x)]z a% = hz(x)(tz + 52)» (57)

which yields

lyl1bx|y|bx|

la,| < .
2 VIl (2 + 4a — 4a?)b — 4(1 + a)?p]bx? — 4(1 + a)2kq]|

Next, if we deduct (53) from (51), we get
12(1 + 2a)

14
In view of (54) and (55), equation (58) becomes

_ VA PP +57) | yha(X)(t, = s3)
=781 + a)? 12(1 + 2a)

(as — a3) = hy(x)(t; — 52) + hs () (tF — s7). (58)

Now, with the help of equation (3), we conclude that

laa| < ly|?b?x? lyl1bx|
74014 2)2 6(142a)°

Finally, by using (57) and (58) for some u € R, we get

o Yha(x)(t; — s5) Y2 [h ()P (1 — W)(t; +52)
% THE =T+ 2a) | y(4 + 8a — 8a2)[hy(x)]% — 8(1 + a)2hs(x)
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_ Yha () [(t,u(ﬂ,x) + 2 )tz + (‘I’(u, x) — — )Sz],

2 6(1+20{) 6(1+2a)
where
ylh, )1 (1 = p)
Y(u,x) = .
y(2 + 4a — 4a?)[hy,(x)]? — 4(1 + a)?h3(x)

Thus, we conclude that

[¥[[hz ()] 1

——— if 0 |Y(Wx)| € —/———=

lay — pa2| < 6(1 + 2a) 6(1 + 2a)

(Y12 CONF (w1 if 1% (20| 2 6(1+ 2a)

and with respect to (3), it evidently completes the proof of the theorem (3).
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