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Abstract:

In this paper we have derived generating function for a restricted partition function. This is in conjunction two
identities of Euler provides new partition theoretic interpretation of two identities of Euler.

1. Introduction , Definition and the Main Results

The following two ” Sum —Product” Identities are known as Rogers — Ramanujan identities :
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Where |q| < T and (g; q), is a rising factorial defined by
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If nis a positive integer, then obviously
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In this paper we give the partition theoretic interpretation of the following two identities of Euler :
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Theorem1 : For a positive integer k, let A;(n) denote the number of partition of n such that the  smallest
part (or the only part) is = k (mod2) and the difference between any two parts is

= O(mod2)then
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Proof : Let A, (mm,n)denote the number of partitions of n enumerated by A;(n) into m parts. We shall first
show that

Aymmn) =A(m—-Tn—k-2m-10)+A(mn-2m) .. .. 3

To prove the identity (4) we split the partitions enumerated by A, (m, n) into two classes :
(i)those who have least part k

(ii) those who have least part greater than k

For those whose smallest part is equal to k, we delete k and then subtract 2 from all the remaining parts . This
produces a partition of n — k — 2(m — 1) into exactly m — 1 parts.

Those who have smallest part greater than k , we subtract 2 from each part that produced a partition of
n — 2minto m parts.The transformations are invertible and thus we have
Ap(m,n) = Ak(m —I,n—k—-2(m-— 7)) + Apy(m,n —2m)
For|q| <1 and |zq| < T,let
filz,q) = Z Z Ay(m,n)z™qg™ .. @
n=0m=0

Substituting A, (m,n)from (4)in (3)and then simplifying ,we get
fiz, @) = 20" fi(24°, @) + fi(za q) . .. ©)

Setting

oo

fi(z,q) = Z a(n, k;q)z™ and then comparing the coefficients of z™ on both sides of (6) we

n=0
see that
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a(nk;q) =

Iterating (6), n times and observing that a(0, k; q) = 7, we see that
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This completes the proof of Theorem1.
Particular Cases :

For k = 1, theorem 1 reduces to the identity (1)
For k =2, theorem reduces to the identity (2)
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