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Abstract
In this paper, the iterative method, proposed by Gejji and Jafari in 2006, has been modified for solving nonlinear
initial value problems. The Laplace transform was used in this modification to eliminate the linear differential

operator in the differential equation. The convergence of the solution was discussed according to the
modification proposed. To illustrate this modification, some examples were presented.

Keywords: Iterative Method, partial differential equations, initial value problem, numerical solution, Laplace
transform.

Introduction

Differential equations appear in many scientific and life fields such as engineering, physics, chemistry,
economics, and biology. Therefore, it became necessary to focus on finding the best methods to solve it. There
are many numerical and analytical methods used to solve partial differential equations, such as Admoain
decomposition method [1 — 6], homotopy perturbation method [7 — 11], Laplace decomposition method [12,
13], variational iteration method [14 — 16], collocation method [17-19] and artificial neural network (Ann) [20 —
24].

In 2006, Gejji and Jafari proposed a new iterative method (NIM) for solving functional equations [25]. They
described the general functional equation as following:

u=N@w +f (N
where N is a nonlinear operator and fis a known function. The solution u expressed as the form:

u=§:um @

m=0

They decomposed the nonlinear operator N as:

oo o m m—1
N(Z um> = N(up) + Z N Zuj -N u; (€)
m=0 m=1 =0 =0
From (2) and (3), equation (1) is equivalent to
© oo m m—1
Zum=f+N(u0)+Z N Zuj N[ Y @
m=0 m=1 =0 =0
Finally, the recurrence relation was defined as:
u=f
u; = N(up) ®)

Upe1 = N(ug+ -+ up) =N+ -+ up_7), m=12,..

Later, NIM was used and modified to solve nonlinear equations such as partial differential equations of integer
and fractional order, integral equations, a system of equations, and algebraic equations [26-30].

In this paper, the NIM was modified to solve partial differential equations. The Laplace transform was used to
convert the partial differential equation into a formula similar to the formula (1) as it will be illustrated in the
next section.
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Modified New Iterative Method

To illustrate the modified method, rewrite a general IVP as:

L(uX, ) + R(uX,0) + N(u(X,t)) = g(X, ) 6)
With the initial condition
oku(X,t)
Th:o:fk(x) Jk=01,...,n—1 )
where L(.) = a;(,'l) ,n=1,2,3,..is a linear operator of the partial derivative with respect to t, R(.) the remained

of the linear operator, N(.) the nonlinear operator, g(X, t) is the inhomogeneous part which is known function
and X is a variable with one or more dimensions.

Taking the Laplace transform (with respect to the variable t) for the equation (6) to get:
LILW} + L{R(w) + Nw)} = L{g} C))
By the properties of the Laplace transform and put F = R + N, the equation (6) becomes:

n-1 .
.0t
S"L{u) - ZOSH_H i leo t LF@) = Llg) @)

From (7) we have:
n-1

stLfw} = ) s+ LF@) = Lo} (10)
i=0

And hence:
n-1

. 1 1
L= ) 5T+ L) - L W) (an

i=0

Taking the inverse of the Laplace transform on both sides of equation (11), to get:
n-1 .
A—— 7
=) fim+ £ g}~ LTS LF @) (12)
i=0

By the linearity property of the Laplace transform and it's inverse:

i
|

n-1
u= Z fi t— +L£77 Linll{g}] -7 {Sinz;{?(u)}] (713)
i=0

i

Then (13) is equivalent to (6), i.e. the two equations have the same solutions.

Substituting (2) in (13) we have:

Z wp (X, 8) = f — L7 {Sinzz {T (Z w, (X, t))]} (14)

m=0 m=0

Where

n-1 .
t 1
f=Z)ﬁ.—!+L-7{S—nL{g}] (15)

l

The operator F in (14) can be decomposed as:
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(Eo) ()l o

Then, compared to the NIM (1-5), the recurrence relation can be defined as follows:

Substituting (16) in (14), we have:

o

Z Uy =f— L7 Sin,c{?(uo) +i
i=1

m=0

Uy =f

1
us = —L-’{S—nz:{f(uo)}] (18)
kumﬂ =L SinL{T(uo + ot uy) —Flug+ -+ um_7)}} , m=12..

Convergence analysis

In this section, the convergence of the series (2), calculated by (18), will be discussed, and it will also be proved
that it satisfies the initial value problem (6). But first, the following three lemmas will be presented.

Lemma 1; If L77(F) and L77(||F||) are exist, where L is the Laplace transform, for any function F in a Banach
space B, then

IL77|| = L "AIFID
Proof:

The Post-Widder inversion formula for the Laplace transform is: [31]

DL k
L7 (F) = Jim [( k') (?) F (?)] . t>0andk=0,12,..

Since L77(F) is exist then there is f(t) such that

1 = tim [C2E (Y o ()|-ro
Then
@i =1l = |im S e O[] 5 € )WF(")(%)]
k+1
~im [5G [l N =imfm @ 1G]

Then the sequence {7 ( )kH || (k)( )”} converges to ||f(®)]|.

Now since L™'(||F||) is exist then there is B such that L™'(||F||) = # i.e. by the Post-Widder inversion formula
for the Laplace transform we have

o =[S 1 ]
[GLE:

= (?)kH”F(") (%)”} converges to S But this sequence has a subsequence

Then the sequence {

k+1
{%( ) ” (")( )”} which is converging to [|f(t)]l, and every convergent subsequence of a convergent

sequence has the same convergence point, that implies § = ||[f(t)|| and hence L~'(||IF|]) = |If(®)|l, then
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L7 =L "AIFID

Lemma 2: If L(f) and L(||f|) are exist, where L is the Laplace transform, for any function f in a Banach space
B, then

ILOW < LAIFID

Proof:

The Laplace transform is defined as:

L(f) = f eStF(t) dt
0

Therefore,

oo

fe‘”f(t) dt

0

oo

< j le™stF (Ol de = j e HIF@I de = LAIFID
0

0

ILOIN =

Then
NILCON < LAIFID

Lemma 3; For any function f in a Banach space B
|27 [Feon]| = 7 [ZLam] L s>0 n=12..
Proof:

By Lemma 1 and Lemma 2 and since s > 0, we have

o nll-v sl - o] < e

Theorem 1: If F is a contraction operator, i.e., there is a € (0,7) such that ||[F(u(t,X)) —Fw(t, X)) <
allu(t, X) —v(t,X)||, t = 0. Then, the infinite series (2), which is computed by (18), is absolutely convergent if

e<"["s.

Proof:

Foranym = 1,2,3, .., by (18):

"um+7" =

1
L {s—n LEF (ug + +++ ) = Fug + -+ + ”’”'7)}}”
By Lemma 3 we have:

”um+7" =

<c Linﬁ{uf(uo oo ) = Fug + um—ﬂ“}]

1 1
<L L—nﬁ{a lQuo + -+ upm) — (up + -+ + um_7)ll}] =L {S—nﬁ{a IIumII}}

n

1 t
= alfupll £ L—nw}} = & — Il

Then

n n

[l
el < a F [l |l - m <a F m=123,..
! m !
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By the ratio test, the series (2) is convergent if Pimetl 7 this implies that

llumll

tn n! n |
a—<1 - th<s— - t< f”-
n! a /a

Theorem 2: The infinite series (2), which is computed by (18), is a solution to (6).
Proof:
Since R is a linear operator then:

Flug+ -+ upy) —Flug+ -+ Up_q)
=R(ug+ -+ uy) + N(ug + -+ up) —R(ug+ -+ up_1) —NQug+ -+ up_;)
=R(ugp) + -+ R(U) — R(up) = = R(upm—7) + N(up + -+ + up) = N(up + - + Uy 1)
=R(Uy) + N+ +up) —Nug+ -+ up_;)

Now, Let

Sm =Upt+ ot Upyg

1 7
=—L' {S—nﬁ{T(uo)}] - L7 {S—nL{T(uo +ug) — T(uo)}}

—r!

SinL{T(uo +u;+up) — Flug + uﬂ}} —

— L SinL{T(uo + ot Uy) = Fug+ - + um_7)}}

= —L77 {SinL{R(uo) + N(uo)}] — L7 LinL{R (u7) + N(up + uy) — N(uo)}}
— L7 {SinL{R(uz) + N(up +u; +up) — N(up + u;)}} —

— L {SinL{R(um) + N(uo + -+ um) - N(uO +oet um—7)}]

= —L77 {SinL{R(uo +tupy) + N(ug + -+ um)}} = —£7' SinL{R (Z u]-) +N <Z u]-)}

Then

u=iui =uo+§;ui =f+r|ni_rpm(5m) =f+n|liihoo —L77 %L{R(iuj>+N<Zuj>}

i=0 j=0

=f—L SinL{R (Z uj> +N ( u,-)} =f-—L7' !SinL{R(u) + N(u)}}
j=0 j=0

i.e u=Yzu; calculated according to (18) satisfies equation (13) and hence it is a solution to (6).
4. Applications
In this section, some examples will be introduced to illustrate the modified of NIM.
Example 4.1: Consider the following 3" order nonlinear homogeneous PDE:
U + 6UUy + Uyyy = 0, u(x,0) = k sech (kx)

Then L(u) = 3—1: i.e. n =1, R(u) = Upyy, N(u) =6u?u, andsince g = 0 then:
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u=f=fo+L7' {gﬁ{g}} = k sech (kx) + L' {gﬁ{O}] = k sech (kx)

u; = —L77 {;L{R(uo) + N(uo)}} =—L77 {;L{R(k sech(kx)) + N(k sech(kx))}]

=—r7 {gL{k" tanh (kx)(—sech(kx) + 6 sech®(kx)) — 6 k*tanh(kx) sechg(kx)}}

= k*tanh(kx) sech(kx) t
u, =—L7' {;L{R(m) + N(up +ug) — N(uo)}]
=L {gL{R (k* tanh(kx) sech(kx) t) + N(k sech(kx) + k*tanh(kx) sech(kx) t)

— N(k sech(kx))}}

= £k7tanh(kx) (7 -2 sech?(kx)) t2 + k"% tanh(kx) (6sech®(kx) — 70 cosh’(kx)) t3
+ k™3(3sech® (kx) — 9sech’ (kx) + 6 sech’ (kx) ) t*

Then from (2), we have:

u(x, t) = up(x, t) + u;(x, t) + ux(x,t) + -
= k sech(kx) + k*tanh(kx) sech(kx) t + %k”canh(kx) (7 -2 sech’(kx)) t2

+ k' tanh(kx) (6sech’(kx) — 70 cosh’(kx)) t3
+ k'3(3sech’ (kx) — 9sech®(kx) + 6 sech”(kx) ) t* + -

1
= k sech(kx) + k*tanh(kx) sech(kx) t + §k7tanh(kx) (71— 2 sech’(kx)) t2
7
+ gkm tanh(kx) (sech(kx) — 6 sech®(kx)) t3 + -

This is closed to the exact solution:
u(x, t) = k sech (k(x — k’t))

Example 4.2: Consider the following 2" order nonlinear homogeneous PDE:
1
utt—u+2u§=0, u(x,0) =1+x% u(x,0)=1

2
Then L(u):ZT? ie. n=2, R(u) = —u, N(u)=;7zu,26 and since g = 0 then:
1
uo=f=fo+f7t+ll"{s—2£{g}}: T+x?+t+0=x’+1+t

u;=—L7' {SizL{R(“O) + N(uo)}] =—L77 {SlzL{R(xz +7+t)+N(x?+71+1t)}

=77 lL{— 2—7—t+1(2 )2} =L 7L{7+t} —t2+ 3—t2+t3
= 21 2T )2 T2 T 273
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1
u; =—L" {S—ZL{R(W) + N(ug +ug) — N(uo)}]
1 1 1 1 1 1
— _r-1)_ PR 2 PV B 2
=—L {SZL{R(Zt +6t>+N<x +7+t+2t +6t> 4(2x) }]

= 71:{ e Ly Tone Lo 2}—t4+t5—t4+t5
- 52 2@ 5@ = 5 B

2 6 120 4! 5!
7 6 7 t6 t7
Uz = —L_ L{R(uz) + N(uo + Uy + uz) N(uo + u7)} 720 5040 6' =
Then from (2), we have:
t?2 3 ot 0 b 7
ulx, t) = up(x, t) +ui(x, ) + up(x,6) +=x>+1+t+—= > +3| tot Bl a+7+---

This is closed to the exact solution:
u(x, t) =x° +et
Example 4.3: Consider the following 3rd order nonlinear inhomogeneous PDE:
U + U2 — UU, —u = 3e*FE, u(x,0) =0, u;(x,0) =e*, U (x,0) =2 e*
3
Then L(u) = ZTL; i.e. n=3, R(u) =—u, N(u) = u’ —uu, andsince g = 3e**t then:

t? 1 1
uy=f=fo+fit +f25+12'7 {S—Zﬁ{g}} =0+e*t+eXt?+ L] L—Zﬁ{gi’ex“}]

2

2 2
wy =L {Slzﬁ{R(uo) + N(Uo)}] =—L7" {SLZL{R (ex (3et —3-2t- t?)) * N<ex (get mIoat- 3)}}

3t2 3ttt
3et—3-3t———————

3 t?
=e"t+ext2+§ex(26t—t2—2t—2) =ex<3et—3—2t——>

2 2 12 120
)7
U, = —-L 52 L{R(u;) + N(UO + 'U,7) - N(UO)}

3et—3-3t-" e

3t2 32 ot 0 tb t7 t8
2 2 8 40 240 2520 40320

Then from (2), we have:
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ulx, t) = uplx, t) + u;(x, t) + ux(x,t) + -+ =
7t 6t3 5t* 4¢° 3t6 2t7 8 )

2t2 2t2 3t3 3t3 4ttt 4t* 5t° 5t° 6t° 6t° 7t7 7t7 8t8

S I T R TR TR R R - R R R TR R-Th
8té D
8!

. . 9t? 9t3 9t* 9t> 9¢° 9t7 98
¢ (96 B T TR TR TR H T

t? t3 t4 t5 t® t7 8
— t __
—e"<9e 9[7+t+ Gttt tatatyg T ]
t2 3 ottt t° b 7
T+t+— Statatatatat

This is closed to the exact solution:
u(x, t) = te**t
5. Conclusion

In this research, a new modification of the iterative method to solve PDEs is proposed. The experimental results
show that the suggested modification is computationally efficient for solving non-linear, non-homogenous PDEs
and can easily be implemented since it is free of using Adomian polynomials when dealing with the nonlinear
terms like in the ADM and being free of using the Lagrange multiplier as in the VIM. The method proves to be
simple in its principles and convenient for computer algorithms. It has also been witnessed that a few
approximations can be used to achieve a high degree of accuracy.
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