(9)

# DOI: https://doi.org/10.24297/jam.v19i.8793

## A Modern Technique for Evaluating the Square Root of a Complex Number

### Ahmed A. Almoselmawy

Department of Mechanical engineering, Babylon University, Babil, Iraq.

ahmedalmoselmawy45578@gmail.com

### Abstract

The subject of complex numbers issue is very significant because of its wide utility, especially in the engineering circuits representation. In this paper, a modern method to find the square root of the complex number has been analyzed, and some examples on the subject were presented.

Keywords: Complex Number; real part; imaginary part; Square Root; Completed Square

### 1.introduction

The complex numbers are very important issue in a lot of situations such as controlling circuits representation, electricity circuits representation and used in advanced calculus.

The complex number is a number that is written in the form a + i b, where a and b are real numbers while i is the imaginary one and equal  $\sqrt{-1}$ . If the complex number is z, then z=a+ib, where a is named as the real part and is written as Re(z) and b, is named the imaginary part and can be put in form I'm(z) [1].

In this paper, a new technique has been invented for evaluating the square root of the complex numbers, and it was proved by many examples.

### 2. Analysis of the Square Root of the Complex Numbers

| Let z=a+ib                                                                                         | (1) |
|----------------------------------------------------------------------------------------------------|-----|
| Then, $\sqrt{z} = \sqrt{a + ib}$                                                                   |     |
| $i^2$ =-1 then multiplying it by c and adding to it c, the result will be zero, i.e. c $i^2$ +c =0 | (2) |
| Putting eq.(2) inside the root of z, then                                                          |     |
| $\sqrt{z} = \sqrt{a + ib + ci^2 + c}$                                                              | (3) |
| Rearranging of eq.(3) then                                                                         |     |

 $\sqrt{z} = \sqrt{ci^2 + ib + a + c} \tag{4}$ 

The form of expression inside root is a second order equation of the form  $Ax^2+Bx+C$ , where, A=c, B=b and C=a+c. If we consider the equation is a completed square then the equation becomes  $(\sqrt{A}x + \sqrt{C})^2$  but B must equals  $\sqrt{4AC}$ , that is the condition of the completed square.

Hence from above conservations and substituting (i) in place of (x) then:

 $\sqrt{z} = \sqrt{(\sqrt{c}i \mp \sqrt{a+c})^2}$ (5)

Then, 
$$\sqrt{z} = \mp (\sqrt{c}i \mp \sqrt{a+c})$$
 (6)

From the rule of the completed square:

Then substituting of A,B and C in eq.(4), the result is:

$$b^2 = 4c (a+c)$$
 (8)

Then,  $b^2 = 4ac + 4c^2$ 



Journal of Advances in Mathematics Vol 19 (2020) ISSN: 2347-1921

Rearrange,  $4c^2+4ac-b^2=0$ 

Then, the constant (c) can be found by solving the equation (10)

$$c = \frac{-4a}{8} \mp \frac{\sqrt{16a^2 + 4 \times 4 \times b^2}}{8}$$
(1)

$$c = \frac{-a}{2} \mp \sqrt{\frac{a^2 + b^2}{4}}$$
(12)

By neglecting negative root then

Then, 
$$\sqrt{z} = \mp (\sqrt{a - \frac{a}{2} + \sqrt{\frac{a^2 + b^2}{4}}} \mp i \sqrt{\frac{-a}{2} + \sqrt{\frac{a^2 + b^2}{4}}})$$
 (13)

Hence, 
$$\sqrt{z} = \mp \left(\sqrt{\frac{a}{2} + \sqrt{\frac{a^2 + b^2}{4}}} \mp i \sqrt{\frac{-a}{2} + \sqrt{\frac{a^2 + b^2}{4}}}\right)$$
 (14)

If the value of (b) positive, then the equation becomes:

$$\sqrt{z} = \mp \left(\sqrt{\frac{a}{2} + \sqrt{\frac{a^2 + b^2}{4}}} + i\sqrt{\frac{-a}{2} + \sqrt{\frac{a^2 + b^2}{4}}}\right)$$
(15)

While, if (b) is negative, then:

$$\sqrt{z} = \mp \left(\sqrt{\frac{a}{2} + \sqrt{\frac{a^2 + b^2}{4}}} - i\sqrt{\frac{-a}{2} + \sqrt{\frac{a^2 + b^2}{4}}}\right)$$
(16)

#### 3. Examples on The Used Technique

Find the square root of the following complex numbers:

1. 
$$z = 3 + i4$$
  
solution:  
 $a=3, b=4$   
 $\sqrt{z} = \mp (\sqrt{\frac{a}{2} + \sqrt{\frac{a^2 + b^2}{4}}} + i\sqrt{\frac{-a}{2} + \sqrt{\frac{a^2 + b^2}{4}}})$   
 $\sqrt{z} = \mp (\sqrt{\frac{3}{2} + \sqrt{\frac{3^2 + 4^2}{4}}} + i\sqrt{\frac{-3}{2} + \sqrt{\frac{3^2 + 4^2}{4}}})$   
 $\sqrt{z} = \mp (\sqrt{1.5 + 2.5} + i\sqrt{-1.5 + 2.5})$   
 $\sqrt{z} = \mp (2 + i1)$ 

For checking,

$$z = (2^2 - 1^2) + i \times 2 \times 2 \times 1$$

2. z = 5+i7solution: a=5 b=7

$$\begin{aligned} \sqrt{z} &= \mp \left(\sqrt{\frac{a}{2} + \sqrt{\frac{a^2 + b^2}{4}}} + i\sqrt{\frac{-a}{2} + \sqrt{\frac{a^2 + b^2}{4}}}\right) \\ &\sqrt{\frac{a^2 + b^2}{4}} = \sqrt{\frac{5^2 + 7^2}{4}} = 4.3011 \\ &\sqrt{z} &= \mp \left(\sqrt{\frac{5}{2} + 4.3011} + i\sqrt{\frac{-5}{2} + 4.3011}\right) \end{aligned}$$



(10)

1)

ttps://rajpub.com/index.php/jam

| √ <i>z</i> =∓(2.6079+i1.342)                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------|
| z = 5+i6.9996≈5+i7                                                                                                                   |
| 3. $z = i6$<br>solution:<br>a=0, b=6                                                                                                 |
| $\sqrt{z} = \mp \left(\sqrt{\frac{a}{2} + \sqrt{\frac{a^2 + b^2}{4}}} + i\sqrt{\frac{-a}{2} + \sqrt{\frac{a^2 + b^2}{4}}}\right)$    |
| $\sqrt{\frac{a^2+b^2}{4}} = \sqrt{\frac{a^2+7^2}{4}} = \frac{7}{2} = 3.5$                                                            |
| $\sqrt{z} = \mp \left(\sqrt{0 + \frac{7}{2}} + i\sqrt{0 + \frac{7}{2}}\right)$                                                       |
| $\sqrt{z} = \mp \left(\sqrt{\frac{7}{2}} + i\sqrt{\frac{7}{2}}\right)$                                                               |
| 4. $z = 6+i8$<br>solution:<br>a=6, b=8                                                                                               |
| $\sqrt{z} = \mp \left( \sqrt{\frac{a}{2} + \sqrt{\frac{a^2 + b^2}{4}}} + i \sqrt{\frac{-a}{2} + \sqrt{\frac{a^2 + b^2}{4}}} \right)$ |
| $\sqrt{\frac{a^2 + b^2}{4}} = \sqrt{\frac{6^2 + 8^2}{4}} = 5$                                                                        |
| $\sqrt{z} = \mp (\sqrt{3} + 5 + i\sqrt{-3} + 5)$ $\sqrt{z} = \mp (\sqrt{8} + i\sqrt{2})$                                             |
| 5. $z = 3-i4$                                                                                                                        |
| solution:<br>a=3, b=-4                                                                                                               |
| $\sqrt{z} = \mp (\sqrt{\frac{a}{2} + \sqrt{\frac{a^2 + b^2}{4}}} - i\sqrt{\frac{-a}{2} + \sqrt{\frac{a^2 + b^2}{4}}})$               |
| $\sqrt{z} = \mp \left( \sqrt{\frac{3}{2}} + \sqrt{\frac{3^2 + 4^2}{4}} - i \sqrt{\frac{-3}{2}} + \sqrt{\frac{3^2 + 4^2}{4}} \right)$ |
| $\sqrt{z} = \mp (\sqrt{1.5 + 2.5} - i\sqrt{-1.5 + 2.5})$<br>$\sqrt{z} = \mp (2 - i1)$                                                |

#### 4. References

[1] Burton, David M., *The History of Mathematics*. New York. USA.1995; 3, p.294. McGraw-Hill, ISBN 978-0-07-009465-9.

