New Conditions of The Existence of Fixed Point in $\Delta-$ Ordered Banach Algebra

Boushra Youssif Hussein

Department of Mathematics, College of Education, University of AL-Qadisiyah

Boushra.alshebani@qu.edu.iq

Abstract

The main idea is to construct a new algebra and find new necessary and sufficient conditions equivalent to the existence of fixed point. In this work, an algebra is constructed, called Δ - ordered Banach algebra, we define convergent in this new space, Topological structure on Δ – ordered Banach Algebra and prove this as Housdorff space. Also, we define new conditions as Δ – *lipshtiz*, , Δ – *contraction conditions* in this algebra construct, we prove this condition is the existence and uniqueness results of the fixed point. In this paper , we prove a common fixed point if the self-functions satisfy the new condition which is called φ – *contraction*.

Keywords: Fixed point, Ordered Banach algebra, lipschitz mapping, and contraction mapping

Introduction

It is known Banach contraction principle and a number of generality in background of metric spaces play a fundamental role for several complications of functional analysis, differential and integral equations.

Gahler (1963) [6] presented the notion of 2-metric spaces as a generalization of an usual metric space. Gahler proved that geometrically d(a, b, c) represents the region of a triangle formed by the point $a, b, c \in X$ equally its vertices.

An usual metric space is a continuous function, but Ha, Cho and While (1988) [15] examined that a 2- metric space is not a continuous mapping. Dhage (1984) [5] introduced the notion of a *D*- metric space as a generality of a 2- metric space; and studied the topological properties of *D*- metric space

Mustafa and Sim (2006) [17] introduced a newfangled metric called *G*-metric space. They show the topological constructions of Dhages [4] work unacceptable, after Sedghi, Shobe and Zhom (2007) [20] presented concept, which is named D^* - metric space, but Fernardcz ,Sle, Saxena, Malviya and Kuman (2017)[13] generalized an *S*-metric space to *A*-metric space.

Many researchers have their consideration to generalizing mertic (see Yan and Shao Yuan on (2011) [25], Sastry, Srinivas, Chandra and Balaiah (2011) [14], Kim and Soo (2012)[20], Dey and Saha (2013) [4],

Liu and Xu (2013) [8] introduced some concepts of a cone metric space over Banach algebra. Some researchers then developed many concepts as, Nashine and Altun, (2012)[9], Tiwari and Dubey (2013) [22], Arun and Zaheer (2014) [3]. But Nashine and Altun (2012) [10] defined cone metric spaces and proved some fixed point theorems of contractive maps in such a space using the normality condition. Also, Rahimi & Soleimani (2014) [12] used the notion ordered cone metric space.

But some scholars have attention about fixed point theorem such as Badshah, Bhagatand and Shukla(2016)[23] how introduced some fixed point theorem for α - ϕ - metric mapping in 2- metric spaces and Ma, Jiang and Hongkaisun (2014) [24] state fixed point theorem on C*-algebra valued metric spaces.

The point x- that satisfies the equation x = T(x) is called a fixed point of the function T which is considered the root of the equation above. To find this root, we first find an initial holding value of x_0 . Then, we calculate the value of the function T in x_0 to get another root called x_1 that is $x_1 = T(x_0)$; and then repeat the process can get

a new approximate value $x_2 = T(x_1)$. Thus, a sequence of root values can be generated by applying the formula $x_{n+1} = T(x_n)$ for n = 0.1, 2, ...

The fixed point a in the equation above represents the distance of the intersection point of the curves of y = x, y = T(x) for each axis x, y. If x_0 is the initial fixed point, then $T(x_0)$ is the length of the column from x_0 on the x axis until it intersects the curve of the T- function and since the points on the rectangle y = x are equal to the distance from both axes y and x, so the line passing at the point (x_0 , T (x_0)) rectangle the x-axis will intersect the line y=x in the x- axis, represent x_1 where

$$x_{1} = T(x_{0})$$

In a similar way, we find the remaining points where $x_{n+1} = T(x_n)$. Here, we ask the following question: How do we choose the function T to ensure that the generated values are converged from the repeated formula $x_{n+1} = T(x_n)$?

To answer the question , we can prove the existence and uniqueness of fixed point under some new conditions by constructing a new algebra called Δ – *ordered Banach algebra* .

1- Δ - Ordered Banach Algebra

We start this section by a definition of Banach algebra.

"Definition (2.1)[2] :let *E* is a linear space over field of real numbers *.E* is called Banach algebra if *E* is Banach space with an operation of multiplication is defined as following :for *x*, *y*, *z* \in *A*, for all $\alpha \in R$

1) (xy)z = x(yz)

2) x(y + z) = xy + xz and (x + y)z = xz + yz

3) $\alpha(xy) = (\alpha x)y = x(\alpha y)$

 $4) \parallel xy \parallel \leq \parallel x \parallel \parallel y \parallel$

We consider a Banach algebra has an identity, that is ex = xe for all $x \in E$. (Multiplicative identity)

If there is an element $y \in A$ such that = yx = e, $y \in E$ is called inverse of x and denoted by x^{-1} ."

"Proposition 2.2 [19]: Let *E* be Banach algebra has a unite *e*, $x \in E$. If the condition spectral radius $\sigma_{\epsilon}(x) < 1$ (for all $\epsilon > 0$), then

$$(e-x)^{-1} = \sum_{i=0}^{\infty} a^i$$

"Remark 2.3 [19]: Let *E* be Banach algebra with spectral radius $\sigma_{\epsilon}(x)$ of *x* satisfy $\sigma_{\epsilon}(x) \leq ||x||$."

"**Remark 2.4 [2]:** If $\sigma_{\epsilon}(x) < 1$, then $||x^{n}|| \rightarrow 0$ as $n \rightarrow \infty$ ".

"Lemma 2.5 [2]: If *E* is a real Banach algebra with cone *C* and if $o \le u \le c$ for each $o \le c$, therefore u = o."

"Lemma 2.6 [2]: Let *C* be a cone and $a \leq b + c$ for $c \in C$, then $a \leq b$.

A sub set C of E is called a algebra cone of E if

1) *C* non- empty closed and $\{o, e\} \subset C$

- 2) $\alpha a + \beta b \in C$ for all $\alpha, \beta > 0$
- 3) *x*.*y*∈*C*
- 4) $\mathcal{C} \cap (-\mathcal{C}) = \{0\}.$ "

"We can define a preference ordering \leq with respect to *C* by $x \leq y$ iff $y - x \in C$. x < y with stand for $x \leq y$ and $x \leq y$ the cone *C* is called normal if there exist N > 0 such that, for all $x, y \in E$

 $0 \leq x \leq y \Longrightarrow \parallel x \parallel \leq N \parallel y \parallel ."$

Now, we define a new construction called Δ - ordered Banach algebra.

Definition 2.7: Let X be a non-empty. A function Δ_{λ} : $[0, \infty) \times X \times X \to E$ is called an Δ - metric on X if

1) $\Delta(\lambda, x, y) \ge 0$ for $x, y \in X, \lambda \ge 0$

2) x = y if and only if $\Delta(\lambda, x, y) = 0$

3) $\Delta(\lambda, x, y) = \Delta(\lambda, y, x)$

4) $\Delta(\lambda, x, y) \leq \Delta(\mu, y, a)$ for , $\mu > \lambda > 0$ and $x, y, a \in X$

5)) $\Delta(\lambda + \mu, x, y) \leq \Delta(\lambda, x, y) + \Delta(\mu, y, a)$

The triple (X, E, Δ) is called Δ - ordered Banach algebra.

Example 2.8: Let X be locally compact Housdorff space , $C(X) = \{f | f: X \to R, continuous function\}$, and $C^+(X) = \{f \in C(X): f(x) \ge 0 \text{ for all } x \in X\}$, define multiplication in the natural way. Therefore C(X) with supermom norm is ordered Banach algebra. It is obvious that (C(x), X, Δ) is Δ – ordered Banach algebra where

 $\Delta: [0,\infty) \times X \times X \to C(X)$ by $\Delta(\lambda, a, b) = \sup |f(a) - f(b)| e^{\lambda}$

2- Topological structure on Δ – ordered Banach Algebra

Definition 3.1: Let (X, E, C) be Δ -ordered Banach algebra. For all $x \in X$, for all c > 0, the set $B_{\Delta}(\lambda, x, c) = \{y \in X : \Delta(\lambda, x, y) < c\}$ is called Δ -ball with and radius c > 0 and admits x.

And put $\beta = \{B_{\Delta}(\lambda, x, c) : x \in X, and c > 0\}.$

Theorem 3.2: Let (E, C) be ordered Banach algebra, then (X, E, Δ) is a Housdorff space.

Proof:- Let (E, X, Δ) be a Δ - ordered Banach algebra. Let $x, y \in X$ with $x \neq y$, $\lambda, \mu \ge 0$, we take $c = \Delta(\lambda + \mu, x, y), U = B\left(\lambda, x, \frac{c}{2}\right), V = B\left(\mu, y, \frac{c}{2}\right)$.

Then $x \in U$ and $y \in V$. We support $U \cap V \neq \emptyset$. There exist $a \in U \cap V$.

But $\Delta(\lambda + \mu, x, a) \leq \Delta(\lambda, x, a) + \Delta(\mu, y, a) \leq \frac{c}{2} + \frac{c}{2} = c.$

That is $c \prec c$ and this contradiction.

Then, (X, E, Δ) is a Housdorff space.

Definition 3.3: Let (X, E, Δ) be $a \Delta$ -ordered Banach algebra. A sequence $\{x_n\}$ in (X, Δ) converges to a point x if for every $c \in E$ with c > o, there exist a positive integer N_0 such that $\Delta(\lambda, x_n, x) < c$ for $n \ge N_0$, we denoted by $\lim_{n \to \infty} x_n = x$ ($x_n \to x$ as $(n \to \infty)$).

Definition 3.4: Let (C, E, Δ) be $a \Delta$ –ordered Banach algebra. A sequence $\{x_n\}$ is said to be Cauchy sequence if for each $c \succ o$ there exists a positive integer N_0 such that $\Delta(\lambda, x_n, x_m) \prec c$ for all $n, m \ge N_0$.

Examples 3.5: Let $(X, C(X), \Delta)$ a Δ – ordered Banach algebra in example (3.2), take the set of rational numbers Q.

Define $\Delta = [0, \infty) \times X \times X \to C(X)$ is in example. Let $\{x_t\}$ be a sequence defined by $\alpha_t = (1 + \frac{1}{t})^t$. We note that $x_t \in \mathbb{Q}$ for each $t \in \mathbb{Z}$, note that $\Delta(\lambda, x_t, x_k) = |f(x_t) - f(x_k)| e^{-\lambda}$

$$= \left| \left(1 + \frac{1}{t} \right)^t - \left(1 + \frac{1}{k} \right)^k \right| e^{\lambda} \text{ as } t, k \to \infty$$

$$\Delta(\lambda, x_t, x_k) \to 0$$

That is for each $c > \theta$, there is $N_0 \in Z^+$ such that $\Delta(\lambda, a_t, a_k) \prec c$ for all $t, k \ge N_0$.

Thus, $\{a_t\}$ is a Cauchy sequence, but $a_t \rightarrow e$ as $\rightarrow \infty$, $e \notin \mathbb{Q}$. Hence, $\{a_t\}$ is not convergent.

Definition 3.7: Let (X, E, Δ) and (X', E', Δ') are Δ - ordered Banach algebra. A mapping $f: X \to X'$ is said to be continuous at $x \in X$ when ever $\{x_n\}$ convergent to x, then $\{f(x_n)\}$ is convergent to f(x).

Definition 3.8: Let (X, E, Δ) be Δ –ordered Banach algebra , (X, E, Δ) is called complete if for each Cauchy sequence is convergent in *X*.

Definition 3.9: Let (X, E, Δ) be Δ -ordered Banach algebra. A map $T: X \to X$ is called Lipchitz if for all c > o, there exist a vector $N \in C$ with $\sigma_{\epsilon}(N) < 1$ for each $x, y \in X$,

 $\Delta(\lambda, T_a, T_b) \leq N. \Delta(\mu, a, b)$ for all $x, y \in X$ and $\lambda \leq \mu$

Example 3.10: Let $([0, \infty), C(X), \Delta)$ be a Δ - ordered Banach algebra. Define $T: X \to X$ as follows $T(a) = \frac{a}{2}$

$$\Delta(\lambda, T_a, T_b) = \sup \left| f(T_a) - f(T_b) \right| e^{\lambda}$$

= $\sup \left| f \circ T(a) - f \circ T(b) \right| e^{\lambda} = \sup \left| f\left(\frac{a}{2}\right) - f\left(\frac{b}{2}\right) \right| e^{\lambda}$
= $\frac{1}{2} \sup \left| f(a) - f(b) \right| e^{\lambda}$

 $\Delta(\mu, a, b) = \sup \left| f(a) - f(b) \right| e^{\mu}$

That is *T* is a Lipschitz map in *X*

Definition 3.11: Let (X, E, Δ) be Δ –ordered Banach algebra. A sequence $\{x_t\}$ is said to be m- sequence if for all m > 0, there exists $t \in x_t$ such that $x_t < m$ for all $n \ge t$.

Lemma 3.12: Let (X, E, Δ) be Δ – ordered Banach algebra. $\{mx_t\}$ is a *m*- sequence for all c > o if the sequence $\{x_t\}$ is a *m*- sequence in*C*.

Proof:- Suppose $\{x_t\}$ is a *m*- sequence for all c > o, there exists $t \in \mathbb{Z}^+$ such that $x_t < c$ for n > t. For all c > o, $mx_t \leq mc$ by take $\frac{c}{m} = t$.

3- Main Results

Definition 4.1: Let (X, E, Δ) be Δ - ordered Banach algebra. $T: X \to X$ holds the contradiction condition if $\Delta(\lambda, T_x, T_y) \leq t^n \Delta(\frac{\lambda}{2^n}, x_1, x_0)$

Theorem 4.2: Let (X, E, Δ) be Δ - ordered Banach algebra. Suppose $T: X \to X$ holds the Δ -contradiction condition

$$\Delta(\lambda, \mathsf{T}_x, \mathsf{T}_y) \leq m_1 \Delta\left(\left(\frac{\lambda}{4}\right), x, \mathsf{T}_x\right) + m_2 \Delta\left(\left(\frac{\lambda}{4}\right), \mathsf{T}_x, y\right) + m_3 \Delta\left(\left(\frac{\lambda}{4}\right), x, \mathsf{T}_y\right) + m_4 \Delta\left(\left(\frac{\lambda}{4}\right), y, \mathsf{T}_y\right)$$

where $0 < \sum_{i=1}^{4} m_i \le 1$, for i=1,2,3,4 Then *T* is a unique fixed point in *X*.

Proof: choose $x_0 \epsilon X$, $x_1 = T_{x_0}$ and $x_{n+1} = T_{x_n}$

Take $0 < m_i \le 1$, for i = 1,2,3,4

First we see,

if follows that

$$\Delta(\lambda, x_{n+1}, x_n) \leq t_1^n \Delta\left(\left(\frac{\lambda}{2^n}\right), x_0, x_1\right) + t_2^n \Delta\left(\left(\frac{\lambda}{2^n}\right), x_1, x_0\right)$$

$$\Delta(\lambda, x_{n+1}, \mathbf{x}_n) = (t_1^n + t_2^n) \Delta\left(\left(\frac{\lambda}{4}\right), x_0, x_1\right)$$

Put $k = (t_1^n + t_2^n)$,

$$\frac{1-\varepsilon}{1+\varepsilon} \le \left| k \right| \le \frac{1+\varepsilon}{1-\varepsilon}$$
. For $0 < \epsilon < 1$

It is clearly see that $\sigma_{\epsilon}(k) \prec 1$

$$\begin{split} &\Delta(\lambda, x_{n+1}, x_n) \leq k\Delta\left(\frac{\lambda}{2^{n-1}}, x_n, x_{n-1}\right) + \dots + k^n \Delta\left(\frac{\lambda}{2^{n-1}}, x_1, x_0\right) \\ &\Delta(\lambda, x_n, x_{n+m}) \leq k^m \Delta\left(\frac{\lambda}{2^{n-1}}, x_n, x_{n-1}\right) + \dots + k^{n+m} \Delta\left(\frac{\lambda}{2^{n-1}}, x_1, x_0\right) \end{split}$$

When $n, m \to \infty$ we have $\lim_{n,m\to\infty} \Delta(\lambda, x_n, x_{n+m}) = o$

Thus $\{x_n\}$ is Cauchy sequence in (X, E, Δ)

Since (X, E, Δ) is Banach algebra

That is (X, E, Δ) is complete.

Then $\{x_n\}$ is convergent to $x^* \epsilon X$ such that $x_n \to x^*$

Next, we claim that x^* is a fixed point of T

Actually,

$$\begin{split} &\Delta(\frac{\lambda}{4}, \mathsf{T}_{x^*}, x^*) \leqslant \Delta(\lambda, \mathsf{T}_{x^*}, x^*) \leqslant K[\Delta(\frac{\lambda}{2}, x^*, \mathsf{T}_{x_n}) + \Delta(\frac{\lambda}{2}, \mathsf{T}_{x_n}, \mathsf{T}_{x^*})] \\ &= k\Delta(\frac{\lambda}{2}, x^*, x_{n+1}) + k\Delta(\frac{\lambda}{2}, \mathsf{T}_{x_n}, \mathsf{T}_{x^*}) \\ &\leqslant k[m_1\Delta(\frac{\lambda}{4}, x^*, \mathsf{T}_{x^*}) + m_2\Delta(\frac{\lambda}{4}, x_{n+1}, \mathsf{T}_{x^*})] \\ &+ m_3\Delta(\frac{\lambda}{4}, x^*, \mathsf{T}_{x_{n+1}}) + m_4\Delta(\frac{\lambda}{4}, x_{n+1}, \mathsf{T}_{x_{n+1}})] + k\Delta(\frac{\lambda}{2}, x_{n+1}, x^*) \\ &\leqslant km_1\Delta(\frac{\lambda}{4}, x^*, \mathsf{T}_{x^*}) + k^2m_2\Delta(\frac{\lambda}{4}\lambda, x_{n+1}, Tx^*) + k^2m_2\Delta(\frac{\lambda}{4}\lambda, x^*, x_{n+1}) + km_3\Delta_\lambda(\frac{\lambda}{4}\lambda, x^*, x_{n+1}) + k^2m_4\Delta(\frac{\lambda}{4}, Tx^*, x^*) + k^2m_2\Delta(\frac{\lambda}{4}, x^*, x_n)] + k\Delta(\frac{\lambda}{2}, x_{n+1}, x^*) \\ &= (km_1 + k^2m_4)\Delta(\frac{\lambda}{4}, x^*, \mathsf{T}_{x^*}) + (k^2m_2 + k^2m_4)\Delta(\frac{\lambda}{4}, x_n, x^*) \\ &+ (k^2m_2 + km_3)\Delta(\frac{\lambda}{4}, x^*, x_{n+1}) + k\Delta(\frac{\lambda}{2}, x^*, x_{n+1}) \end{split}$$

then

$$(1 - km_1 - k^2m_4)\Delta\left(\frac{\lambda}{4}, x^*, T_{x^*}\right) \leq (k^2m_2 + k^2m_4)\Delta\left(\frac{\lambda}{4}, x_n, x^*\right) + (k^2m_2 + km_3 + k)\Delta\left(\frac{\lambda}{4}, x^*, x_{n+1}\right) + k\Delta\left(\frac{\lambda}{2}, x^*, x_{n+1}\right) \dots (4.3)$$

$$\Delta\left(\frac{\lambda}{4}, x^*, \mathsf{T}_{x^*}\right) \leq \frac{(k^2m_2 + k^2m_4)\Delta\left(\frac{\lambda}{4}, x_n, x^*\right) + (k^2m_2 + km_3 + k)\Delta\left(\frac{\lambda}{4}, x^*, x_{n+1}\right) + k\Delta\left(\frac{\lambda}{2}, x^*, x_{n+1}\right)}{(1 - km_1 - k^2m_4)} \leq c$$

We can see easily $\Delta(\lambda, x^*, T_{x^*}) = o$ is the mapping *T* which has a fixed point x^*

At last, for uniqueness, if there is y^* other fixed point, then

$$\begin{split} \Delta(\lambda, x^*, y^*) &= \Delta(\lambda, \mathsf{T}_{x^*}, \mathsf{T}_{y^*}) \\ &\leq m_1 \Delta\left(\frac{\lambda}{4}, x^*, \mathsf{T}_{x^*}\right) + m_2 \Delta\left(\frac{\lambda}{4}, x^*, \mathsf{T}_{y^*}\right) + m_3 \Delta\left(\frac{\lambda}{4}, y^*, \mathsf{T}_{x^*}\right) + m_4 \Delta\left(\frac{\lambda}{4}, x^*, \mathsf{T}_{y^*}\right) \\ &\leq m_1 \Delta\left(\frac{\lambda}{4}, x^*, Tx^*\right) + m_2 \Delta\left(\frac{\lambda}{4}, x^*, y^*\right) + m_4 \Delta\left(\frac{\lambda}{4}, y^*, x^*\right) + m_3 \Delta\left(\frac{\lambda}{4}, y^*, \mathsf{T}_{y^*}\right) \end{split}$$

 $\leq (m_2 + m_4) \Delta(\lambda, x^*, y^*)$

Since $0 < (m_2 + m_4) < 1$, we deduce from lemma that $x^* = y^*$

Definition 4.3: Let (E, C) be ordered Banach algebra with algebra cone *C*. Take Φ be the set of all functions $\varphi: E^3 \to E$ satisfying the following properties:

1) $\varphi(e, e, e) = c \leq e$

2) Let $a, b \in E$ be such that if either $a \leq \varphi(a, b, b)$ or $a \leq \varphi(b, a, b)$ or $a \leq \varphi(b, a, a)$

Definition 4.3: A self-mapping T on Δ - ordered Banach algebra (X, E, Δ) is called φ -contraction, if there exists a map $\varphi \in \Phi$ satisfy

Theorem 4.4: Let (X, E, Δ) be Δ - ordered Banach algebra and T a φ - contraction. If there exists $\lambda > 0$ such that for all $x \in X$.

 $\Delta(\lambda, x_0, T_{x_0}) = \sup \{\Delta(\lambda, x, T_x) : x \in X\}$, then T has a unique fixed point

Proof: Suppose $x_0 \neq T_{x_0}$. We take $x = x_0$, $y = T_{x_0}$ in (5.1). then $\Delta(\lambda, T_{x_0}, T_{x_0}^2) \leq \varphi(\Delta(\lambda, x_0, T_{x_0}), \Delta(\lambda, x_0, T_{x_0}^2, T_{x_0}^2))$

Since $\Delta(\lambda, T_{x_0}, T_{x_0}^2) \leq k. [\Delta(\lambda, x_0, T_{x_0})]$. But given that

 $\Delta(\lambda, x_0, \mathsf{T}_{x_0}) = \sup\{\Delta(\lambda, x, \mathsf{T}_x) : x \in X\}$

Hence $T_{x_0} = x_0$

For uniqueness, let y_0 be other fixed point of T that is $T_{y_0} = y_0$

Now,
$$\Delta(\lambda, x_0, y_0) =$$

 $\leq \varphi(\Delta_{\frac{\lambda}{3}}(x_0, y_0), \Delta_{\frac{\lambda}{3}}(x_0, T_{x_0}), \Delta_{\frac{\lambda}{3}}(y_0, T_{y_0}))$
 $\leq \varphi(\Delta_{\frac{\lambda}{3}}(x_0, y_0), \Delta_{\frac{\lambda}{3}}(x_0, x_0), \Delta_{\frac{\lambda}{3}}(y_0, y_0))$
 $\leq \varphi(\Delta(\frac{\lambda}{3}, x_0, y_0), 0, 0)$

There for $\Delta_{\lambda}(\lambda, x_0, y_0) \leq 0$ or $\Delta_{\lambda}(x_0, y_0) = 0$. Implies $x_0 \neq y_0$

That is the fixed point is unique and this complete the proof

Theorem 4.5: Let S and T be self-mapping on Δ - Banach algebra (X, E, Δ)satisfy the condition

$$\Delta_{\lambda}(\lambda, T_x, S_y) \leq \varphi((\Delta(\lambda, x, y), \Delta(\lambda, x, T_x), \Delta(\lambda, y, S_y)) \quad \text{ for all } x, y \in X$$

If there exists $y \in X$ such that

 $\Delta(\lambda, y, \mathsf{T}_y) \leq \Delta(\lambda, z, S_z) \dots (4.2)$

Then there exist a unique common fixed point of S and T

Proof: Let $T_{y_0} = x_0$, put $x = x_0$, $y = T_{x_0}$, we obtain

https://rajpub.com/indx.php/jam

$$\Delta_{\lambda}(\lambda, \mathsf{T}_{x_{0}}, \mathcal{S}(\mathsf{T}_{x_{0}})) \leq \varphi(\Delta(\lambda, x_{0}, \mathsf{T}_{x_{0}}), \Delta(\lambda, x_{0}, \mathsf{T}_{x_{0}}), \Delta(\lambda, x_{0}, \mathcal{S}(\mathsf{T}_{x_{0}}))$$

By (3) we get

 $\Delta(\lambda, \mathsf{T}_{x_0}, S(\mathsf{T}_{x_0})) \leq k\Delta(\lambda, x_0, \mathsf{T}_{x_0}) \leq \Delta(\lambda, x_0, \mathsf{T}_{x_0})$

This contradict of (4.1)

To prove that x_0 is also a fixed point of *S*, let $S_{x_0} = x_0$, therefore.

$$\Delta(\lambda, x_0, \mathsf{S}_{x_0}) = \Delta(\lambda, \mathsf{T}_{x_0}, \mathsf{S}_{x_0}) \leq \varphi[\Delta(\lambda, x_0, x_0), \Delta(\lambda, x_0, \mathsf{T}_{x_0}), \Delta(\lambda, x_0, \mathsf{S}_{x_0})]$$

Or $\Delta(\lambda, x_0, S_{x_0}) \leq \varphi(0, 0, \Delta(\lambda, x_0, S_{x_0}))$ that is $\Delta(\lambda, x_0, S_{x_0}) \leq 0$ or $S_{x_0} = x_0$

For uniqueness, let y_0 be another fixed point of S and T that is

$$T_{y_0} = S_{y_0} = y_0$$
, then

$$\Delta(\lambda, x_0, y_0) = \Delta(\lambda, \mathsf{T}_{x_0}, \mathsf{T}_{y_0}) \leq \varphi[(\Delta(\lambda, x_0, y_0), \Delta(\lambda, x_0, \mathsf{T}_{x_0}), \Delta(\lambda, y_0, \mathsf{T}_{y_0})]$$

Or
$$\Delta_{\lambda}(\lambda, x_0, y_0) \leq \varphi(\Delta(\lambda, x_0, y_0), \Delta(\lambda, x_0, x_0), \Delta(\lambda, y_0, y_0))$$

$$\leq \varphi(\Delta(\lambda, x_0, y_0), 0, 0)$$

That is $\Delta(\lambda, x_0, y_0) \leq 0$ implies $x_0 = y_0$.

Corollary 4.6: Let *S* and *T* be self-mapping of Δ - ordered Banach algebra (*X*, *E*, Δ) satisfying the following conditions:

1) There exists integer n and m such that

 $\Delta(\lambda, T_{x}^{n}, S_{y}^{m}) \leq \varphi[\Delta(\lambda, x, y), \Delta(\lambda, x, T_{x}^{n}), \Delta(\lambda, y, S_{y}^{m})] \text{ for some } \varphi \in \Phi$

2) If there exists a point $y \in X$ such that $\Delta(\lambda, y, T^n_x) \leq \Delta(\lambda, x, S^m_x)$

Then there exists a unique common fixed point of S and T

Theorem 4.7: Let (X, E, Δ) be a Δ - ordered Banach algebra such that

 $\Delta(\lambda, T_x, T_y) \leq \min \left\{ \lambda \Delta(\lambda, x, T_x), \mu \Delta(\mu, y, T_y) \right\}$

If there exists function F defined by $F(x) = \lambda \Delta_{\lambda}(\lambda, x, T_x)$ for each $x \in X$ such that $F(x) \leq F(T(x))$, then, T has a unique fixed point

Proof: Suppose for some $x_0, x_0 \neq T_{x_0}$. Then $F(T_{x_0}) = \Delta(\lambda, T_{x_0}, T(T(x_0)) \leq \min \{\lambda \Delta(\lambda, x_0, T_{x_0}), \mu \Delta(\mu, T_{x_0}, T_{x_0})\}$ since $\Delta(T_{x_0}, T_{x_0}) = \theta$

 $\Delta(\lambda, \mathsf{T}_{x_0}, \mathsf{T}(\mathsf{T}(x_0)) \leq \lambda \Delta(\lambda, x_0, \mathsf{T}_{x_0})$

 $F(\mathbf{T}_{x_0}) \leq F(x_0)$ which is contradiction

Hence $T_{x_0} = x_0$

For uniqueness, let y be another point of X different from x_0 such that $y_0 = T_{y_0}$, then

https://rajpub.com/indx.php/jam

 $\Delta(\lambda, x_0, y_0) = \Delta(\lambda, \mathsf{T}_{x_0}, \mathsf{T}_{y_0}) \leq \min \left\{ \lambda \Delta(\lambda, x_0, \mathsf{T}_{x_0}), \lambda \Delta(\lambda, y_0, \mathsf{T}_{y_0}) \right\}$

 $= \min \left\{ \lambda \Delta(\lambda, x_0, x_0), \lambda \Delta(\lambda, y_0, y_0) \right\} = \min \left\{ \theta, \theta \right\}$

 $\Delta(\lambda, x_0, y_0) \leq \theta$

Hence $\Delta(\lambda, x_0, y_0) \leq 0$ which implies that $\Delta(\lambda, x_0, y_0) = 0$ or $y_0 = x_0$

The proof is complete.

Theorem 4.8: Let T be a self-map on a compact Δ - ordered Banach algebra(E, A, C) satisfy Lipsctiz condition

Then, T has a unique fixed point.

Proof: Suppose *T* satisfy Lipsctiz condition. Then, *T* is a continuous map on *X* we define a function from *X* into *x* as $F(x) = \Delta(\lambda, x, T_x)$ for all $x \in X$.

Since T and Δ are continuous, it follow F is continuous on X. Since X is compact there exists a point $y \in X$ such that $F(y) = \inf \{\Delta(\lambda, x, T_x) : x \in X\}$.

We support that $y \neq T_y$.

Otherwise, that a fixed point by Lipscitiz condition

We have $\Delta(\lambda, T_y, T_y^2) \leq k\Delta(\mu, y, T_y)$. $0 < \lambda \leq \mu$

So that $F(T_y) \leq T(y)$ which contradiction.

Then, $y = T_y$

Uniqueness follows from Lipscitz condition.

Proposition 4.9: Let (X, E, Δ) be a complete Δ - ordered Banach algebra. Assume that the mapping $T: X \to X$ satisfy.

 $\Delta(\lambda, T_x^n, T_y^n) \leq k\Delta(\lambda, x, y)$, For each $x, y \in X$, for $n \in Z^+$, where k a vector with is $\sigma_{\varepsilon}(k) < 1$. Then, T has a unique fixed point

Proof: $T^{n}(T_{x^{*}}) = T(T^{n}x^{*}) = T^{n}x^{*} = T(T^{n-1}x^{*}) = T^{n-1}(x^{*}) = \cdots = Tx^{*}.$

So, Tx^* is also has fixed point of T^n then $Tx^* = x^*$

 x^* is a fixed point of T.

Theorem 4.10: Let (X, E, Δ) be a compact Δ - ordered Banach algebra. Suppose the mapping satisfy Δ – *lipshtiz condition* in the following:

 $\Delta(\lambda, T_x, T_y) \leq k[\beta\Delta(\beta, T_x, y) + \mu\Delta(\mu, T_y, x)]$, for all $x, y \in X$, where k is a vector with $k \in (0,1)$. Then, T has a unique fixed point in X. Another sequence $\{T_x^t\}$ converge to the fixed point.

Proof: choose $x_0 \in X$ and set $x_t = T_x^t, t \ge 1$, we have for t < m

 $\Delta(\lambda, x_{t+1}, x_m) \leq \beta \Delta(\beta, x_t, x_{t+1}) + \mu \Delta(\mu, x_{t+1}, x_m)$

https://rajpub.com/indx.php/jam

```
\leq \beta \Delta(\beta, x_t, x_{t+1}) + \mu[\beta \Delta(\beta, x_{t+1}, x_{t+2}) + \mu \Delta(\mu, x_{t+2}, x_m)]
\leq \beta \Delta(x_{t}, x_{t+1}) + \mu \beta \Delta(x_{t+1}, x_{t+2}) + \mu^{2} [\beta \Delta(x_{t+2}, x_{t+1}) + \mu \Delta(x_{t+3}, x_{m})]
\leq \beta \Delta(x_{t}, x_{t+1}) + \mu \beta \Delta(x_{t+1}, x_{t+2}) + \mu^2 \beta \Delta(x_{t+1}, x_{t+2}) + \mu^3 \beta \Delta(x_{t+3}, x_{t+1}) + \mu^4 \Delta(x_{t+4}, x_m)
\leq \beta[\Delta(\lambda, x_t, x_{t+1}) + \mu \Delta(\lambda, x_{t+1}, x_{t+2}) + \mu^2 \Delta(\lambda, x_{t+2}, x_{t+3}) + ... +
\mu^n \Delta(\lambda, x_1, x_0)] + \mu^n [\Delta(\lambda, x_{t+m}, x_m)]
\leq \beta [k^t \Delta(\lambda, x_1, x_0) + \mu k^{t+1} \Delta(\lambda, x_1, x_0) + \dots + \mu^m k^{t+m} \Delta(\lambda, x_1, x_0)]
+\mu^{t+1}[k^{t+m+1}\Delta(\lambda, x_1, x_0)]
\leq \beta k^t [1 + \mu k + \dots + \mu^m k^m] \Delta(\lambda, x_1, x_0) + \mu^t k^{t+m} \Delta(\lambda, x_1, x_0)
\leq \beta k^t [\sum_{i=1}^m \mu^i k^i] \Delta(\lambda, x_1, x_0) + \mu^{m+1} k^{t+m} \Delta(\lambda, x_1, x_0)
\leq \beta k^t [\sum_{i=1}^{m+1} \mu^i k^i \Delta(\lambda, x_1, x_0)]
\leq \beta k^t [\sum_{i=1}^{\infty} \mu^i k^i] \Delta(\lambda, x_1, x_0)
\leq \beta k^t [\sum_{i=1}^0 \mu^i k^i] \Delta(\lambda, x_1, x_0)
\leq \beta k^t (e - \mu k)^{-1} \Delta(\lambda, x_1, x_0)
\|\Delta(\lambda, x_{n+1}, x_m)\| \le \|\beta k^t\| \cdot \|(e - \mu k)^{-1}\| \cdot \|\Delta(\lambda, x_1, x_0)\|
Since ||k^n|| \to 0 as n \to \infty, where ||\Delta(\lambda, x_n, x_m)|| \to 0 as n \to \infty
Which implies \Delta(\lambda, x_t, x_m) \rightarrow 0 as (t, m \rightarrow 0)
Hence, \{x_t\} is a Cauchy sequence. since X is complete, there exists x^* \in X such that x_t \to x^* as n \to \infty, therefore
\lim \Delta(\lambda, T_{x^*}, x^*) \leq k[\beta \Delta(\lambda, T_{x_t}, T_{x^*}) + \mu \Delta(\lambda, T_{x^*}, x_t)]
\leq \beta k [\Delta(\lambda, x_t, x^*) + \Delta(\lambda, x^*, x_{t+1})] + \mu \Delta(\lambda, T_{x^*}, x_t)
\left\|\Delta(\lambda,T_{x^*},x^*)\right\|
\leq \|\lambda\| \cdot \|k\| \cdot [\|\Delta(\lambda, x_t, x^*)\| + \|\Delta(\lambda, x^*, x_{t+1})\|] + \|\mu\| \cdot \|\Delta(\lambda, x_t, x^*)\|
```

Which implies $T_{x^*} = x^*$ and so x^* is fixed point

To prove uniqueness, let b be another fixed point of T.

Then $\Delta(\lambda, x^*, b) = \Delta(\lambda, T_{x^*}, T_b) \le k[\beta \Delta(\lambda, T_{x^*}, b) + \mu \Delta(\lambda, T_b, x^*)]$

 $= k[\beta \Delta(\lambda, x^*, b) + \mu \Delta(\lambda, b, x^*)] = k[\lambda + m] \Delta(\lambda, x^*, b)$

Then, $[1 - k(\beta + \mu]\Delta(\lambda, x^*, b) \le 0.$

Since $k\epsilon(0,1)$ and $\beta, \mu > 0 \Longrightarrow \Delta(\lambda, x^*, b) = 0$ so $x^* = b$

The proof is complete.

5-Conclusion

In this paper, we introduce a new concept which is called Δ - ordered Banach algebra. Also, we define *lipshtiz condition in this pace*, φ – *contraction*, Δ – *contraction* and Δ – *lipshtiz condition*. In the new work, we prove fixed point theorems satisfying these maps in Δ - ordered Banach algebra. Our conditions and results are new in comparison with those of the results of cone metric space. These results can be extended to other spaces.

References

- 1. Akbar Zada, Rahim Shah and Shahid Saifullah,"Some Fixed Point Theorems in Multiplicative Cone b- Matric Spaces", Journal of Analysis & Number Theory, 5, No. 1, 35-39, (2017).
- **2.** B. Y.Hussein. and S. F.Hassan ,"Some properties of Characterization on ordered Banach algebra", Ms.C. thesis , Al-Qadisiyah university, 2017.
- 3. Arun Gary, Zaheer K. Ansari," Cone Metric Spaces and Fixed Point Theorems of T- Contractive Mapping", International journal of Mathematics and Statistics Invention (IJMSI), Vol.2, Iss. 2, PP. 72-76, (2014)
- 4. D. Dey and M.Saha," Partial Cone Metric Space and Some Fixed Point Theorems", TWMS J.App. Math. *U*₃, N.1, PP. 1-9, (2013).
- 5. Dhage, B.C., "A study of some fixed point theorem", Ph. Thesis, Marath Wada University, Aurangabad, (1984).
- 6. Gahler, S., " 2- Metriche Raume and Ihre Topologisch Structure", Mathematiche Nachrichten, 26, 115-148, (1963).
- 7. G. S. Sulugq and B. P. Tripathi, "Some Common Fixed Point Theorems of Generalized Contractive Mappings in Cone Metric Spaces", Functional Analysis Approximation and Computation, 5:1, 33-41, (2013).
- 8. Hao Liu and Shaoman XU, " Conemetric Spaces with Banach Algebras and Fixed Point Theorems of Generalized Lipschitz Mapping, Springre, Fixed Point and Application, 320, (2013).
- 9. Huang, L., G., & Zhang X, "Cone Metric Space and Fixed Point Theorem for Contractive Mapping", Journal of Mathematical Analysis and Applications, 332, (1468-1476).
- 10. H. K Nashine and I. Altun, "A Common Fixed Point Theorem on Ordered Metric Spaces", Bulletin of The Iranian Mathematical Society, Vol. 38 No. 4, PP. 925- 934, (2012).
- 11. H. Liu and S. Xu," Cone Metric Spaces with Banach Algebra and Fixed Point Theorems of Generalized Lipchitz Mappings," Fixed Point Theory and Applications, 320. Dio:10.118611687-1812-320 (2013).
- 12. H. Rahimi and G. Soleimani Rad, "Fixed Point Theorems Under C. Distance in Ordered Cone Metric Space", Int. J. Industrial Mathematics, Vol. 6, No. 2, Article IDISIM-00253, 9 Page, (2014).
- 13. Jerolina Fernardcz, Sompob Sale, Kalpana Saxena, Neeraj Malviya and Poom Kuman, " The A- Cone Metric Space Over Banach Algebra with Applications ", Fernardczct. at. Cogent Mathematics, 4:1828690, (2017).

- 14. K. P. R Sastry, Ch-Srinivasa Rao, A. Chandra Sekhar and M. Balaiah,"A Fixed Point Theorem in Cone Metric Spaces Under Weak Contractions", Gen. Math. Notes, Vol. 7, No. 2, PP.38-44, (2011).
- 15. K. Ha, Y. J. Choand Awhile, " Striclly Convex and 2- Convex 2- Normd Spacy." Mathematica Japonica, 33, 375-384, (1988).
- 16. L. G. Huang and X. Zhand, " Cone Metric Spaces and Fixed Point Theorems for Contractive Mappings ", Journal of Mathematics Analysis and Applications, 332, 1468-1476, (2007).
- 17. Mustafa and B. Sims, " A New Approach to Generalized Metris spaces", Journal of Nonlinear and Convex Analysis, 7, 289- 297, (2006).
- 18. Sedghi S., Shobe, N., & Aliouche, A. " A Generalization of Fixed Point Theorems in S- Metric Spaces ", Mathematichki Vesnik, 64, 258-266, (2012).
- 19. R. De Jong, "Ordered Banach Algebras", Ms.C. Thesis, Leiden University. Holland, 2010.
- 20. Sedghi S., Shobe, N., & Zhou, H., "A Common Fixed Point Theorem in D*- Metric Space", Fixed Point Theory and Applications, 29, 631-636, (2007).
- 21. Sevng Hyun Kim and Byvng Soo Lee, "Generalized Fixed Point Theorems in Cone Metric Spaces", Korean J. Math 20, No. 3, PP.353-360, (2012).
- 22. S. K. Tiwari and R. P. Dubey, "Cone Metric Spaces and Fixed Point Theorems for Generalized Y. Reich and T Rhoadg Contractive Mapping", Asin Journal of Mathematics and Applications Article Idama 0077, 9 Page, vol. (2013).
- 23. V. H. Badshah, P. Bhagatand S. Shukla, "Some Fixed Point Theorems for α - ϕ Outmetric Mapping in 2-Metric Spaces", Scientific Publications of State University of Novipazar, Ser. A: ppl. Math. INF or M. and Mech, Vol 802, 181-199, (2016).
- 24. Zhenhua Ma, Lining Jiang, and Hongkaisun, "*C**- Algebra- Valued Metric Spaces and Related Fixed Point Theorems", Ma et al. Fixed Point and Applications Springer: 206., (2014).
- 25. Yan Han, Shaoyuan Yu, " New Common Fixed Point Results for Four Maps on Cone Metric Spaces" Applied Mathematics, 2, 1114-1118,(2011).

