
ISSN 2347-1921 

261 | P a g e                               O c t  3 0 ,  2 0 1 3  

 

Single-Layer Raster CNN simulator using RK-Gill 

M. El-Sayed Wahed, 
Department of Computer Science,  Faculty of Computers and information 

  Suez Canal  University ( Egypt ) mewahed@yahoo.com 

Wael M. Kader and  Eyman Yosef 
Department of Mathematics, Faculty of Sience, Zagazig University  

ABSTRACT 

An efficient numerical integration algorithm for single layer Raster Cellular Neural Networks (CNN) simulator is presented 
in this paper. The simulator is capable of performing CNN simulations for any size of input image, thus a powerful tool for 
researchers investigating potential applications of CNN. This paper reports an efficient algorithm exploiting the latency 
properties of Cellular Neural Networks along with numerical integration techniques; simulation results and comparisons 
are also presented. 

Keywords 

Single-Layer Cellular neural networks; numerical integration algorithms; Euler; Modified Euler; RK4 and RK-Gill. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 1 INTRODUCTION 

Council for Innovative Research 

Peer Review Research Publishing System 

Journal: Journal of Advances in Mathematics 

Vol 3, No 3 

editor@cirworld.com 
www.cirworld.com, member.cirworld.com 
 

mailto:mewahed@yahoo.com
http://member.cirworld.com/
http://www.cirworld.com/
http://www.cirworld.com/


ISSN 2347-1921 

262 | P a g e                               O c t  3 0 ,  2 0 1 3  

 

CNN is a hybrid of Cellular Automata and Neural Networks (hence the name Cellular Neural Networks), and it shares the 
best features of both worlds. Like Neural Networks, its continuous time feature allows real-time signal processing, and like 
Cellular Automata, its local interconnection feature makes VLSI realization feasible. Its grid-like structure is suitable for the 
solution of a high order system of first order non-linear differential equations on-line and in real-time. CNN is an analog 
nonlinear dynamic processor array; see Fig, la, characterized by the following features [3,8]. 

1) Each analog processor is capable of processing continuous signals, in either continuous-time or discrete-time modes. 

2)  The processors are placed on a 3D geometric cellular grid (several 2D layers) and are basically identical.  

3) processors are placed on a 3D geometric cellular grid (several 2D layers) and are basically  

identical. 

Interaction among processors is local and mainly translation invariant. 

4) The mode of operation may be transient, equilibrium, periodic, chaotic, or combined with logic (without A/D conversion). 

 

 

 

 

 

 

 

 

 

       Fig. 1: CNNs are very suitable for image processing thanks to the one-to-one relationship between pixels and cells. 

The basic circuit unit of CNN is called a cell [2,9]. It contains linear and nonlinear circuit elements. Any cell, C(i,j), is 
connected only to its neighbor cells, i.e. adjacent cells interact directly with each other. This intuitive concept is called 
neighborhood and is denoted as N(i,j). Cells not in the immediate neighborhood have indirect effect because of the 
propagation effects of the dynamics of the network. Each cell has a state x  input U, and output y. The state of each cell is 
bounded for all time t > U and, after the transient has settled down, a cellular neural network always approaches one of its 
stable equilibrium points. This last fact is relevant because it implies that the circuit will not oscillate. The dynamics of a 
CNN has both output feedback (A) and input control (B) mechanisms. The first order nonlinear differential equation 
defining the dynamics of a cellular neural network cell can be written as follows: 

 

C
 

dt

td xij
 = -

R

1
xij(t) +  

   

 tlkjiA y
kl

jiNlkC


 ,,

,;, +  
   

ukl
jiNlkC

lkjiB
 ,,

,;,         

Yij(t) = 
2

1
    








 11 tt xx ijij

         (1) 

 where xij  is the state of cell C(i,j), )0(xij
 is the initial condition of the cell, C is a linear capacitor, R is a linear resistor, 

I is an independent current source, A(I,J;k, 1)ykl and B{i,j;k,l)ukl are voltage controlled current Sources for all cells C(k,l) 

in the neighborhood N(ij) of cell C(ij), and yij represents the output equation. 

Notice from the summation operators that each cell is affected by its neighbor cells. A(.) acts on the output of neighboring 
cells and is referred to as the feedback operator. B(.) in turn affects the input control and is referred to as the control 
operator. Specific entry values of matrices A(.) and B(.) are application dependent, are space invariant and are called 
cloning templates. A current bias Z and the cloning templates determine the transient behavior of the cellular nonlinear 

network. The equivalent block diagram of a continuous-time cell implementation is shown in Fig. lb. 

CNNs have as input a set of analog values and its programmability is done via cloning templates.Thus, programmability is 
one of the most attractive properties of CNNs, but how to choose the optimal network and how to program it to perform a 
given task are still topics under investigation. This is the reason why there is a need for behavioral CNN simulator capable 
of helping investigators design and manipulate cloning templates (“programming”). Existent tools are not meant to deal 



ISSN 2347-1921 

263 | P a g e                               O c t  3 0 ,  2 0 1 3  

 

with a significant number of pixels typical in common image processing applications [5,8,9]. The simulator presented  here 
not only satisfies this need, but it also can be used for testing CNN hardware implementations. Lee and Pineda de Gyvez  
introduced Euler, Improved Euler Predictor –corrector and Fourth-Order  Runge –Kutta algorithms in Single- Layer Raster 
CNN simulation[1]. In this paper, we consider the same problem but by using a different approach such as Euler, RK4 and 
RK-Gill 

2  BEHAVIORAL SIMULATION 

Recall that equation (1) is space invariant, which means that A(i,j;k,l) = A(i-k,j-1) and B(i,j;k,l) =  B(i,k;,j,l) for all i,j,kl. 

Therefore, the solution of the system of difference equations can be seen as a convolution process between the image 
and the CNN processors. The basic approach is to imagine a square subimage area centered at (x,y), with the subimage 
being the same size of the templates involved in the simulation. The center of this subimage is then moved from pixel to 
pixel starting, say, at the top left comer and applying the A and B templates at each location (x,y) to solve the differential 
equation. This procedure is repeated for each time step, for all the pixels. An instance of this image scanning-processing 
is referred to as an “iteration”. The processing stops when it is found that the states of all CNN processors have converged 
to steady-state values [3] and the outputs of its neighbor cells are saturated, e.g. they have a +1 value. This whole 
simulating approach is referred to as raster simulation. A simplified algorithm is presented below for this approach. The 
part where the integration is involved (i.e. calculation of the next state) is explained in the Numerical Integration Methods 
section. 

    Algorithm: (Single-Layer or Raster CNN simulation) 

Obtain the input image, initial conditions and templates from user; 

/* M,N = # of rows/columns of the image */ 

while (converged-cells < total # of cells) ( 

for (i=l; i<=M; i++) 

for (j=l; j<=N; j++) ( 

if (convergence-flag[i] [i I) 

/* calculation of the next state*/ 

continue; /* current cell already converged */ 

 Xij(t n 1
) = Xij(t

n
)  ＋   

1n
τ

n
τ

dnτnτxf `  

/* convergence criteria */ 

 

if  
















 jilkCand

dt
Ny

dx
rkl

ij
,),(10 {  

{ 

convergence-flag[i]fi] = 1; 

converged-cells++ ; 

} 

} I* end for *I 

/* update the state values of the whole image*/ 

for (i=l; i<=M; i++) 

for (j=l; j<=N; j++) ( 

if (convergence-flag[i]h I) continue; 

Xij(t n 1
) = Xij( nt ); 

} 



ISSN 2347-1921 

264 | P a g e                               O c t  3 0 ,  2 0 1 3  

 

#-ofjteration++; 

) I* end while *I 

The raster approach implies that each pixel is mapped onto a CNN processor. That is, we have an image processing 
function in the spatial domain that can be expressed as: 

         g(x,y) = T(f(x,y))                                     (2) 

where f(.) is the input image, g(.) the processed image, and T is an operator on f(.) defined over the neighborhood of (x,y).  

3  Numerical Integration Methods 

The CNN is described by a system of nonlinear differential equations. Therefore, it is necessary to discretize the 
differential equation for performing behavioral simulation. For computational purposes, a normalized time differential 
equation describing CNN is used [4]. 

f’(x(nτ) ) = 
 

 nτd

nτxij
d

  = -  nτxij
 +  

   

 nτ,;,
,,

y
kl

jiNlkC

lkjiA


+  
   

ukl
jiNlkC

lkjiB
 ,,

,;,   + I  (3) 

Where   τ   is the normalized time. For the purpose of solving the initial-value problem, well established Single Step 

methods of numerical integration techniques are used [7]. 

These methods can be derived using the definition of the definite integral: 

      Xij((n+1)τ) - Xij(nτ)  =   
1nτ

nτ

dnτnτxf `
                                   (4) 

Three of the single-step numerical integration algorithms used in the CNN behavioral simulator described here. They are 
the Euler's algorithm, RK4, and RK-Gill  algorithms. 

1.Euler  Method  

  Simplest of all algorithms for solving ODEs. It is an explicit formula which uses the Taylor-series expansion to calculate 
the approximation: 

       Xij((n+1)τ) = Xij(nτ) +τf’(x(nτ) )                                                   (5) 

2. The Improved Euler Predictor-Corrector  method 

The Improved Euler Predictor-Corrector method uses both explicit (predictor) and implicit(corrector) formulae. The integral 
is calculated by multiplying the step size r with the averaged sum of both the derivative of x(nr) and the derivative of the 
predicted xp((n+l)'c) at the next time step: 

         Xij((n+1)τ) = Xij(nτ) + τ/2[f’(x(nτ)+ f’(xp((n+1)τ))]                (6) 

3. The Fourth-Order Runge-Kutta method 

The Fourth-Order Runge-Kutta method is the most costly among the three methods in terms of computation time, as it 
requires four derivative evaluations per time step. However, its high cost is compensated by its accuracy in transient 
behavior analysis. 

  Xij((n+1)τ) = Xij(nτ) +  
6

4321 kkkk
ijijijij


                                (7) 

Where    jimlc N r
,,  : 

k
ij

1
    = τf΄(xij(nτ)) 

k
ij

2
    = τf΄(xij(nτ) +

2

1
k

ij

1
) 

k
ij

3
    = τf΄(xij(nτ) +

2

1
k

ij

2
) 



ISSN 2347-1921 

265 | P a g e                               O c t  3 0 ,  2 0 1 3  

 

k
ij

4
    = τf΄(xij(nτ) + k

ij

3
) 

4.   RK-Gill 

RK-Gill [6] is formulated as 

            Xij((n+1)τ) = Xij(nτ) +       4321 2222
6

1
kkkk                 (8) 

Where   

k1
    =h f΄(xij(nτ) ) 

k 2
    =h f΄(xij(nτ)+ 

2

1
k1

) 

k 3
   = f΄(xij(nτ) + 










2

1

2

1
k1

+ 









2

1
1 k 2

) 

k 4
   = f΄(xij(nτ) - 

2

1
k 2

+ 









2

1
1 k 3

) 

And  f(.) is computed according to (1). There are many single-step methods available to us for this 

purpose. But, one option worth considering is the combination of two methods in solving for the solution.  So we use 
RKEHM to make a very efficient computer simulation method for solving the problem. 

 4 Simulation Results and Comparisons  

The simulation time used for comparisons is the actual CPU time used. The input image format for this simulator is a 
JPEG. format.  

 

 

      

 

 

 

      (a)                                                            

                                           (a)                                                                                                  (b) 

 

                   Fig.2. Image processing (a) After Averaging Template (b) After Averaging and Edge Detection 

Fig. 2 shows results of the raster simulator obtained from a complex image of 65,536(256x256) pixels. For this example an 
Averaging template followed by an Edge Detection template were applied to the original image to yield the images 
displayed in Figs. 2a and 2b, respectively. 

Also in figure 3, it has been shown the quality measures of the two pictures in 2a and 2b by using the numerical 
techniques Euler, Modified Euler, RK4 and RK-Gill. 

 



ISSN 2347-1921 

266 | P a g e                               O c t  3 0 ,  2 0 1 3  

 

 

 

 

 

 

 

 

 

Since speed is one of the main concerns in the simulation, finding the maximum step size that still yields convergence for 
a template can be helpful in speeding up the system. The speed-up can be achieved by selecting an appropriate ∆t for 
that particular template. Even though the maximum step size may slightly vary from one image to another, the values in 
Fig.5 still serve as good references. These results were obtained by trial and error over more than 100 simulations On 
Lena image with small size 43x64(2752 pixels).The importance of selecting an appropriate ∆t can be easily visualized in 
Fig. 4. If the step size chosen is too small, it might take many iterations, hence longer time, to achieve convergence. On 
the other hand, if the step size taken is too large, it might not converge at all or it would converge to erroneous steady 
state values. The  results of Fig. 5 were obtained by simulating   Lena image of size 43x64(2752 pixels) using  an Edge 
detection template.  

Method 

Mean Square 
Error 

Peak 
Signal 
to 
Noise 
Ratio 

MNormalized 
Cross-
Correlation 

Average 
Difference 

Structural 
Content 

Maximum 
Difference 

Normalized 
Absolute 
Error 

Euler 1.7770e+003 11.403
1 

0.9245 9.1441 1.0057 245 0.0800 

Modified 
Euler) 

1.7200e+003 10.403
1 

0.9105 8.1001 1.0010 240 0.0700 

RK4 1.7100e+003 9.4031 0.9000 7.1000 1.0000 238 0.0500 

RK-Gill  1.7000e+003 9.4030 0.8900 7.0000 0.9000 237 0.0400 

Fig.4. Simulation time comparisons for 4 different 

numerical techniques 

for four different templates 

Fig.3. Quality measures of fig.2a and fig.2b 

   



ISSN 2347-1921 

267 | P a g e                               O c t  3 0 ,  2 0 1 3  

 

5  CONCLUSION 

As researchers are coming up with more and more CNN  

applications, an efficient and powerful simulator is needed.  

The simulator hereby presented meets the need in three ways:  

1 Depending on the accuracy required for the simulation, the user can choose from three numerical 

 methods to perform the numerical integration, 

2 The input image format is a JPEG image which is commonly available. 

3 The input image can be of any size, allowing simulation of images available in common practices.  

4 In Comparing to [1], we find that we used smaller step size range from 0 to 1 instead of 1 to 5 in [1]. 

5 Also, we added the quality features which is not existed in [1]. And the simulation time for our methods is better than 

     those in [1]. 

REFERENCES: 

[1] C.C.Lee and Jose de Gyvez (1994) Single-Layer CNN Simulator. 

[2]  L. 0. Chua and L. Yang(1988) Cellular Neural Networks: Theory & Applications, IEEE Trans. Circuits and Systems, 
Vol. CAS-35, pp. 1257-1290.(2) 

[3]  L.O. Chua and T. Roska(1992) The CNN Universal Machine Part 1: The Architecture, in Int. Workshop on Cellular 
Neural Networks and their Applications (CNNA), pp. 1-10.(3) 

[4] J. A. Nossek, G. Seiler, T. Roska and L. 0. Chua (1992.)  Cellular Neural Networks: Theory and Circuit Design, 
International Journal of Circuit Theory and Applications, Vol. 20, pp. 533-553.(5) 

[5]  J. Varrientos and E. Sanchez-Sinencio(1992) CELLSIM: A cellular neural network simulator for the personal computer,  
in Proc. 35th Midwest Symp. Circuits Systs, pp. 1384-1387. 

[6]  R.Ponalagusamy and  S.Senthilkumar(2008), A comparison of RK- fourth orders of variety of means on multilayer 
raster CNN simulation Trends in Applied Science and Research,3(3), 242-252. 

[7]  W. H. Press, B. P. Flannery, S.A. Teukolsky, and W.T.g Vetterling(1986) Numerical Recipes. The Art of Scientific 

Computing, Cambridge University Press, New York. 

[8] O.H. ABDELWAHED, M. EL-SAYED WAHED and  Eyman Yosef  " Optimizing Time- multiplexing Raster Cellular 
Neural Network simulator using genetic algorithms with The RK-Embedded Centroidal Mean(RKECM) International 
Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013.  

[9]  M. EL-SAYED WAHED and O.H. ABDELWAHED " An efficient numerical integration algorithm for single-layer Raster 
cellular neural networks simulator " International Journal of Physical Sciences Vol. 7(47), pp. 6144-6148, 16 

December, 2012. 


