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ABSTRACT
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classes of p-valent meromorphic functions involving certain operator.

Indexing terms/Keywords

Argument estimates, Hadamard product, certain operator, meromorphic functions.

SUBJECT CLASSIFICATION
2010 Mathematics Subject Classification: 30C45.

1.Introduction

Forany integer m>—p, let >, denote the class of meromorphic functions f(z) of the form:

f(z)=z“’+§:akzk (m>-p; peN={1,2,--}), (1.1)

k=m

which are analyticand P -valent in the punctured open unitdisc U"={zeC : 0< |Z| <1}=U\{0} . For
convenience, we write 3,1 ,=>, and >;,=2. If f(z) and g(z) areanalyticin U, we say that
f(z) issubordinateto g(z), written f <g or f(z2)<g(z) (zeU), ifthere exists a Schwarz
function W(z) in U with w(0)=0 and |w(z)|<1 (ze€U), suchthat f(z)=g(w(z))(zeu ¥

Furthermore, if (z) isunivalentin U, then the following equivalence relationship holds true (see [7]
and [18]):

f(2)<9(z) & f(0)=9(0) and f(U)<=g(U).
For functions f(z)eX, ., givenby(l.1)and g(z) €, defined by

g(z)=z" +Zbkzk (m>-p;peN),
k=m

the Hadamard product (or convolution) of f(z) and g(z) is given by
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(Fxa)2)=2"+ Y abz = (g f)(2)

For complex parameters o, Q. A and

B Boren Bs (o ,ﬂj ¢Z,={0-1-2,..},i=12,..,q, j=12,..,S), the generalized hypergeometric

function | F, (@, @y, @y; By Byreen By Z)  is defined by (see [22])

2 (o) (05 P k
Fo(oy,ay0nttys B oo ;(ﬁl)k (B5) O, z

(@<s+1L s,ge N, =NU{0}; ze V),

where (6), , isthe Pochhammer symbol defined in terms of the Gamma function I', by

(g)vzmz{l (v=0; 0eC” =C\{0})

ro) 0(0+1)....(0+v-1) (veN; 6eC).

Liu and Srivastava [16] and Aouf [4] investigated recently the operator Yp,q.s (051,052 o Oy

B Bors ) Zpm—> pms defined as follows:
Yp,q.s(al)ZYp,q_s(alyap-..,aq; ﬁ11ﬂ21- " S; Z)—Z P FS (al,az,...,aq; ﬂl’ﬂZ""’ﬁS; Z),

_h i (al)k+p"'(aq)k+p aka. (1.2)

k=1-p (ﬂl)k+p"'(ﬂs)k+p(1)k+p

With aid of the function Y, , () given by (1.2), consider the function Y

b.qs (@) defined by:

Y, 0 () *Y;,q.s(al) = (A>-p;peN;zeU). (1.3)

1
7P (1 )MP
This function leads us to the following family of linear operators M p as (0{1) Zp m—> Zp m» Which are

given by:

Myoo(a) =Y, (@) * F()(f X, (L4

The linear operator M*" (c,) was defined by Patel and Patil [20] and Mostafa [17]. If f(z) is given by

P.4,s
(1.1), then from (1.4), we deduce that

p es(a)f(2)=2""+ i (B)iep(B)iip (A+ Plisp a,z*

k=m (al)k+p"'(aq)k+p
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(feX,mAm>-p;peN;zeU’). @.5)
It is easily verified from (1.5) that (see [20] and [17])
( pqs(Otl)f(Z)) =(A+pMy 7 () f(2) - (A+2p)My g () T (2) (1.6)
and
( pqS(ozl+1)f(z)) pqs(al)f(z) (o + p)MpqS(al+1)f(z) (1.7)

Forafunction f e}, and ©>0, let F, @ >, —>, betheintegral operator defined by (see [13]):

F,,(f)2)= jt”*”‘lf(t)dt =77+ Z — " azws)

z°P KT +K+p
(feX,u>0,peN,zeU).
It follows from (1.8) that:

( p q, s(al) (f)(Z)), = /M}[;q S (al) f (Z) (,Ll-f— p)Mp q, s(al) (f)(Z) (19)

We note that:

Putting A=1—p (peN) in(1.5), then the operator er;z:;“(al) reduces to the operator M7 . (a;),
defined by:

Mr;’qys(al)f(Z)ZZ_p ZMakzk (f 62p1m1m>_p,p€N,Z€U*)

(a)ksp--(@gdiep
Also, by specializing the parameters A4, m, p, «; (i=12,..,q), B; (1=12,..,5), g and s, we have:
(i) M35, (p, i p) F(2) =M, . (p+1p; p)F(2) = f(2)(peN);
(i) M57,(p, p; p) f (2) = 221220 (p e N)

(i) M25, (p+1 p;p)f(2) = 2pf@at (o) L@ (peN)

(iv) M}5,(a,L;a)f(z)=D"P*f(z) (n>—p,a>0,peN) (see Yang [23] and Aouf ( [2] and [3])), which
for p=1 reduces to the operator D"f(z) (n>-1) (seeCho|[8]);

z

(v) M%%. (p+1 p; p) f(z) =2 [P f (t)dt (p e N);

0

(vi) MO (u+1L ) f(2)=F, ,(f)(2) (peN,u>0), thisintegral operator is defined by (1.8);

(vii) MZD.(c, p+4;8)f(2) =L, (a;c) f(2) (p eN,aeR,ce R\Zg) ( see Liu[15]);
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(viii) Miplz’f (a,Lc)f(z) = Lﬁ(a; C) f (Z) (ﬂ >—p,peN,a,ceR\ Zg) (' see Aouf et al. [5] ), which for

p =1 reduces to Ll(a;c) ( see Aghalary [1]);

(ix) M2 2P (n+pn)f(2)=1,,,4,f(2) (7>0n>—-p,peN) (seeAoufandXu[6]), which p=1

reduces to In’,7 (see Yuan et al. [24]);

(x) Mf;yl’so () f(2)= Haqu(al) f(2) (0' > O) ( see Cho and Kim [9]);

(xi) M5’ (@Lc)f(z)=1,(ac)f(z) (x>0,aceR\Z;) (ChoandNoor [10]).

Let M be the class of functions h(z) which are analytic and univalentin U and for which h(U) is
convex with h(0) =1 andRe {h(2)}>0, ze U.

Now, by using the linear operator M*" () , we define a subclass of Yom by

p.q,s

>Am (ay;h) = {  fey, and — pﬁ”s“"l’”z”' <h(@)(heM;ze U)} (1.10)

pqs o) f(2)

We also set

AN (0 ER) = T2 (0; A B) (-1<B<A<LzeU). (111

From (1.10) and (1.11) and by using the result of Silverman and Silvia [21], we observe that a function f(z)
isinthe class Y57 (cry; A B) ifand only if

‘Z(Mpqs(al)f(z)) p(l—A;B)L p(A-B) (-1<B<A<LzeU). (1.12)
‘ MAT () f(2) 1-B ‘ 1- B2

In the present paper, we investigate some inclusion relationships and argument properties of certain

meromorphically p -valent functionsin U" in connection with the linear operator Mp a o ().

2. Preliminaries

In order to prove our main results, we need to the following lemmas.

Lemma1[12]. Let [ and v be complex constants and let h(z) be convex (univalent)in U with h(0) =1
and Re{fh(z)+v}>0. If q(z)=1+0q,z+... isanalyticin U , then

29'(2)

O @) +o

<h(z),
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implies

q(z) <h(z).
Lemma 2 [18]. Let h(z) be convex (univalent)in U and w(z) be analyticin U with Re{yw(2)}>0. If
4 isanalyticin U and q(0) = h(0), then

q(z) +w(2)z9'(z) < h(2)

implies

q(z) <h(z).
Lemma 3 [19]. Let ((z) beanalyticin U , with q(0) =1 and q(z) #0 (z €U). Ifthere exists a point

Zo B U, suchthat

largq(z)| <%r for |z| <|z,| (2.1)
and
larg q(z,)| :%r (0< 7<), (2.2)
Then we have
M =iXr, (2.3)
a(z,)
where
XZ%(b-l-%) when argq(z,) :%r, (2.4)
xz—%(b+%) when argq(zo):—%r (2.5)
and
q(z,)" =ib (b>0). (2.6)

3. Some inclusion relationships

By using Lemma 1, we obtain the following results:
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Theorem 1. Let h(z) M with max Re{h(2)}< min{=22, 2} ( #&ep, peN) . Then

Sratah)y e Xit (e h)y e 200 (o + 15 h).

Proof. To prove the first part, we show that >30T (g h) € S50 (eysh). Let f eXioT (e h) and set

2(M%7 (@) F(2))
oM™ ()  (2)

where R(Zz) isanalyticwith R(0) =1 . Using (1.6) in (3.1), we obtain

R(2)=- (ze ), (3.1)

PR~ (4 2p) = (2 + p) "oz (@) 12 (3.2
M (@) F(2)

Differentiating (3.2) logarithmically with respectto Z and multiplying by Z , we have

Ry R@ e @) .
-pR()+A+2p  pM; T () f(2) ' '

from Lemma 1, it follows that R(z) < h(z) in U, thatis, that f € Y57 (a;;h).

To prove the second part, let f e Zp qs(a;;h) and put

2MT (o, +D)F(2)
oM~ (o, +1) F(2)

then, by using the arguments similar to those detailed above and using (1.7) instead of (1.6), it follows that

s(z) = (ze ),

s(z) <h(z) in U, whichimplies f X737 (e +1h). Therefore we compelet the proof of Theorem 1.

Taking h(z) =12 (-1<B<A<1) inTheorem 1, we have

Corollary 1. Let ¥£& < min{/p};2p 2P} and —1<B < A<1. Then

SoetMay AB) e Yin (g AB) e it (o +1 A B).

2has
Theorem 2. Let N(z) e M with Re {h(2)}< #3* (u>0), if fe Som (ay;h), then

Fﬂp(f)ezpqs(al,h) where F, (f) isdefined by (1.8) .

Proof. Let f >0 (;h) and set

2(M27 (,)F, ,(F)(@))
PMAT (@)F, - (1)(2)

where L(z) isanalyticwith L(0)=1. Applying (1.9) to (3.4), we get

L(2)=- (ze ), (3.4)
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a.s (1) f(2)
PL(2) = (u+ P) =~ M. (0 (3.5)
Mo (@)F, ,(F)(@)
Differentiating (3.5) logarithmically with respectto Z and multiplying by Z , we have
' f(z
e @ ( M@ (@)
_pL(Z)+ﬂ+p pqs( 1)f()
Hence, by virtue of Lemma 1, we conclude that L(z) <h(z) in U, whichimplies
Lo(f)e o (ey;h). This compelets the proof of Theorem 2.
Taking h(z) =& (-1<B<A<1) inTheorem 2, we have
Corollary 2. Let 32 <422 ‘”p (,u >O) and —1<B< A<l if feXyn (a;AB), then
oo () e Xnas (s A, B)
4. Some argument propertieS
Theorem3.let f(z) €3,,, 0<d<1l 0</<p and
> PA-B) 1 (1<B<A<lpeN)
1+B
If
A+L,m f 7
e - 2(M ;f; @f@) | 7,
Mo (1)9(2) 2
forsome g(z) € X577 (cy; A B) , then
f(z
| - ( M, @)1@) | 2
Moo (a)9(2) 2
where 7(0<7<1) isthe solution of the equation
2, _ 7cosZt(A,B)
S=r+—tan™ 2 4.1
’ Vs [(“p)(l_le;p(A_B) +7sinZt(A, B)J @1
and
t(A B) = 2 gin? p(AZ_ B) . (4.2)
V4 (A+2p)(L-B°)— p(l- AB)
Proof. Let
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q(z) = 1 [ (p“(al)f(z)) é}, (4.3)

p_g pqs(al)g(z)

where ((z) is analytic with ((0) =1 . Applying the identity (1.6), we have

[-(p—0)a(2) - M7 (@) 9(2) = (A + p)M; 0T (e0) F(2) = (A +2p)M; 7 () F (2). (4.4)
Differentiating (4.4) with respectto Z and multiplying by Z, we obtain

—(p=029'(2M}7()9(2) +[~(p - 0)a(z) - z(M} 5  (2,)9(2))'

=(A+p)z(M7T M (o) T (2)) — (A +2p)z(M5T (o) T ()" (4.5)

Then, by using (4.3), (4.4) and (4.5), we have

i ( Z(u E*ﬁ:‘(al)fm)_ ﬂ}—q(2)+ 9@
p-f My (a)9(2) —r(@2)+1+2p

where

2o (@)9(@)

O @)e

From Corollary 1, since g(z) € X537 (e; A B), then g(z) € 357 (y; A B), which from (1.12) leads to

1+ Az
+Bz

r(@)=<p
Letting
—r(2)+A+2p=pe'? (zeV),

then from (1.12) we have

(1+P)a+B)-p(A-B) __(4+p)(A-B)+ p(A-B)
1+B 1-B

and
—t(A,B) <¢<t(A B),

where t is defined by (4.2).
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Let h be afunction which maps U onto the angular domain {o : |arga)|<§é‘} with h(0) =1.

Applying Lemma 2, for this h with w(z) = we see that Re{q(z)}>0 in U and hence

1
—r(z)+A+2p"’
q(z) #0 in U. If there exists a point Z, € U such that the conditions (2.1) and (2.2) are satisfied, then

by Lemma 3, we have (2.3) under the restrictions (2.4) and (2.5).
ER
At first, suppose that q(z,)" =ib (b>0). Then

2,(MA " () £ (2,)) »
p—/| MyUT()9(zZ,)

2,9'(z,) T . izg |1
= arg(q(zo)+_r(zz)+;+2p]=Er+arg(1+wr(pe ) j

arg| —

_ ] TSI z(1-¢)
2 p+lrcosz(l-¢)

Z_Htan{ rcos $(A.B) nga,

(4+p)(1-B)+p(A-B) i
2 SRR 1 rsin £ t(A, B)

B

where # and t(A, B) are given by (4.1) and (4.2), respectively. This contradicts to the assumption of the

theorem.

1 .
Next, suppose that ((z,) =—ib (b>0). Applying the same method as the above, we have

1 [ zo(M22 " (@) f (2, ))

arg| — PGS
p—( M/:);s (al)g(zo)
cosZt(A B
S_zf_tan_{(ﬂ+p)<1—B)+Tp(A—B)2 ( : ),r ]=_Z ’

where # and t(A, B) aregiven by (4.1) and (4.2), respectively, which contradicts the assumption. This
completes the proof of Theorem 3.
Taking q=2,S=4=0=A=1B=0 and oy =, =4, =p (p IS N) in Theorem 3, we have the

following corollary:

Corollary 3. Let f(z) e, . If

Re {Z(Z(p +1)2p+1) f'(z) + 401+ p)zf "(z) + 22 £ "(2))
2p(2p+1)g(2) +2(2p +1)29'(2) + 2°9"(2)

forsome g(z) ey, , satisfying the condition

}>€(0£€< p),
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l22(p+1)(2p+1)g'(2) +4(p+1)z9"(2) + 2°9"(2))
2p(2p+1)g(2) +2(2p+1)29'(2) + 2°9"(z)

+ PI< P,

then

~ Re{z((Zp +1) f'(z) + 2 ”(z))} oy
zf '(2) + 2pf (2)

Taking =2,s=0=A=1L1=2B=0,,=p+1 and a,=4,=p (peN) in Theorem 3, we have

the following corollary:

Corollary 4. Let f(z) e, . If

e {z(2((p +1))2p+3)F'(2) +2(2p+ 32 "(2) + 22 £"(2))
20p+1)2p+1)g(2) +4(p+1)z9'(z) + 2°9"(2)

forsome g(z) ey, satisfying the condition

}>€ (07 <p),

22((p+1))2p +3)g'(2) + 2(2p+3)29"(2) + 2°9"(2))
‘ 2(p+1)2p+1)g(z)+4p+1)z9'(z) + 2°9"(2)

+ P <P

then

_Re{z(Z(p +1) f'(2) + f ”(z))} oy
(2p+1)g(z)+129'(2)

Taking q=2,s=LA=n—-p, m=1-p,y=n+p and o, =G, =n (M>0n>-p,peN) in

Theorem 3, we have the following corollary:
Corollary 5. Let f(z) €>,, 0<d6<1 0</<p and
p>PAB) 1 B A<ipeN)
1+B
If

zs
2

arg[_ Z(In+p—l,77+lf(z)) _K} <

I n+ p—l,r;+1g (Z)

forsome Q(z) €, satisfying the conditon

_ Z(In+p—1,qg(z))’ < p1+AZ
lhor,0(2)  C1rBz

(4.6)

then
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T

arg(— Z(Impfl’" @) —KJ <=

T
In+p—1,77g(z) 2

where 7(0<7<1) isthe solution of the equation (4.1) with A =n—p (17> 0).
Taking p =1 in Corollary 5, we have the following corollary:

Corollary 6. Let f(z) €, 0<o6<1l 0</<1 and

A-B
> -1<B< AL]).
1217 ¢ )
If
21 f(2))
arg _M_f <£5,
In,77+1g(z) 2
forsome Q(z) €Y. satisfying the conditon
,90) 1+a
1,,9(z)  1+Bz’
then
21 f(2))
arg| — (””’ ( )) )<z,
l,,9(2) 2

where B &) dX-1U s the solution of the equation (4.1) with A =1—1 (1> 0).

The proof of the next theorem is akin to that of Theorem 3 and so, we omit it.

Theorem4. let f(z)eX,,,, 0<d<1 /> p and

p(A-B)
1+B

A> —-p (-1<B<A<LpeN).

If

o M@ @) ] a
M7 ()9(2) 2

forsome ¢(z) € X5 v (ay; A B) , then

o M@ (@) )
M7 (2)9(2) 2
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where 7(0< 7 <1) is the solution of equation (4.1).

Theorem5. et f(z)eX,,, 0<6<1, 0</<p and

al_% (-1<B<A<ZLpeN).

arg{ ( ’“‘S(al)f(z)) f}‘<£5,

If

M0 (a1)9(2) 2

forsome g(z) e Y50 (ery; AB) , then

arg{ (pqS(al+l)f(Z)) 5]‘<£

Mo (e +1)9(2)

where 7(0< 7 <1) is the solution of equation (4.1) .

Proof. Let

X)L (M (@ +D) () n ws)
p—f pqs(a1+1)g(z)

where X (2) isanalyticwith X (0) =1. Using (1.7), we have

[ (p g)x (Z) K]Mp q,s (al +1)g(Z) al p q,s (al) f (Z) (al + p)Mp q,s (al) f (Z) (49)
Differentiating (4.9) with respectto Z and multiplying by Z, we obtain
~(p-02X' (M5 (o +1)g(2) +[~(p~ )X (2) - 1z(M g s (e, +D)9(2))’

- alz(Mp q,s (al) f (Z)) (al + p)Z(Mp q,s (al) f (Z)) (410)

Then, by using (4.8), (4.9) and (4.10), we have

1 _ ( pqs(al)f(z)) y =X(Z)+ - ZX'(Z) ’
p_? pqs(al)g(z) —J(Z)+C¥1+p

where

2o (@ +9(2)
M7 (2, +1)0(2)

i@)=-
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The remaining part of the proof is similar to that of Theorem 3 and so we omit it.

Taking q=2,s=LA=n—-p, m=1-p,y=n+p and o, =6, =n (M>0n>-p,peN) in

Theorem 5, we have the following corollary:

Corollary 7. Let f(z)eX,,, 0<06<10</<p and

nz%—p (-1<B<A<LpeN).

arg(— Z(I"””l’” f (Z)) —EJ <Zs

In+p—1,;7g(z) 2

If

forsome Q(z) €y, satisfying (4.6), then

arg(w _g] < ZT,

l5.,9(2) 2

where 7(0< 7 <1) is the solution of equation (4.1) .

Taking p =1 in Corollary 7, we have the following corollary:

Corollary 8. Let f(z)e>, 0<6<1,0</<1 and

n>(A=B) 4 (-1<B< A<I).
1+B
If
arg{MﬁJ <Z§’
l,,,9(2) 2

forsome Q(z) €Y satisfying (4.7), then

arg(— —Z(IM’" f (Z)) —EJ <%T,

I n+l,7 g(Z)

where 7(0< 7 <1) isthe solution of equation (4.1) .

The proof of the next theorem is akin to that of Theorem 5 and so, we omit it.

Theoremé6. Let f(z)eX,,, 0<5<1 />p and
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0 >PAB) B A<ipeN)
1+B

arg[ ( “S(al)f(z)) z}‘<15,

M0 (a)9(2)

If

forsome g(z) e X510 (ery; A B) , then

arg[ o5 <01 (2) MJ‘J

M0 (a; +1)9(2)

where 7(0<7<1) isthe solution of equation (4.1) .

Theorem7.Let f(z)eX,,, 0<6<1, 0</<p and

p(lA B) (-1<B<A<ZLpeN).

If

arg( (”S(al)f(z)) KJ‘<£§,

p q, s(al)g(z)

forsome g(z) e X517 (ery; A/ B) , then

arg[ o3, (@)F,, (1)) EJ‘

z
2

Mo (a)F, ,(9)(2)

where 7(0< 7 <1) is the solution of equation (4.1) .

Proof. Let

(4.11)

() -t (pqs(al)F,,p(f)(z)) 2
p —4 p a, s(al)F# p(g)(z)

where Kk(z) is analyticwith k(0) =1 . Using (1.9), we have
[ (p g)k(Z) E]Mp q,s (al) (g)(Z) /LMp q, s(al) f (Z) (,Ll+ p)Mp q,s (al) (f)(Z) (412)

Differentiating (4.12) with respectto Z and multiplying by Z, we obtain

—(p-0)ZK'(2)M5 7 (@)F, ,(9)(@) +[~(p — Hk(z) — ]z(M} 5 s () F,, , (9)(2))'
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=M g () f (2)) = (u+ p)z(My 5 (n)F, , (F)(2))" (4.13)

Then, by using (4.11), (4.12) and (4.13), we have

L [Adgn@)it@) ) L @

p_g pqs(al)g(z) —p(Z)+,Ll+p’

where

2(M27 (e0)F, ,(0)(2))
M (@)F, ,(0)2)

The remaining part of the proof is similar to that of Theorem 3 and so we omit it.

p(2)=—

The proof of the next theorem is akin to that of Theorem 7 and so, we omit it.

Theorem8.Let f(z)eX,,, 0<d<1 /> p and

u>PAB) 1 BoA<ipen)

1+B
If
g @) ) x
M7 (@)9(2) 2

forsome g(z) €50 (e ;A B) ,then

( pqs(oq)ﬁ,p(f)(z)) .

arg +/0|<—1,
Mo (o)F, ,(9)(2) 2

where 7(0 <7 <1) isthe solution of equation (4.1) .

Remark 1. Specializing the parameters P,Q,S,M and A in the above results, we obtain the results for the

corresponding operators defined in the introduction.

Remark 2. (i) Putting q=2,S=1m=1-p, o, =4 =4a (a >0,pe N) and «a, =1 in Theorems 3 and
4, respectively, we obtain the results obtained by Cho and Owa [11, Theorems 2.1 and 2.2, respectively] ;

(ii) Putting q=2,5=1m=0, o, =a,a,=p=1and B,=a (a>0) inTheorems3and4,
respectively, we obtain the results obtained by Cho [8, Theorems 2.1 and 2.2, respectively] ;

(iii) Putting q=2,s=1m=1-p, «,=a,a,=1 and pf, =C (a,c eR\Z,, pe N) in the above

results, we obtain the results obtained by Aouf et al. [5] ;
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(iv) Putting q=2,s=1m=1-p, o, =C,a,=p+A and B, =a (aeR,ceR\Z;,A>-p,peN) in

Theorem 4, we obtain the results obtained by Lashin [14, Theorem 2.2] .
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