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ABSTRACT

In this paper, we study the oscillatory behavior of solution of second order neutral difference equation with mixed neutral
term of the form

Ala,thz, )+ gpiemy= 0.  nE N

= 1 - . . . .
where z, = x, + byx,_;+ Cpin.y and Esﬂ!”— == We obtain some new oscillation criteria for second order neutral
5

difference equation. Examples are presented to illustrate the main results.
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INTRODUCTION

This paper is concerned with the oscillatory behavior of solution of second order neutral difference equation with mixed
neutral term of the form

Ma,(Az,)) + guXomy =0, nEN,, 1)
where Z, = Xp + bpXp g+ CpXps
Subject to the following conditions:
(H1) {by 1, {cx)and {g,} are non-negative real sequences with 0 = b, < b <= 0 =c¢, =c¢ < =and g, = 0;
1

(Hz) {@y] is real sequence with X.z=p, — =
&

(Ha) I, K are nonnegative constant, o‘(n} is a sequence of positive integers with ﬂo‘(n} = 0 and A is the forward
difference operator defined by fAx,, = X,,24 — X,

Let & = max{l,k}. By a solution of equation (1), we mean a real sequence {X,} which is defined for

n = ny — @ satisfies equation (1) for all 1. A non trivial solution x,,}is said to be oscillatory if it is neither eventually

positive nor eventually negative and nonoscillatory otherwise. The oscillatory behavior of nonlinear neutral delay difference
equation of second order have been investigated by several authors, see for example [6, 9, 11, 12] and the references
quoted therein. Following this trend, in this paper, we obtain some new oscillation criteria for equation (1) which extend
some known results. Some examples are provided to illustrate the main results.

2 Main Results
We begin with the following theorem.

Theorem 2.1 If
Y=, Q= (2)
where @,, = min{qn,qn_;,qu}, then every solution of equation (1) is oscillatory.

Proof. Let {x,} be a nonoscillatory solution of equation (1) for all ¥t = flg. Then there exists 1y = Mg such that
fx,}# 0 for all m = ny. With out loss of generality, we may assume that ¥, = 0, x,—; = 0, ¥,: > 0 and
Xomy = Oforallm = ny.
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From equation (1), we have
ﬂ{an(ﬂzn}} = TnXg(n) <0 for all nz=mn;. 3)

Therefore @, (£iz,,) is nonincreasing and hence {£Az,, ) is nonincreasing. We shall show that £4z,, = O for all 1t = 114.

If not, there exists Tz = My such that Az, <X 0. Then

ﬂ'n(ﬂzn} = anz(ﬂznz}l n= g (4)

Summing the above inequality from s to @ — 1, we obtain

4 1
in T Eng = an;(ﬂznz}E;!:ngﬂ_s

— 1
In = Zng + ﬂnzfﬂznz} E?:?}z I'I_.sl (5)

Letting 72 —* =2 in (5), we obtain Z,, —* —, which is a contradiction. We conclude that £iz,, = 0. From equation (1) and
definition of Z,,, we have

ﬁ(an(ﬂzn}] + nXein) + bﬂ(ﬂn—!(ﬂzn—!}} + b'?n—:xm:n—!}
+el(@nse(Azpsp)) + CQnirXoiner = 0. (6)

Thus,
Ala,(Az,)) + bAa,—(Az, ;) + cMansx(Azp i) + QnZom) =0, n=ny. 7

Summing the above inequality from 73 to 7t — 1, we obtain
B8, QsZa(s) + an(fzn) — an, (Az,,) + ban—(Az,—))
—b(an,—(8z,, 1)) + clansp(Bzpar)) — cl@n, 20 (Azp,40)) = 0
B, QeZo(s) = an, (Bzy,) — an(Bzy) + blan,-1(8zp, 1) — an—1(Azn-1)
+el(@n, 41 (820, 1)) — Bparllznag)). (8)

But Az, = O for all It = 15 There exists a constant ¢ = 0 such that z,, = ¢ = 0 for all . = T13. From inequality (8),

we have
Yiomn, Qs < =, 9)

which is contradiction to condition (2). This completes the proof.

Theorem 2.2 Assume that #(n) = 1 — ™M such that ™ = [ and ™M is positive constant. If

o 1 m mt+1l
IminfRL o Ry @ > (L+b+0) () (10)

n—¥E

1
where B, = _f:nn - then every solution of equation (1) is oscillatory.
&)

Proof. Let {xn} be a non-oscillatory solution of equation (1) for all 1t = 1. As in the proof of Theorem 2.1, we obtain
inequality (7). Let
Wyp = an(ﬂzn} + b(ﬂ'n—!(ﬂ‘zn—!}} + C(ﬂn+k(ﬂzn+k}}1 (11)

then from inequality (7), we obtain
Aw, +0,.2, .=0, n=n.
Since @, ({\z,,) is non-increasing, we have

afz, = a,lhz,), n=s
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Dividing the last inequality by &, we have

anlfzn)
i L
Mz, = — (12)
Summing from 11 to . — 1, we obtain
4 1
In = an(ﬂzn} ?=?}-_ _5
In = Rnan(ﬂzn}i n=n. (13)
From equation (11), we obtain
Wy = ﬂ'n—!(ﬂzn—!}{i +b+ C}' (14)
Combining (12), (13) and (14), we obtain
Emn—m]
r T 41 = 0,
ﬂ"“’rz + |:1+b+c}“”+‘_m =0 (15)

By Theorem 6.20.5 in [1] and the condition (15) implies that equation (10) has no positive solution. This contradiction
completes the proof.

Next to define the operator T by T:E;!:_El.:n} ¢(s)g(s) and T[Ag(s)] = —Tlg(s + Lx(s)], a(n) < n, where
[@.1 {g.}and L, ]are positive real sequences.
Theorem 2.3 Assume that @{n) = n — . There exists a positive real sequence {k,} such that

ke )?

(43 i
limsupT |k, Q,— (1+b +¢) —=2 k2 a | >0, (16)

- g

where {J,, is defined as in Theorem 2.1. Then every solution of equation (1) is oscillatory.

Proof. Let {xn} be a nonoscillatory solution of equation (1). Then there exists 11 = Ty such that x, = 0 for all

7 = Ny, Without loss of generality, we assume that X, = 0, x> 0, x4 = Qand X 5y = Oforalln = ny.

Define
(A=
urn — knﬂ.'l.l-.—ﬂ:l‘l T Enl- (17)
)
Thus Wy, = 0 for n = 1y, we have
. — M En+ 2l L4 o) _ kntnt 1( 08 ) f=a(n)
ﬂun - zﬂ(n}ﬂ(an(ﬂzn}} + seintl) ﬂkn sein)zeintl) ' (18)
From (3) and fact that Az,, = 0, we have
bzo(n) Gn+1
ozoln) . fntl =g, =
Lrme: = zo(m) for all n=n; =ng (19)
Using (17) and (19) in (18), we obtain
knll anlfzn)) DNy kn w?{_,_.
roo= r — —T=
.E'an - =oin) + kn+:""'n+1 k3, eoin) (20)
Next we define
(e 7V g7
un:anJ nEnll (21)
g

Then U, = O for all . = ny, we have

Aap_(d=n-1)) (en+a— 1 =ns 1)) knlant - Aznss—Mzo(n))
Au,, =k, =on=tEn=0) ) Ap -

Za(m) sgintl) so(n)ze(ntl)

(22)
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From (3) and fact that £Az,, = 0, noting that @(1) = 1 — I, we obtain

Deai i
- glm) = E.‘H:- [ 23)
LEnga—1 asin)
Using (21) and (23) in (22), we obtain
s 1l Ly Up+1 ul
Au, =k '1‘1—‘1'3'3'+ﬂ;cn&_ k?‘.‘.ﬁ—*—-e' (24)
=a(n) Pl - T Y
Define
Enl gn+ilfZnii))
'E_':ln — —ggfn} P n = Tll. (25)
Then 1, = O for all = T, we have
Ap. = knli{ons ifeng)) | Dknlons skl D042+ 10) _ knl Bns sk ASnpa e ) Mzs(n) (26)
n =a(n) selntl) zo(n)ze(ntl)
From (3) and fact that Az,, = 0, noting that d(n) =n — I = n + k, we have
fzo(n) Cn+1+k
=
bznyark - ao(n) I 27
Using (25) and (27) in (26), we obtain
ﬁlt’n = knﬂ-':ﬂnﬂf':ﬂ-znﬁa':' Doy _ i‘n”?ﬁ:_ . (28)
=o(n) Ly by oo
Combining (20), (24) and (28), we obtain
kpdianlis Alag_j(fzn g
Aw, + blu,, + chv, = eientin) 4 g DeniBanD)
zo(n) zo(n)
Llanip(fened) | Dk nWihes
+Ckn =zein) knva ntl kL, ae(n)
.I'}.kn _ kn:bi_'_._ .I'}.kn " _ knl}'?{_'_._
b .'1+*_un+1 b ki ao(n) J'~:.'1+*_T—ﬂ-|-:|' k2, oo(n) (29)
From (7) and (29), we obtain
Ak Kqwh, .
Aw,, + bhu, + chv, = —k,0, + Wyaqg — kzwﬁ
1 n+2 @O
.I'}.kn _ ki"l"‘-"-’i+‘_ .I'lkn_ " _ knl}'?{_'_a_
b .'1+*_un+1 bk?i+a_l'15':?‘1:' J*C.'1+*_TF:.‘!-|-1 k2, oc(n) (30)
Apply the operator T on (30), we obtain
Jik kswr, .
T[ﬂws. + b, + Cﬂ‘i.”s] =T[—k.Q.+ Wesq — m
1 5+2201
.I'}.k_g _ k_sb'.g_‘_a_ .I'}.ks " _ ksl}'?_‘_a_
b ks+:u3+1 b K2, a_ﬂli?':i':' ¢ Kgta Vst1 kI, a0(s) (31)
Dieg 5
[ SQS] = T (Xs ) Wzt1 +b (Xs " ) Uszsq +c (Xs +‘) Va1
KsWwiyy Kstufyy Kstifys ]
ki .acis) ki.ac(s) kip.acis)
1 4T
f,}: +:“" } i 5+:‘—”£ .
Tlk.Q.] = T[— ki, a0(s) + b— =k a0(s)
i) iz, oo
+c = (s
4k, +1
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or
(ore)’
Tlk:Qs— (1 +b+ a}L 2r1a0(s)] = 0,
which is contradiction to inequality (16). This completes the proof.
Corollary 2.1 Assume that #{n) = n — [ and there exists a sequence { X} such that

s e )
limsup X251 | (n—5)%(s — ng)fk.Q.— (1+b +c¢) Lk‘ﬂaﬁ(s} =0,

B

Bimy—(bte)stan,

wherea} ﬁ':} and}t’g (n—s)(s—ng)

. Then every solution of equation (1) is oscillatory.

3 Examples
In this section, we provide three examples.
Example 3.1 Consider the second order neutral difference equation of the form

AA(x, + 2%+ X peg)) + 16X, =0, n=4, (32)

where @, =2, b, =2 c,=1,1=2,k =3, 0(n) =n—3and g,, = 16. Since all the conditions of Theorem 2.2
are satisfied. Hence every solution of equation (32) is oscillatory. In fact one such solution is X, = {—1)™

Example 3.2 Consider the second order neutral difference equation of the form

(11} +13ﬂ{x +x, o+ 3x,40 }) — X3 =0, nz4 (33)

1
10n+13’
Theorem 2.3 are satisfied. Hence every solution of equation (33) is oscillatory. In fact one such solution is X, = Tl(—'l} "

where @, = n=1c,=3 1=2 k=2 0n)=n—-3 and g, = ﬁ since all the conditions of

Example 3.3 Consider the second order neutral difference equation of the form

A(x,+ 2%, » +5%,:3)+8x,_,=0, n=3 (34)

where a, =1 b,=2 ¢c,=51=2,k=3,0(n)=n—2 and g,, = 8. Since all the conditions of Corollary 2.1
are satisfied. Hence every solution of equation (34) is oscillatory. In fact one such solution is x,, = (—1} n+l
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