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ABSTRACT

This paperisdevotedtoe xposi ti on of a provable classical solution for t|
angle trisection [3]. (Pierre Laurent Wantzel, 1837), presented an algebraic proof based on ideas from Galois theory

showing that, the angle trisection solution correspond to an implicitsolution ofthe cubic equation; x¥—3x—1= 0,

which he stated as geometrically irreducible [23]. The primary objective of this novel work is to show the possibility to
solve the ages old problem of trisecting an arbitraryangl e using the traditi onadass@aleek?qds
compass and straightedge), and refute the presented proofof angle trisection impossibilitystatement. The exposed proof

of the solutionis theorem 4.0, which is based on the classical rules of Euclidean geometry, contrary to the Archimedes
proposition of using a marked straightedge construction [4], [11].
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Notations

£ Notation for an angle

nyv Denotes a straightline segmentand alength
2D Two Dimensions

3D Three Dimensions

4 5. f Foursignificantfigures

= Denotes amemberoran elementof a particular set
= Subset
& Not a memberoran elementof a particular set

a\b  a divides b
cos8  Cosine ofangle 8
5dp 5 decimalplaces

Academic Discipline And Sub-Disciplines

Mathematics (Geometry)

1.0 INTRODUCTION

Compass and straightedge problems have always been the favorite subject of classical geometry. There are three
classical probl ems of geometry posed by the ancient Greek ge¢
AfSquaring of a circleo, and AThe duplicati on ndedawastamobmnsd. Thr
of energy in efforts to find solutions for the three problems, butno geometrical solutions have been discovered by this day.
Though the three problems are closelyrelated, the focus of this work is to separately provide an elegant solution for the
problem ofangle trisection. The problem ofangle trisection concerns the classical partitioning ofa given angle into three

mean proportions using the t r(alaisi;idalicamnpaexsland@traégletdd@e)sInI%bdeetury,f geom
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(Pierre Laurent Wantzel, 1837) presented an abstruse algebraic proof bas ed on concepts from Galois theory showing

that, the solution of the angle trisection problem corresponds to solution of the cubic equation; x¥—3x—1=0 ,
whichis algebraicallyirreducible[2], and t herefore it cannot be redr dlhsspeodf usi ng
pose a serious geometrical misconception in the sense that, it does not take into account, the conditions governing
solutions to the three stated geometrical problems of antiquity. Study results show that by the time the angle trisection
impossibility proof was stated, there alreadyexisted so manytheorems in geometry, and it was clearthere was aneed to
systematize and organize all of the material into a coherent, logical whole. The study of geometry transitioned from a
practical science to a more general, abstractview of relationshipsin an ideal existence [21]. One of the majorconditions
established as partofthis transition was that plane geom etric constructions mustbe carried out solelywith a straightedge
and compass, since speciffically, a straightedge can be used in drawing a straightline between two given points,and that
a circle with a given radius can be drawn around a given point using a compass (application of the compass equivalence
theorem). Any otherform of construction notusing the compass and straightedge is strictlyprohibited [19]. This present
work is confined in the specified restrictions of Euclidean geometry. The impossibility avowal of angle trisection made
mathematicians completely, wick into mechanical methods of solving the trisection of a given angle. But, however, despite
bending the setrules governing plane geometry, none of the presented methodologies is absolutelycorrect. The deeper
desire by mathematicians and other practitioners to have the angle trisection problem sought concerns serious
misinterpretations ofthe problem, as evidentin [1], [3], and [8], that the genetic definition of angle trisection problem is stil
not well understood. Clearly, the trisection of a particular angle does not mean the possibilityto solve the trisection of an

arbitrary angle. Section 1.1 provides a clear discussion, to define the angle trisection problem under the set conditions of
Greekds geometry; to bring out the geometrical interpretati
presented methods aimed atthe angle trisection solutions are generallyincorrect. Section 1.3 presents two interpreted
versions ofthe angle trisection impossibility proof, to show the geometrical limitation ofabstractalgebra inits extension to
Euclidean geometric proofs. Theorem # reveals the general geometric proof for the solution of an arbitrary angle

trisection, and so is the trisection of a particular angle; while theorem 5 explains the classical trisection of both 0% and

360" angles. The most significant consideration in the revealed proofis to provide the basic necessary knowledge of
trisecting any given angle (an angle defined between two rays) using onlycompass and straightedge. This consideration
is in harmony with the philosophical concern that, all geometric proofs should be elegant to follow, for different
practitioners and everyone with interestin studying geometry, from the middle secondaryschool levels to graduate levels
atuniversities. The difference between classical geometricand modern geometric semantic is especiallyconspicuous in

the case of quantities such as area and volume.AsseeninEu c | i d 6 s there is nogealtnesmber measure of the

area of a plane figure. Instead, equality of plane figures is verified by cutting in pieces and adding and subtracting

congruent triangles using the Pythagorean theorem (Book | of Euclid Elements, Proposition 47) , whi ch assert:
squares on the sides ofaright triangle, taken together, have the same contentas the square on the hypotenuse (Longest
side)o. Thus in cl assi calydidjroterseé The ynpdermn farguages of nationalrnunzbers was a | i t

represented by a ratios of geometrical quantities based on positive integers. Any other quantity was represented as a
geometrical magnitude. In accordance with Book |11 of La Géométrie [7], Descartes gave an account on the roots of cubic
and quartic equations. He considers polynomials with integer coefficients. He put it that, if there is an integer root, that
gives a numerical solution to the problem. But, if there are no integral roots, the solutions must be constructed
geometrically. The proposed algorithm in this workis based on these traditional considerations. However, it completely
does not omit the algebraic view of geometry in the modern world. An analytical interpretation is presented for every
geometric proof, accompanied by the use of a computer software (GeoGebra) for results visualization, to bring the
connection between the classical geometric approach and the computer aided design (CAD) methods.

1.1 Classical definition of the Angle Trisection Problem

This section, in brief, discuss the trisection of an angle based on the general understanding of an arbitrary angle. The
problem requires one to constructan angle one third the size of a given angle, using onlytwo tools (Straightedge (ruler)
and a compass). This definition pose two serious restrictions; that, the size of the given angle should notbe determined or

measured, nor should it be a matter at all for any trisection construction (except for the singular angles 0% and 360°7),
and that, any algorithm aimed atsolving the trisection ofan arbitrary angle should notinvolve arithmetic, butit should be

typically geometrical. Figure 1 illustrates an example ofan arbitrary angle on a plane.
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Fg 1: Representation of an arbitrary angle in plane geometry

1.2 To show that for any three points one not lying on a straight line with the other
two, the three points lie on the same plane

The goal of this section is to elaborate on a proposition defined to expose that, any three points, one not collinear withthe
other two produce a plane geometric figure and that; no two such plane figures can share all the three vertices in
common. For instance, a union of two rays sharing a common endpoint on a plane produce an angle of some size as

illustrated in figure (1), (£CAB). An example is in a geometrical figure such as a quadrilateral and a triangle. Any two

sides ofthese objects share acommon endpointcalled a vertex and thus an angle of some sizeis defined between the
two sides ofthe figure. Consider the following theorem:

Theorem 1: For any three points, one not lying in a straight line with the other two, the three points lie only on same
plane, and that every triangle lies only on one plane [9].

Considering triangles ABC and AE D) on planes M and IV respectively, itis not practically possible for the two triangles
to lie in both plane M andin plane N, and so is their respective vertices as shown in figure (2). To verify this proposition,
let points A, B, and C lie onthe two distinctplanes; M and N, such that pointI? is an image of point C'. Since both point
A and E lieon plane M, the straightline AE lie on plane M . Also, since points A and B lie on plane IV, the straightline
AFE alsolie on plane V. Therefore plane M and plane N have line AE in common (theyintersectalong line AE). Point
C does notliein line with points A and B, and therefore not common for both planes, a similar case forpoint D . Thusitis
not geneticallypossible for points A, &, C to lie on both planes M and V. Likewise, itis not possible forpoints A4, B, I
to lie on both planes. Hence, for any plane containing all of triangle AE L’ must also contain its three vertices 4, B, and
C. This shows that the whole of any triangle lies onlyin one plane. Considering either ZCAE or £ DAE as the acute

angle to be trisected, it is required that al/|l the points

system (plane geometry). Thus the problem oftrisecting an angle in general has to be soughtfollowing the classical rules
of Euclidean geometry, and not using the mechanical methods being employed [10].

C

Plane M

Plame N
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Fig 2: lllustration of a plane geometric figure
1.3 The Mistake in the Angle Trisection Impossibility Algebraic Proof of (1837)

Theorem 1 illustrates how three points defining a given angle, and one not collinear with the other two lie on the same
plane, andthat in plane geometry two differentplane figures cannotshare all points in common. This section stems from
theorem 1, objectively to show the algebraic limitations in the presented proofofangle trisection impossibility statement,
to explain the degree of misconception governing the methods meant as solutions for the angle trisection problem; to
expose why the statement of angle trisection impossibility is not valid, and it thus should not be extended to plane
geometric problems. For instance, consider the algebraic conditions that: a length is constructible if and only if it
represents a constructible number, an angle is constructible ifand only if its cosine is a constructible number,and that, a
number is constructible if and only if it can be written in the four basic arithmetic operations (+, —,*,+) and the
extraction of the square roots but not on higher roots [22].These three conditions were greatly considered in generating
the angle trisection impossibility, which has limited and discouraged researchers from exploring on the already existing
realm of Greekb s geometry, in their freedom to add value to Eucl i de
there are infinitely many angles thatare geometricallyconstructible and trisectible [1]. It is possible to bisectboth an angle
and a straightline, as well as dividing a straightline segmentinto the desired number ofequal portions. Itis also possible
to construct lines of magnitude V2 and V5, as well as constructing squares of contents (areas) 2 and 5 units. The

existence of these well justified constructions show the probability to construct the algebraically declared irrational
numbers, and so is trisection of a given angle, or the possibility of partitioning an angle into a certain ratio. According to
this paper, the above stated algebraic constraints are not fashionable in restricting researcher from exploring the broad
field of Euclidean geometry, since logically, geometry concerns following certain lines ofreasoning, and the verification of
thelogi ¢ based on the obtained results is what matters. P. L.
conditions, and concepts from abstract algebra based on cubic extensions, to proof the algebraic inability to extract the

roots of the cubic equation;.?t::E| — 3x — 1 = 0. Considerthe following two versions ofthe impossibility proof:

1.3.1 An interpreted Version of the Angle Trisection Impossibility Proof based on a Lemma;
there is no power of 2 that is evenly divisible by 3
This lemma can be used to demonstrate the angle trisection impossibilityusing concepts from Galois field ofnumbers as

statedin [1]. To improve on the dimensionality perspective as discussed in [1], a proof upon this lemmais described as
follows:

Corollary: Let 5 be a field, and let T" be an extension of 5 that is constructible out of T' by a finite order of quadratic
extensions. Then 5 does notcontain any cubic extensions UofT.

Proof: If § contained a cubic extension Uof T, then the dimension of 5 over T' would be a multiple of three. On the other
hand, if 5 is obtained from T by a tower of quadratic extensions, then the dimension of 5 over T' is a power of two.
Defining a configuration to be a finite collection  of points, lines, and circles in a Euclidean plane, it can be stated, any
point, line, or circle that can be constructed from the configuration C is definable in a field obtained from the coefficients of
all the objects in L after taking a finite number of quadratic extensions, whereas trisection of angle £CAE (an arbitrary
angle in ') will basicallybe definable in a cubic extension of the field generated by the coordinates of L', 4, B . Consider,

based on these coordinates, three plane angles £ABC, #BAC and £ACE can be constructed to represent three

different planes such that; the three plane angles add up to less than four right angles and any two of them add up to

more than the third one [13]. These conditions can only be metin a non-Euclidean construction. For example, the three

plane angles made from isosceles triangles of equal legs meettheir vertices at a common endpoint. In classical Euclidean

plane geometry, an angle is geneticallydefined in two dimensions (%, ¥) with X and ¥ as constructible points (notbased

on coordinates), and not in three di mensions as implied from the Pi
trisection impossibility. From this discussion, itis evident that the presented proofof the impossibilitystatementobligates

solving the angle trisection problem using methods made by bending the formal rules in the Euclidean rigor of
constructions ina 2D geometry. Thus the presented proofof the impossibility, together with the revealed prohibited non -
Euclideangeometri ¢ solutions are geometrically incorrect and not
geometry.

1.3.2 An interpreted Version of the Angle Trisection Impossibility Proof based on
Trigonometry as illustrated in http://www.math.toronto.edu/rosent/Mat246Y/OLDPDF/week19.pdf
[24]

This section employthe use of algebra (trigonometry) to generate an algebraic proofof the angle trisection impossibility
statement, based on the classification ofrational numbers and surds. Consider: Suppose C' is asetofrational numbers,

and suppose that 5, is a field of all surds. Assuming that L = 5, this section aims at showing that, one cannot trisect
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60" with only a straightedge and a compass. Consider the condition that; an angle is constructible for compass -ruler
construction, if and only if its cosine is a constructible number as stated in section 1.3. In this regard, 60 angle is

constructible, and the trisection of &0 would mean constructing an angle of 20°. A proof that cos 20 is nota surd can
be presented as follows:

Theorem 2: A 607 is not trisectable and therefore cas20° not constructible

To proof this theorem, consider the trigopnometric identity;

cos(A + B) = cosAcosB — sinAsinB

Working based on this identity;

cos2@ = cos?® — sin®® = 2cos*®— 1  (The double-angle formula) (1)
cos30 = cos(20 + @)

cos30 = cos2@cos2@ — sin2@sind

cos30 = (2cos*0 — 1)cos® — 2sinOcosOsind

cos3@ = 2cos?*® — cos® — 2(1 — cos* @) cosd

cos30 = 4cos*@ — 3cosd )
Taking @ = 202 assumethat;

cos3@ = cos60® = 1/2

Therefore, 1/2 = 4cos® @ — 3cos0 (By the triple-angle formula) 3)
Equation (3) can be rewritten as;

8(cos20%)® — 6(cos20°) — 1 =10 (4)
Equivalently, taking co520% = ¥, equation (4) can further be rewritten as;
8(3)°-6(3)—1=0,= (2y)°-3(2y)-1=0 )
If we take X = 2¥ and substitute for 2V in equation (5), we get;

x3—-3x—1=0 (6)
Clearly, if cos20% was in £, then X satisfiesthe conditonx® —3x —1 =0

Claim: If 60% was trisectible, there would be a constructiblerootof x> — 3x — 1 =0

In algebraicview, itis clear that, if a cubic equation with rational coefficients has a constructible root, then it has a rational
root. The goal here is to showthat x* — 3x — 1 = 0 has no rational roots.

Suppose x = a/b is anaturalroot. @ and b are integers in their lowestform. Therefore,
(a/b)® —3(a)/b—1=0

a®/b®—3(a)/b—1=0

a® —3ab* -k =0

Consider;

it p\b, thenp\(3ab® — b*), whichimplies p\@® and hence p\a

P is prime, since for a/binits lowestterms, P does notexist for the solutions +1.

If g is prime and that g¢\a, then g\(3ab? — b? and so g\b*. Therefore, g\b. Thus, @ and b are relatively prime,
implyinga = 1.
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Takinga, b = +1, impliesa/b = +1.

Therefore, if 20° is constructible, thenx® — 3x — 1 =0, forx = L orx = —1
Substituting for the two values of X in the above equation;
(1)*—-3(1)—1=-3

(—1)*-3(-1)—1=1

Based on these results, it can be stated that the equation x?¥—3x—1=0isnot algebraicallyreducible, as it was

expected. From the presented two versions of the angle trisection impossibility proof, several facts as listed below,
provide enough evidence to show that, the statement of angle trisection as an impossible problem for compass-
straightedge construction has no geometrical cogency:

The presented algebraic proof of the angle trisection impossibility does not disprove a geometric solution or a concept
aimed atsolving the angle trisection problem, but, itis a proof of statementthatthe problem of angle trisection is generally
unsolvable.

As observed from the presented discussions, each version in the proof settle at a three dimensional consideration that,

the angle trisection solution corresponds to solving a certain cubic equation (31:H — 3x — 1 = 0), whichis shown to be
algebraicallyirreducible. This mode of approach turned the angle trisection problem from a plane geometric problem to a
purely algebraic problem [6].

From section 1.3.2. equations x* — 3x — 1 = 0 is ofthe form R?, a geometrical representation of an objectinthree
dimensions. The genetic definition ofthe angle trisection problem is in two dimensions and notthree dimensions. This
show the ambiguityin the conjecture of relating cubic extension to angles based on towers. Itis pellucidthatany form of
approach involving both cubic and quadratic equations is a solid geometric method, and not a Euclidean geometric
problem [7]. It also has been shown thatthe angle trisection solution does notdepend on the stated cubic equation,and it
can be algebraically reduced to a quadratic equation [8]. Thus the angle trisection impossibility should not be
geometricallyacceptable.

The proof of angle trisection impossibilityis based on trisection ofa particular angle 80%, while according the geometrical
definition of the problem as discussed in section 1.1, the solution to the angle trisection problem should work for both a
particularangle,and an arbitrary angle. It is entirely not clear how much more orless arbitraryis either 60% or 307 angle.

This paper treats all the constructible angle multiples and submultiples of 15 as a specific angle and not an arbitrary
case. The angle trisection impossibility statement is so obscure to depend on a specific constructible angle, to state a
general conclusion that, if one cannotconstructa certain angle, then one cannotsolve the trisection ofan arbitraryangle.
This mode of solving the problem is purely arithmetical, which is geometrically prohibited. The solution to the angle
trisection problem does not depend on the construction of a particular angle. It has been shown thatitis geometrically
possible to construct all whole number angles, and so is an angle of 207, and the provided method did not solve the
trisection of an arbitrary angle [1].

The algebraic condition specified in section 1.3; thata length is constructible if and onlyif it represents a constructible
number show the geometrical limitations ofthese restrictions, since forexample, itis geometricallypossibleto construct
lines of magnitude + 2, 2v2 and +5, and algebraic techniques have failed to conceive exact values for thes e irrational

factors. Traditionally, Euclid worked with only positive integers. Negative numbers and surds were notaccepted. The term
irrationality did not exist. Thus, as it is geometrically possible to solve the square of listed surds, the angle trisection
problem should be soughtfollowing the classical geometric rules and notbased on algebra. Clearly,any other form of a
solution notusing the classical straightedge and compass is notgeometrical.

From these interpretations, itis clear that the impossibilitystatementfor angle trisection problem should notbe extended
to resolution of angl etheangtedrisectioragroblent is anampdssiblé probldm of Buclidedn
g e 0 me tis eyidently shown how the presented algebraic proofis a sense ofinabilityto solve the problem,and not an

impossibilitycase as stated. This paper hope to resolve this ancientpuzzle of angle trisection. Considersection 3.0

2.0 HYPOTHESIS

As discussed from section 1.3, itis pellucid thatthe problem ofangle trisection concern serious misconceptions, and as a
result, the proposed solutions are notgeometricallycorrect. Section 1.2, in a simple and briefapproach discussed how
the angle trisection problem should be soughtbased on the traditional mathematics frameworks of geometry. Accordingly,

it is required that, for any given angle &, one be able to construct the fraction &/3, under the set restriction of classical
Greekds geometreg(3); Consider figur
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Fg 3: An arbitrary Angle Trisection Results

Figure (3) depicts the expected result for a correct trisection, an algorithm which should work for trisection of both an
arbitrary angle, and a specificangle. Reasonably, for these type of results to be obtained, it is good for any construction to

have a base to stem from. As such, 60" angle form the base for all the constructible and trisectible angles multiples of

15, their multiples and submultiples. Therefore, this work consider a certain set of angles, a range within which the

trisection of both an arbitrary angle and a particular angle can be sought. This papertakes a quantum look at the atomic
elemental quantities in a plane making the larger objects such as circles, lines, and angles, and the associated properties

based on these geometric quantities. In this case, all the angles inthe range 0% = & < 30° are considered to form a

subset of angles for the superset of all the angles in the intervals 0% — 3607 (both the whole number angles and the
non-whole number angles), where the angle trisection problem could be soughtata good precision. This consideration is
centered to the fact that, as it is shown in the trisection by Archimedes using a marked straight ed ge, itis possible to

correctly trisectan acute angle. It is further considered that, trisection solution for any angle greater than 30° is trisectible
when the given angle is geometricallyreduced to a value of an angle within the specified range as shownin section 4.0
andin section 2.0,

3.0 MATERIALS AND METHODS

3.1 Materials
In this work, all the presented approaches are typically a compass -straightedge constructions, though some interactive
computer software such as GeoGebra can be used, in respect to computer aided design approaches. In this work,

GeoGebra 5.0 software as one of the interactive geometry software is used to bring the insightof computer aided design
(CAD) methods, and for the visualization of the obtained results.

3.2 Methods

This chapter presents an elegant multistep procedure for solving the problem of angle trisection in antiquity. The initial
part of this section provides a brief discussion to expose the rudimentaryidea and the logics employed ingenerating the
proposed steps of construction. It then provides the general trisection solution, accompanied by an elementary proof to
justify the correctness ofthe obtained results.

3.2.1 Application of Set Theoryin defining the Proposed Angles Trisection Solution

The focus of this section is to reveal the geometrical outlook ofthe structure followed in deriving the assortmentofangles
for; 0% = & < 30° pased onideas from the set theory. Considerfigure (4).
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Fig 4: Geometrical Representation of some angle properties based on set theory, using a Venn diagram

In figure (4), region A represents a supersetofall angles on a Euclidean plane, while region B is asubsetcontaining all
the angles submultiples of the angle elements in the superset A. Specifically, an example to illustrate the relationship
between the sets 4 and F, is angles of magnitudes; /4, and /6. In this example, T/ 4 is within region 4, while
/6 form the boundary, and a member in elements of the subset B. Consider that, the trisection results of it /4 will
appearinregion B, as well as the trisection solution for T /. Again, both the angle 7T/ 8 and its trisection solutionlie in
region B. Conversely, trisecting an angle in the subset 5 would implythe possibilityof trisecting its multiple angles in the
superset 4. In this case, if we are in a position to trisect any given case in the subset B, then any other angle in the
supersetA is also trisectible. The aim of this paperis to provide a geometrical approach to verify the claim that, any given
angle in the superset A4, can geometrically be trisected from the subset B, if and only if any angle element within the
subset B is trisectible. That is: if an angle & € B is trisectible in the range 0% = & = 30°, then since # € 4, any
other angle elementin 4 is geometrically trisectible, because B < A. However, for a specific angle f such that either,
ﬁ EAdor ﬁ € B, and that ifﬁ' €4 and ﬁ & B, then the angle trisection problem cannot be sought by trisecting the
angle 5, sincein this case, any form of solution should work for any angle lying eitherin the subset 5, or in the superset
A. Considerthe following theorem:

Theorem 3: Itis geometrically possible to trisect an arbitrary angle under the specified restrictions of classical geometry.

Under this claim, consider the following construction steps, meantto elaborate on the discussionins ection3.2.1.Figure
(5) depicts the construction results.

3.2.2 Trisection of an Arbitrary Angle using only a compass and a straightedge (ruler)

For a given £CAB, use the radius defined byray AB (the baseline)to constructa 30° angle DAE.

If the given £ZCAR lie within £DAB defined by the range 0% = & < 302, label £’ the point of intersection between
curve BD andray AC. However, if £CAB is outside the region £ DAE , reduce geometrically£ CAB to its submultiple
angle £C'AE, suchthat £C'AF lie somewherein £DAB  using acompass and straightedge (ruler).

Assuming that £ CAB lie at, or within ZDAE  Join points ' and B using a straightline, and constructthe bisection of
ray AE at a pointE.

Using circles ofradius BE andthe ray m, trisect the chord C'B at points F' and G as shownin figure (5). See trisection

of C'B inannex-1.

Draw a straightline from the center of the fourth circle (point E") of trisection on raym, through point F to cut the curve
BC' at pointH as shown below.

Again, draw a straightline through points 4 and G, to cut curve BC" at point! as shown infigure (5).

With the compass placed atpoint B, mark an arc of radius HI along curve BC' ata point]. 34JAE = £C'AB.
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Fig 5: Trisection Results for £C'AB

The above procedure present a claim that, £JAE = 1,/3 (£C'AB). To verify this statement, consider the following
sections of proof.

3.2.2.1 Geometrical Proof that £JAB = 1/3 (£LC'AB)

The aim of this section is to expose the accuracy of the assertion that ZJAB = 1,/3 (£C'AF). The initial part of this
proof concerns the application ofthe compass equivalence theorem, to show the correctness ofthe foundresults, based
on some properties of points and lines in the realm of circles. The second part of this proof involves the analytical
interpretation of some geometric properties inherent from the construction results, and their relationships, to show
geometrical precision ofthe proposed algorithm.

Fg 6: An application of the compass equivalence theorem to verify that LK ZKAZAB
3.2.2.1.1 Geometrical Transformation of point J to point K
Proof:

This section of proofis depended on the compass equivalence theorem to justifythe claim that, if point & is an image of
point/ (through a geometric transformation), and a straightline is drown through points C' andK to produce point: & is
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the point of intersection between the base line and the line through points C"and K, implying the three points are
collinear), it can be shown that LK 2= KA 2 AB 2 7 and that £JAB = #LAK = ALK = 1/3 (£C'AB).
Considering figure (6), point K is a reflection of point J, about center A through a certain angle 90% — 28 as shown in
3.2.2.1.2. In figure (8), the circle in blue, centered at point &, pass through the vertices L and 4. Point4 is the center
of the initial circle used in mapping point J to point K. This implies that LK 22 KA = AB = T, where ¥ radius of the

circle centered at point A. The compass equivalence theorem as provided in proposition II in Book I o f Eucl i dds
El ements states fiany construction via 6fixedd compass may be

construct circles of equal radius 16].€musassumidgaa arbiteanypointfiod et on a
center of a circle (the circle in blue curvature), the compass equivalence theorem helps confirm that

LK 2KAZAF = T, by constructing a circle that passes through points L and A (with point.4 as the center of the
initial circle (the circle in black curvature)) as required.

3.2.2.1.2 An analytical proofthat 2JAB = 1/3 (£C'AB)

In section 3.2.2.1.1 itis shown that LE = KA = AF = r with * as the radius of the circle in black curvature. This
part of proof is aimed at showing that £JAB = £LAK = ALK 2 1/3(£C'AB), based on the property;
LK =2 KA 2= AB = r. Consider figure (7). Point B' is a reflection of point B about point A. Taking
£JAB = £ B'AK = 6, andthat point K is a reflection of point/ (proven), then ZKAL = #KLA = &, (Base angles
ofisoscelestriangle AKL since LK = KA = AF =), 0

This implythat;

Triangle KAB' = JAE, (Congruence property SAS).

Again, LAKC = 26 (by property, an exterior angle of a triangle is equal to the sum of the opposite interior angles).
Also £AC'K = 28, (Base angles ofisosceles triangle KAC"). (8)

It follows that £ KAC' = 180° — 48 9)

Consider; £B'AK + £KAC' + £C'AB = 180° (Sum ofangles on a straightline add up to 180°). Making £C'AB
the subject; £C'AB = 180° — (£LB'AK + £KAC") (10)

From equations (7) and (9) we have £B'AK = 8 and ZKAC" = 180° — 48 respectively. Substituting for angles
£B"AK and £ZKAC' in equation (10) we have;

£C'AB = 180° — (6 + (180° — 48)) (11)

The equationreduces to £C'AB = —@ + 48 = 368

Equation (11)implythat £C'AB = 3£EB'AK which can be rewritten as;

1/3 (£C'AB) = £B'AK (12)

Thus 1/3 (LC'AB) 2 £JAB X £LAK % £ ALK, since £JAB % £B'AK hence the claim proven.

Further, from equation (8), 1/2 (£KAC") = 90° — 28, is the angle through which point J is mapped onto point K,
aboutpoint 4. This observation can be stated classicallyin theorem form as;
Theorem 4 The cl assi cal trisection solution for a given angl e

0° = 8 = 307 oritis a multiple, or a submultiple of an angle in the configuration 0% = & = 30°§ as sought using
the described method.
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Fig 7: General Classical Geometric Proof of Angle Trisection

3.3 Justification of the Method

The proposed algorithm is justified by performing the trisection of some angles within the range 0° = g < 30°,
inclusive of the 307, and also, in the trisection of 457 angle, with the 45° representing allanglesinthesuperset 4, as

described in section 3.2.1. In all the presented construction methodologies, GeoGebra software is used for results
visualization.

3.3.1 Geometrical Trisection of 30° using Compass and Straightedge (Ruler) only

The following steps of construction would help trisectan angle of size 30°. The method works for both the compass-ruler
construction, and when performed using a computer software.

For given two points A and B, use radius AF to constructa 30° angle CAB as shown in figure (8).
Join points £ and B using a straightline, and constructthe bisection ofray AF ata pointD) .

Using circles ofradius BED andthe ray m, trisect the chord CF at points E and F as showninfigure (8). See trisection
of OB inannex-1.

Draw a straightline from the center of the fourth circle (pointD“) of trisection, onray ﬁ, through pointE to cut the curve
EC at pointG as shown.

Again, draw a straightline through points A and F', to cut curve B C at point H as shown infigure (8).
With the compass placed atpoint &, mark an arc of radius GH alongcurve BC ata point!. £IAB = 10°,

Figure (8) is the construction results obtained. As seen from the algebraview, £LAE = 30° has been trisected.
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Fg 8: Trisection of 307 angle using GeoGebra software

Proof

This proof presents a general overview for all the ensuing forms of verifications to these types of construction. As stated
before, the compass equivalence theorem could provide a reasonable justification that the trisection results are

geometrically precise. Figure (9) is the geometric proof that 3£IAE = £CAE after performing the following
construction procedure using GeoGebra software:

1. Forgiven two points 4 and B, use radius AB to constructa 30° angle CAB as shown infigure (9).
2. Joinpoints £ and B using a straightline, and constructthe bisection ofray AF ata pointD) .
3. Usingcircles ofradius BD andthe ray ﬁ, trisect the chord CF at points E' and F' as showninfigure (9).

4. Draw a straightline from the center of the fourth circle (pointD“) of trisection, onray m, through pointE' to cut the curve
EC at pointG as shown.

5. Again, draw a straightline through points A and F', to cut curve B L at point H as shown infigure (9).

6. With the compass placed atpoint B, mark an arc of radius &H along curve BC ata pointd .

7. Reflect point B about point4 to produce B as shown.

8. Usingtheradius BI, place the compassatpoint B' and make an arc to cut circle centered at 4, ata pointI'.
9. Draw a straightline through points £ and I", to cut line AB' externally at a point].

10. Useradius H’ to constructa circle centeredatI' as shownin figure (9).
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Fg 9: Proof of 307 angle trisection results, an application of the compass equivalence theorem
3.3.2 Geometrical Trisection of 17.1° angle Using GeoGebra Software
Figure (10) is the results obtained after carrying out the following steps of construction using GeoGebra software.
For the given £ZAE 2 17.1% yseradius AF to construct a circular curve that cuts ray Z4 at a pointC.

Join points £ and B using a straightline, and constructthe bisection ofray AF ata pointD) .

Using circles of radius BED and the ray m, trisect the chord CB at points E and F as shown in figure (10). See
trisection example on annex-1.

Draw a straightline from the center of the fourth circle (pointD“) of trisection, on ray m, through pointF’ to cut the curve
EL at points as shown.

Again, draw a straightline through points 4 and E', to cut curve BL at point H as shown infigure (10).

With the compass placed at point B, mark an arc of radius GH along curve EC at a point {. £IAB = 5.7° as
depicted in the algebra view window.
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Fig 10: Geometrical trisection results for 17.1% angle using the GeoGebra software

3.3.3 Geometrical Trisection of 4. 629° angle Using the GeoGebra software

This section presents a construction for trisecting an angle of 4.629 using the GeoGebra software, to show the

correctness ofthe proposed method, atan accuracy of 4 5. f Considerthe following construction:

For the given ZZAB 2 4.629°, use radius AF to construct a circular curve to cutray ZA at a pointC.

Join points £ and B using a straightline, and constructthe bisection ofray AF ata pointD) .

Using circles of radius BD and the ray m, trisect the chord CB at points £ and F' as shown in figure (11). See
trisection example on annex-1.

Draw a straightline from the center of the fourth circle (pointD“) of trisection, onray BA, through pointF to cut the curve

EC at pointG as shown.

Again, draw a straightline through points A and E', to cut curve BC at pointf as shown in figure (11).

With the compass placed at point B, mark an arc of radius &H along curve BEC ata pointf. £IAEF = 1.543° as
depicted in the algebra view window.
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Fig 11: A Geometrical Trisection illustrative Proof for 4.629% angle

3.3.4 trisection of 45 angle to justfy validity of the proposed range 0° = 8 < 30° of angles
for trisetion solutions

This section applies the proposed algorithm in trisection of £5% angle, to justify the theorem that the trisection of both a

particular angle and an arbitrary angle for compass and straightedge (ruler) construction lieinthe array 0% = & < 30°
as defined earlier. Consider the following construction and the obtained results:

1. Given that £CAB 2 45° yseradius AF to constructa circular curve through pointray C.
2. Joinpoints C and B using a straightline, and constructthe bisection ofray AE ata pointD .

3. Using circles of radius BD and the ray BA, trisect the chord CF at points E and F' as shown in figure (12). See
trisection example on annex-1.

4. Draw a straightline from the center of the fourth circle (pointD“) of trisection, onray m, through pointF to cut the curve
EC at pointG as shown.

5. Again, draw a straightline through points A and E, to cut curve B L atpoint H as shownin figure (12).

6. With the compass placed atpoint B, mark an arc of radius GH alongcurve EC ata point! . £IAE = 15.01°, whileits

reflection at point B'is 15° as depicted inthe algebraview window in figure (12).
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Fig 12: Trisection of 45 angle using GeoGebra software

3.3.5 Geometrical Trisection of 22.5° angle to confirm that all the angles greater than 30°
angle are trisectible within the range; 0° = 8 < 30°

This construction begins by the bisection of a 45° degree angle to produce £CAEB = 22.5% and the above
construction steps repeated to produce figure (13):

Given that £ZAB = 457 constructa bisection of ZZAH to getanangle of 22.5%.
Usingradius AE to constructa circular curve to cut the bisection ata point L.
Joinpoints £ and B using a straightline, and constructthe bisection ofray AF ata pointD) .

Using circles of radius BED and the ray m, trisect the chord CE at points E and F' as shown in figure (13). See
trisection example on annex-1.

Draw a straightline from the center of the fourth circle (pointD“) of trisection, on ray m, through pointF’ to cut the curve
B at pointG as shown.

Again, draw a straightline through points 4 and E', to cut curve BL at point H as shown infigure (13).

With the compass placed at point B, mark an arc of radius GH along curve EC at a point [. £IAE = 7.5% as
depicted in the algebra view window of the GeoGebra software.
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Fig 13: Trisection of 22.5 angle to confirm that 45 angle is only trisectible within the limits 0% = & = 30°

4.0 APPLICATION
4.1 Trisection of Obtuse Angles

Generally, itis required that, a correct angle trisection method should work for any given angle, regardless ofits size. As
stated earlier, 457 is only precisely trisectible within the limit 0% = 8 < 307, The goal of this section is to provide an

illustrative construction of trisecting an obtuse angle. The most influential trisection solution of an obtuse angle was
presented by Archimedes (287-217 B.C.), [4], [11]. The construction involves using a marked straightedge and a
compass, mechanicallyto constructan angle one third the size of a given angle [5], [15]. As demonstrated in his proof, it
is difficult to verify the trisection of an obtuse angle, than it is to proof the trisection results ofan acute angle.In this work,
based on the stated limits ofthe angle trisection solution, the trisection proof presented is considered to generalize for the

trisection of any angle. Clearly, if one is able to provably trisect an angle within the range 0% = & = 307 and thatall
angle in this configuration are trisectible, so is any required trisection proof within the same array, and thus any other

given angle is trisectible. Thus the following example oftrisecting 1865.96% angle is anillustration of how the construction
should be performed and not a proof. The results in figure (14) were obtained using GeoGebra software for the follows
steps ofconstruction:

4.2 Geometrical Trisection of #CAB = 165.96°

Angle CAB 2 165.96° was obtained randomlyby locating points 4, B and C on a plane, and drawing the two rays C4
and BA to a common point 4. To trisect this angle, its size has to be geometrically reduced to an angle FAE of value
within the range 0% = & = 307 (defined by £UAB), as depicted in figure (14); (where £ZUAB has to be constructed
before fractioning the given angle). In this case, £FAEB 2 1/8(£FAFE). That is; £FAB octsect ZCAE. The
trisection of £F AE can be performed as follows;

Join points F and B using a straightline, and constructthe bisection ofray AFB ata pointz.
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Using circles of radius BG and the ray ﬁ, trisect the chord FB at points L and K as shown in figure (14). See
trisection example on annex-1.

Draw a straightline through points 4 and K, to cut curve B F" at pointM as showninfigure (14).

Again draw a straightline from the center of the fourth circle (pointE’) of trisection, onray ﬂ, through point L to cut the

curve BF atpoint N as shown.

With the compass placed atpoint B, mark eight(8) equal intervals using radius M N along curve BF . For this example,
this operation was performed from point B' to produce £ RAB', which was then reflected to the opposite side on the
curve as £54B.

As seen from the algebra window of the GeoGebra software, £54F 2 55.32% while £CAE 2£ 165.96%, Clearly,
165.96%/3 = 55.32°,

Fig 14: Trisection Results of Obtuse Angle £LAF = 165.96"

Considering the construction results in figure (14), £UAE = 307 (which has to be constructed before the trisection
process is executed), is a bisection of ZTAE = 60°. Therefore, £FAE obey the condition 0% = & = 307 The

process of trisecting £CAB by stroking the curve NM a number of times along the circumference BSB' on the plane
does notviolate any classical geometricrule. The same application is employed in the construction of regular polygons,
such as an hexagon [20].

5.0 RESULTS AND DISCUSSION

The geometrical representation of results in this work is from figure (6) to figure (17). Figure (6) and figure (7) presents the
general trisection results, based on the proposed algorithm. These diagrams illustrate both the geometrical and the
analytical interpretation of the obtained results, to ratify the exactness of the methods, respectively. As stated earlier, it is

entirely not clear to what degree of arbitrariness is an angle of 307, In this proof, the 30 angle is taken to be both a
specific angle, and an arbitrary angle. The 307 is thus regarded as the maximum limit of the proposed angle trisection

solution, within which, any given angle inclusive of the 30 angle is trisectible. Figure (8) and figure (9) present the
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