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ABSTRACT  

This paper is devoted to exposition of a provable classical solution for the ancient Greek’s classical geometric problem of 
angle trisection [3]. (Pierre Laurent Wantzel, 1837), presented an algebraic proof based on ideas from Galois theory 

showing that, the angle trisection solution correspond to an implicit solution of the cubic equation; , 

which he stated as geometrically irreducible [23]. The primary objective of this novel work is to show the possibility to 
solve the ages old problem of trisecting an arbitrary angle using the traditional Greek’s tools of geometry (classical 
compass and straightedge), and refute the presented proof of angle trisection impossibility statement. The exposed proof 

of the solution is theorem , which is based on the classical rules of Euclidean geometry, contrary to the Arch im edes  

proposition of using a marked straightedge construction [4], [11]. 
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Notations 

           Notation for an angle 

       Denotes a straight line segment and a length 

        Two Dimensions 

        Three Dimensions 

    Four significant figures 

          Denotes a member or an element of a particular set 

          Subset 

          Not a member or an element of a particular set 

        divides  

    Cosine of angle  

     decimal places 

Academic Discipline And Sub-Disciplines 

Mathematics (Geometry) 

1.0 INTRODUCTION 

Compass and straightedge problems have always been the favorite subject o f classical geometry. There are three 
classical problems of geometry posed by the ancient Greek geometers which include; “Trisection of an arbitrary angle”, 
“Squaring of a circle”, and “The duplication of a cube”. Through the ages, mathematicians have expe nded a vast amounts 
of energy in efforts to find solutions for the three problems, but no geometrical solutions have been discovered by this day.  
Though the three problems are closely related, the focus of this work is to separately provide an elegant solu tion for the 
problem of angle trisection. The problem of angle trisection concerns the classical partitioning of a given angle in to  three 

mean proportions using the traditional Greek’s tools of geometry (classical compass and straightedge). In  century, 
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(Pierre Laurent Wantzel, 1837) presented an abstruse algebraic proof bas ed on concepts from Galois theory showing 

that, the solution of the angle trisection problem corresponds to solution of the cubic equation;  , 

which is algebraically irreducible [2], and therefore it cannot be redressed using the Greek’s tools of geometry. This  proof 
pose a serious geometrical misconception in the sense that, it does not take into account, the conditions governing 
solutions to the three stated geometrical problems of antiquity. Study results show that by the time the angle trisection 
impossibility proof was stated, there already existed so many theorems in geometry, and it was clear there was a need to  
systematize and organize all of the material into a coherent, logical whole. The study of geometry transitioned from a 
practical science to a more general, abstract view of relationships in an ideal existence [21]. One of the major condi tions 
established as part of this transition was that plane geom etric constructions must be carried out solely with a straightedge 
and compass, since specifically, a straightedge can be used in drawing a straight line between two given points, and that 
a circle with a given radius can be drawn around a given point using a compass (application of the compass equiva lence 
theorem). Any other form of construction not using the compass and straightedge is strictly prohibited [19]. Th is  pres ent 
work is confined in the specified restrictions of Euclidean geometry. The impossib ility avowal of angle trisection made 
mathematicians completely, wick into mechanical methods of solving the trisection of a given angle. But, however, despite 
bending the set rules governing plane geometry, none of the presented methodologies is absolutely correct. The deeper 
desire by mathematicians and other practitioners to have the angle trisection problem sought concerns serious 
misinterpretations of the problem, as evident in [1], [3], and [8], that the genetic definition of angle trisection problem is still 
not well understood. Clearly, the trisection of a particular angle does not mean the possibility to solve the trisection of a n 

arbitrary angle. Section  provides a clear discussion, to define the angle trisection problem under the set conditions of 

Greek’s geometry; to bring out the geometrical interpretation of the angle trisection problem and reveal why all the 

presented methods aimed at the angle trisection solutions are generally incorrect. Section  presents two in terp reted 

versions of the angle trisection impossibility proof, to show the geometrical limitation of abstract algebra in its extension  to  

Euclidean geometric proofs. Theorem  reveals the general geometric proof for the solution of an arbitrary angle 

trisection, and so is the trisection of a particular angle; while theorem  explains the classical trisection of both  and 

 angles. The most significant consideration in the revealed proof is to provide the basic n ecessary knowledge of 

trisecting any given angle (an angle defined between two rays) using only compass and straightedge. This consideration 
is in harmony with the philosophical concern that, all geometric proofs should be elegant to follow, for different 
practitioners and everyone with interest in studying geometry, from the middle secondary school levels to graduate leve ls  
at universities. The difference between classical geometric and modern geometric semantic is especially conspicuous in  
the case of quantities such as area and volume. As seen in  Euclid’s Elements there is no real number measure of the 
area of a plane figure. Instead, equality of plane figures is verified by cutting in pieces and adding and subtracting 
congruent triangles using the Pythagorean theorem (Book I of Euclid Elements, Proposition 47), which asserts “the 
squares on the sides of a right triangle, taken together, have the same content as the square on the hypotenuse (Longes t 
side)”. Thus in classical geometry, the term irrationality did not exist. The modern language of rational numbers was 
represented by a ratios of geometrical quantities based on positive integers. Any other quantity was represented as a 
geometrical magnitude. In accordance with Book III of La Géométrie [7], Descartes gave an account on the roots of cubic 
and quartic equations. He considers polynomials with integer coefficients. He put it that , if there is an integer root, that 
gives a numerical solution to the problem. But, if there are no integral roots, the solu tions must be constructed 
geometrically. The proposed algorithm in this work is based on these traditional consideration s. However, i t com plete ly 
does not omit the algebraic view of geometry in the modern world. An analytical interpretation is presented fo r every 
geometric proof, accompanied by the use of a computer software (GeoGebra) for results visualization, to bring the 
connection between the classical geometric approach and the computer aided design (CAD) methods. 

1.1 Classical definition of the Angle Trisection Problem 

This section, in brief, discuss the trisection of an angle based on the general understanding of an arbitrary angle. The 
problem requires one to construct an angle one third the size of a given angle, using only two tools (Straightedge (ru ler) 
and a compass). This definition pose two serious restrictions; that, the size of the given angle should not be determined or 

measured, nor should it be a matter at all for any trisection construction (except for the singular angles  and ), 

and that, any algorithm aimed at solving the trisection of an arbitrary angle should not involve arithmetic, but it s hould be 

typically geometrical. Figure  illustrates an example of an arbitrary angle on a plane. 
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Fig 1: Representation of an arbitrary angle in plane geometry 

1.2 To show that for any three points one not lying on a straight line with the other 
two, the three points lie on the same plane 

The goal of this section is to elaborate on a proposition defined to expose that, any three points, one not collinear with the 
other two produce a plane geometric figure and that; no two such plane figures can share all the three vertices in 
common. For instance, a union of two rays sharing a common endpoint  on a plane produce an angle of some size as 

illustrated in figure (1), ( ). An example is in a geometrical figure such as a quadrilateral and a triangle. Any two 

sides of these objects share a common endpoint called a vertex and thus an angle o f some size is defined between the 
two sides of the figure. Consider the following theorem: 

Theorem 1: For any three points, one not lying in a straight line with the other two, the three points lie only on same 
plane, and that every triangle lies only on one plane [9]. 

Considering triangles  and  on planes  and  respectively, it is not practically possible for the two triangles  

to lie in both plane  and in plane , and so is their respective vertices as shown in figure (2). To verify this proposition, 

let points , , and  lie on the two distinct planes;  and , such that point  is an image of point . Since both point 

 and  lie on plane , the straight line  lie on plane . Also, since points  and  lie on plane , the straight line 

 also lie on plane . Therefore plane  and plane  have line  in common (they intersect along line ). Point 

 does not lie in line with points  and , and therefore not common for both planes, a similar case for point . Thus it is  

not genetically possible for points , ,  to lie on both planes  and . Likewise, it is not possible for poin ts  , ,  

to lie on both planes. Hence, for any plane containing all of triangle  must also contain its three vertices , , and 

C. This shows that the whole of any triangle lies only in one plane. Considering either  or  as the acute 

angle to be trisected, it is required that all the points defining the “trisection angles” be defined in a two dimensional 
system (plane geometry). Thus the problem of trisecting an angle in general has to be sought following the classical rules 
of Euclidean geometry, and not using the mechanical methods being employed [10]. 
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Fig 2: Illustration of a plane geometric figure 

1.3 The Mistake in the Angle Trisection Impossibility Algebraic Proof of (1837) 

Theorem  illustrates how three points defining a given angle, and one not collinear with the other two lie on the same 

plane, and that in plane geometry two different plane figures cannot share all points in common. This section stems from  

theorem , objectively to show the algebraic limitations in the presented proof of angle trisection impossibility sta tem ent, 

to explain the degree of misconception governing the methods meant as solutions for the  angle trisection problem; to 
expose why the statement of angle trisection impossibility is not valid, and it thus should not be extended  to plane 
geometric problems. For instance, consider the algebraic conditions that: a length is constructible if and on ly if it 
represents a constructible number, an angle is constructible if and only if its cosine is a constructible number, and that, a  

number is constructible if and only if it can be written in the four basic arithmetic operations ( ) and the 

extraction of the square roots but not on higher roots [22].These three conditions were greatly considered in generating 
the angle trisection impossibility, which has limited and discouraged researchers from exploring on the a l ready exis ting 
realm of Greek’s geometry, in their freedom to add value to Euclidean geometry [11]. Moreover, it has been proven that 
there are infinitely many angles that are geometrically constructible and trisectible [1]. It is possible to bisect both an a ngle 
and a straight line, as well as dividing a straight line segment into the desired number of equal portions. It is also possib le  

to construct lines of magnitude  and , as well as constructing squares of contents (areas)  and  units. The 

existence of these well justified constructions show the probability to construct the algebraically declared irrational 
numbers, and so is trisection of a given angle, or the possibility of partitioning an angle into a certain ratio. According to 
this paper, the above stated algebraic constraints are not fashionable in restricting researcher from exploring the broad 
field of Euclidean geometry, since logically, geometry concerns following certain lines of reasoning, and the verification of  
the logic based on the obtained results is what matters. P.L.Wantzel’s proof greatly depended on these algebraic 
conditions, and concepts from abstract algebra based on cubic extensions, to proof the algebraic inability to extract the 

roots of the cubic equation; . Consider the following two versions of the impossibility proof: 

1.3.1 An interpreted Version of the Angle Trisection Impossibility Proof based on a Lemma; 

there is no power of  that is evenly divisible by  

This lemma can be used to demonstrate the angle trisection impossibility using concepts from Galois field of numbers as 
stated in [1]. To improve on the dimensionality perspective as discussed in [1], a proof upon this lemma is  des cribed as  
follows: 

Corollary: Let  be a field, and let  be an extension of  that is constructible out of  by a finite order of quadratic 

extensions. Then  does not contain any cubic extensions of . 

Proof: If  contained a cubic extension of , then the dimension of  over  would be a multiple of three. On the other 

hand, if  is obtained from  by a tower of quadratic extensions, then the dimension of  over  is a power of two. 

Defining a configuration to be a finite collection  of points, lines, and circles in a Euclidean plane, it can be stated, any 

point, line, or circle that can be constructed from the configuration  is definable in a field obtained from the coefficients of 

all the objects in  after taking a finite number of quadratic extensions, whereas trisection of angle  (an arbitrary 

angle in ) will basically be definable in a cubic extension of the field generated by the coordinates of . Consider, 

based on these coordinates, three plane angles ,  and  can be constructed to represent three 

different planes such that; the three plane angles add up to less than four right angles and any two of them add up to 
more than the third one [13]. These conditions can only be met in a non-Euclidean construction.  For example, the three 
plane angles made from isosceles triangles of equal legs meet their vertices at a common endpoint.  In classical Euclidean 

plane geometry, an angle is genetically defined in two dimensions ( ) with  and  as constructible points (not bas ed 

on coordinates), and not in three dimensions as implied from the Pierre Wantzel’s general cubic equation of the angle 
trisection impossibility. From this discussion, it is evident that the presented proof of the impossibility statement obligates 
solving the angle trisection problem using methods made by bending the formal rules in the Euclidean rigor of 
constructions in a 2D geometry. Thus the presented proof of the impossibility, together with the revealed prohib i ted non -
Euclidean geometric solutions are geometrically incorrect and not valid in the jurisdiction of the traditional Greek’s 
geometry. 

1.3.2 An interpreted Version of the Angle Trisection Impossibility Proof based on 
Trigonometry as illustrated in http://www.math.toronto.edu/rosent/Mat246Y/OLDPDF/week19.pdf 
[24] 

This section employ the use of algebra (trigonometry) to generate an algebraic proof of the angle trisection im possibi l ity 

statement, based on the classification of rational numbers and surds. Consider: Suppose  is a set of rational num bers , 

and suppose that , is a field of all surds. Assuming that , this section aims at showing that, one cannot trisect 

http://www.math.toronto.edu/rosent/Mat246Y/OLDPDF/week19.pdf
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 with only a straightedge and a compass. Consider the condition that; an angle is constructible for compass -ruler 

construction, if and only if its cosine is a constructible number as stated in section . In this regard,  angle is 

constructible, and the trisection of  would mean constructing an angle of . A proof that  is not a surd can 

be presented as follows: 

Theorem 2: A  is not trisectable and therefore  not constructib le 

To proof this theorem, consider the trigonometric identity; 

        

Working based on this identity;                                                                            

      (The double-angle formula)                 (1)                    

  

  

  

  

                                                                                               (2)                                         

Taking , assume that; 

  

Therefore,                  (By the triple-angle formula)                    (3)                   

Equation (3) can be rewritten as; 

                                                                                (4)                       

Equivalently, taking , equation (4) can further be rewritten as; 

                                                (5)                           

If we take  and substitute for  in equation (5), we get; 

                                                                                                                  (6)                           

Clearly, if  was in , then  satisfies the condition   

Claim: If  was trisectible, there would be a constructible root of   

In algebraic view, it is clear that, if a cubic equation with rational coefficients has a constructible root, then it has a rational  

root. The goal here is to show that  has no rational roots.  

Suppose  is a natural root.  and  are integers in their lowest form. Therefore, 

  

  

  

Consider; 

If , then , which implies , and hence  

 is prime, since for  in its lowest terms,  does not exist for the solutions . 

If  is prime and that , then , and so . Therefore, . Thus,  and  are relatively prime, 

implying .  
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Taking , implies . 

Therefore, if  is constructible, then , for  or  

Substituting for the two values of  in the above equation; 

  

  

Based on these results, it can be stated that the equation  is not algebraically reducible, as it was 

expected. From the presented two versions of the angle trisection impossibility proof, several facts as listed below, 
provide enough evidence to show that, the statement of angle trisection as an impossib le problem for compass-
straightedge construction has no geometrical cogency: 

a) The presented algebraic proof of the angle trisection impossibility does not disprove a geometric solution or a concept 
aimed at solving the angle trisection problem, but, it is a proof of statement that the problem of angle trisection is generally 
unsolvable. 

b) As observed from the presented discussions, each version in the proof settle at a three dimensional cons ideration that, 

the angle trisection solution corresponds to solving a certain cubic equation ( ), which is shown to be 

algebraically irreducible. This mode of approach turned the angle trisection problem from a plane geometric problem to a 
purely algebraic problem [6]. 

c) From section . equations  is of the form , a geometrical representation of  an object in three 

dimensions. The genetic definition of the angle trisection problem is in two dimensions and not three d im ens ions. This  
show the ambiguity in the conjecture of relating cubic extension to angles based on towers. It is pellucid that any form  of 
approach involving both cubic and quadratic equations is a solid geometric method, and not a Euclidean geometric 
problem [7]. It also has been shown that the angle trisection solution does not depend on the stated cubic equation, and i t 
can be algebraically reduced to a quadratic equation [8]. Thus the angle trisection impossibility should not be 
geometrically acceptable. 

d) The proof of angle trisection impossibility is based on trisection of a particular angle , while according the geometrical  

definition of the problem as discussed in section , the solution to the angle trisection problem should work for both a 

particular angle, and an arbitrary angle. It is entirely not clear how much more or less arbitrary is either  or  angle. 

This paper treats all the constructible angle multiples and submultiples of  as a specific angle and not an arbitrary 

case. The angle trisection impossibility statement is so obscure to depend on a specific constructible angle, to state a 
general conclusion that, if one cannot construct a certain angle, then one cannot solve the trisection of an arbitrary angle.  
This mode of solving the problem is purely arithmetical, which is geometrically prohibited. The solution to the angle 
trisection problem does not depend on the construction of a particular angle. It has been shown that it is geometrically 

possible to construct all whole number angles, and so is an angle of , and the provided method did not solve the 

trisection of an arbitrary angle [1]. 

e) The algebraic condition specified in section ; that a length is constructible if and only if it represents a constructible 

number show the geometrical limitations of these restrictions, since for example, it is geometrically possible to  cons truct 

lines of magnitude  ,  and , and algebraic techniques have failed to conceive exact values for thes e irrational 

factors. Traditionally, Euclid worked with only positive integers. Negative numbers and surds were not accepted. The term  
irrationality did not exist. Thus , as it is geometrically possible to solve the square of listed surds, the angle trisection 
problem should be sought following the classical geometric rules and not based on algebra. Clearly, any other form  of a  
solution not using the classical straightedge and compass is not geometrical. 

From these interpretations, it is clear that the impossibility statement for angle trisection problem should not be extended 
to resolution of angles, so that it is defined as; ‘ the angle trisection problem is an impossible problem of Euclidean 
geometry’. It is evidently shown how the presented algebraic proof is a sense of inability to solve the problem, and not an 

impossibility case as stated. This paper hope to resolve this ancient puzzle of angle trisection.  Consider section . 

2.0 HYPOTHESIS 

As discussed from section , it is pellucid that the problem of angle trisection concern serious misconceptions, and as a 

result, the proposed solutions are not geometrically correct. Section , in a simple and brief approach d is cussed how 

the angle trisection problem should be sought based on the traditional mathematics frameworks of geometry. Accordingly, 

it is required that, for any given angle , one be able to construct the fraction , under the set restriction of classical 

Greek’s geometry. Consider figure (3); 
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Fig 3: An arbitrary Angle Trisection Results 

 

Figure (3) depicts the expected result for a correct trisection, an algorithm which should work for trisection of both an 
arbitrary angle, and a specific angle. Reasonably, for these type of results to be obtained, it is good for any construction to 

have a base to stem from. As such,  angle form the base for all the constructible and trisectible angles multiples of 

, their multiples and submultiples. Therefore, this work consider a certain set of angles, a range within which the 

trisection of both an arbitrary angle and a particular angle can be sought. This paper takes a quantum look at the atom ic 
elemental quantities in a plane making the larger objects such as circles, lines, and angles, and the associated properties 

based on these geometric quantities. In this case, all the angles in the range  are considered to  form  a 

subset of angles for the superset of all the angles in the intervals  (both the whole number angles and the 

non-whole number angles), where the angle trisection problem could be sought at a good precision. This consideration is 
centered to the fact that, as it is shown in the trisection by Archimedes using a marked straight ed ge, it is possible to 

correctly trisect an acute angle. It is further considered that, trisection solution for any angle greater than  is trisectible 

when the given angle is geometrically reduced to a value of an angle within the specified ran ge as shown in  s ection  

and in section . 

3.0 MATERIALS AND METHODS 

3.1 Materials 

In this work, all the presented approaches are typically a compass -straightedge constructions, though some interactive 
computer software such as GeoGebra can be used, in respect to computer aided design approaches. In this work, 

GeoGebra  software as one of the interactive geometry software is used to bring the insight of computer aided design 

(CAD) methods, and for the visualization of the obtained results. 

3.2 Methods 

This chapter presents an elegant multistep procedure for solving the problem of angle trisection in antiquity.  The initial 
part of this section provides a brief discussion to expose the rudimentary idea and the logics employed in generating the 
proposed steps of construction. It then provides the general trisection solution, accompanied by an elementary proof to 
justify the correctness of the obtained results. 

3.2.1 Application of Set Theory in defining the Proposed Angles Trisection Solution 

The focus of this section is to reveal the geometrical outlook of the structure followed in deriving the assortment of angles  

for; , based on ideas from the set theory. Consider figure (4). 
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Fig 4: Geometrical Representation of some angle properties based on set theory, using a Venn diagram  

In figure (4), region  represents a superset of all angles on a Euclidean plane, while region  is a subset contain ing a l l  

the angles submultiples of the angle elements in the superset . Specifically, an example to illustrate the relationship 

between the sets  and , is angles of magnitudes; , and . In this example,  is within region , while 

 form the boundary, and a member in elements of the subset . Consider that, the trisection results of  will 

appear in region , as well as the trisection solution for . Again, both the angle  and its trisection solution l ie  in  

region . Conversely, trisecting an angle in the subset  would imply the possibility of trisecting its multiple angles in the 

superset . In this case, if we are in a position to trisect any given case in the subset , then any other angle in the 

superset  is also trisectible. The aim of this paper is to provide a geometrical approach to verify the claim th at, any given 

angle in the superset , can geometrically be trisected from the subset , if and only if any angle element within the 

subset  is trisectible. That is: if an angle  is trisectible in the range , then since , any 

other angle element in  is geometrically trisectible, because . However, for a specific angle  such that either, 

 or , and that if  and , then the angle trisection problem cannot be sought by trisecting the 

angle , since in this case, any form of solution should work for any angle lying either in the subset , or in the supers et 

. Consider the following theorem: 

Theorem 3: It is geometrically possible to trisect an arb itrary angle under the specified restrictions of classical geometry.  

Under this claim, consider the following construction steps, meant to elaborate on the discussion in s ection . Figure 

(5) depicts the construction results. 

3.2.2 Trisection of an Arbitrary Angle using only a compass and a straightedge (ruler) 

1. For a given , use the radius defined by ray  (the baseline) to construct a  angle . 

2. If the given  lie within  defined by the range , label  the point of intersection between 

curve  and ray . However, if   is outside the region , reduce geometrically  to its submultiple 

angle , such that  lie somewhere in , using a compass and straightedge (ruler). 

3. Assuming that  lie at, or within , Join points  and  using a straight line, and construct the bis ection of 

ray  at a point . 

4. Using circles of radius  and the ray , trisect the chord  at points  and  as shown in figure (5). See trisection 

of  in annex-1. 

5. Draw a straight line from the center of the fourth circle (point ) of trisection on ray , through point  to cut the curve 

 at point  as shown below.  

6. Again, draw a straight line through points  and , to cut curve  at point  as shown in figure (5). 

7. With the compass placed at point , mark an arc of radius  along curve  at a point . . 
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Fig 5: Trisection Results for  

The above procedure present a claim that, . To verify this statement, consider the following 

sections of proof. 

3.2.2.1 Geometrical Proof that  

The aim of this section is to expose the accuracy of the assertion that . The initial part of this 

proof concerns the application of the compass equivalence theorem, to show the correctness of the found results, bas ed 
on some properties of points and lines in the realm of circles. The second part of this proof involves the analytical 
interpretation of some geometric properties inherent from the construction results, and their relat ionships, to show 
geometrical precision of the proposed algorithm. 

 

Fig 6: An application of the compass equivalence theorem to verify that  

3.2.2.1.1 Geometrical Transformation of point  to point  

Proof: 

This section of proof is depended on the compass equivalence theorem to justify the claim that, if point  is an im age of 

point  (through a geometric transformation), and a straight line is drown through points  and  to produce point  (  is  
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the point of intersection between the base line and the line through points  and , implying the three points are 

collinear), it can be shown that  and that . 

Considering figure (6), point  is a reflection of point , about center  through a certain angle  as shown in 

. In figure (6), the circle in blue, centered at point , pass through the vertices  and . Point  is the center 

of the initial circle used in mapping point  to point . This implies that , where  radius of the 

circle centered at point . The compass equivalence theorem as provided in proposition  in Book  of Euclid’s 

Elements states “any construction via ‘fixed’ compass may be attained with a collapsing compass. That is; it is possible to  

construct circles of equal radius centered at any point on a plane” [2], [12], [16]. Thus assuming an arbitrary point  to be 

center of a circle (the circle in blue curvature), the compass equivalence theorem helps confirm that 

, by constructing a circle that passes through points  and   (with point  as the center of the 

initial circle (the circle in black curvature)) as required. 

3.2.2.1.2 An analytical proof that  

In section it is shown that, , with  as the radius of the circle in black curvature. This 

part of proof is aimed at showing that , based on the property; 

. Consider figure (7). Point  is a reflection of point  about point . Taking 

, and that point  is a reflection of point  (proven), then , (Base angles 

of isosceles triangle  since ).                                                   (7)                                                                                                                                                                                                                        

This imply that;  

Triangle , (Congruence property ).                                                                     

Again,  (by property, an exterior angle of a triangle is equal to the sum of the opposite interior angles).  

Also , (Base angles of isosceles triangle ).                                            (8)                  

It follows that                                                                                     (9)                         

Consider;  (Sum of angles on a straight line add up to ). Making  

the subject;                                                      (10)                                                                                                                           

From equations (7) and (9) we have  and  respectively. Substituting for angles 

 and  in equation (10) we have; 

                                                                        (11) 

The equation reduces to                                                                                   

Equation (11) imply that , which can be rewritten as; 

                                                                                                  (12)                           

Thus , since , hence the claim proven. 

Further, from equation (8), , is the angle through which point  is mapped onto point , 

about point . This observation can be stated classically in theorem form as;  

Theorem 4:“The classical trisection solution for a given angle is always, either; within a set of angles in the range 

, or it is a multiple, or a submultiple of an angle in the configuration ”, as sought using 

the described method. 
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Fig 7: General Classical Geometric Proof of Angle Trisection 

 

 3.3 Justification of the Method 

The proposed algorithm is justified by performing the trisection of some angles withi n the range , 

inclusive of the , and also, in the trisection of  angle, with the  representing all angles in the s upers et , as  

described in section . In all the presented construction methodologies, GeoGebra software is used for results 

visualization. 

 

 3.3.1 Geometrical Trisection of  using Compass and Straightedge (Ruler) only 

The following steps of construction would help trisect an angle of size . The method works for both the compass-ruler 

construction, and when performed using a computer software.  

1. For given two points  and , use radius  to construct a  angle  as shown in figure (8). 

2. Join points  and  using a straight line, and construct the bisection of ray  at a point . 

3. Using circles of radius  and the ray , trisect the chord  at points  and  as shown in figure (8). See trisection 

of  in annex-1.  

4. Draw a straight line from the center of the fourth circle (point ) of trisection, on ray , through point  to cut the curve 

 at point  as shown.  

5. Again, draw a straight line through points  and , to cut curve  at point  as shown in figure (8). 

6. With the compass placed at point , mark an arc of radius  along curve  at a point . .  

Figure (8) is the construction results obtained. As seen from the algebra view,  has been trisected. 
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Fig 8: Trisection of   angle using GeoGebra software 

Proof 

This proof presents a general overview for all the ensuing forms of verifications to these types of construction. As  s tated 
before, the compass equivalence theorem could provide a reasonable justification that the trisection r esults are 

geometrically precise.  Figure (9) is the geometric proof that  after performing the following 

construction procedure using GeoGebra software: 

1. For given two points  and , use radius  to construct a  angle  as shown in figure (9). 

2. Join points  and  using a straight line, and construct the bisection of ray  at a point . 

3. Using circles of radius  and the ray , trisect the chord  at points  and  as shown in figure (9). 

4. Draw a straight line from the center of the fourth circle (point ) of trisection, on ray , through point  to cut the curve 

 at point  as shown.  

5. Again, draw a straight line through points  and , to cut curve  at point  as shown in figure (9). 

6. With the compass placed at point , mark an arc of radius  along curve  at a point .  

7. Reflect point  about point  to produce  as shown. 

8. Using the radius , place the compass at point  and make an arc to cut circle centered at , at a point . 

9. Draw a straight line through points  and , to cut line  externally at a point . 

10. Use radius  to construct a circle centered at  as shown in figure (9). 
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Fig 9: Proof of  angle trisection results, an application of the compass equivalence theorem  

3.3.2 Geometrical Trisection of  angle Using GeoGebra Software  

Figure (10) is the results obtained after carrying out the following steps of construction using GeoGebra software.  

1. For the given , use radius  to construct a circular curve that cuts ray  at a point . 

2. Join points  and  using a straight line, and construct the bisection of ray  at a point . 

3. Using circles of radius  and the ray , trisect the chord  at points  and  as shown in figure (10). See 

trisection example on annex-1.  

4. Draw a straight line from the center of the fourth circle (point ) of trisection, on ray , through point  to cut the curve 

 at point  as shown.  

5. Again, draw a straight line through points  and , to cut curve  at point  as shown in figure (10). 

6. With the compass placed at point , mark an arc of radius  along curve  at a point . , as 

depicted in the algebra view window. 
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Fig 10: Geometrical trisection results for  angle using the GeoGebra software 

 

3.3.3 Geometrical Trisection of  angle Using the GeoGebra software 

This section presents a construction for trisecting an angle of  using the GeoGebra software, to show the 

correctness of the proposed method, at an accuracy of  Consider the following construction: 

1. For the given , use radius  to construct a circular curve to cut ray  at a point . 

2. Join points  and  using a straight line, and construct the bisection of ray  at a point . 

3. Using circles of radius  and the ray , trisect the chord  at points  and  as shown in figure (11). See 

trisection example on annex-1.  

4. Draw a straight line from the center of the fourth circle (point ) of trisection, on ray , through point  to cut the curve 

 at point  as shown.  

5. Again, draw a straight line through points  and , to cut curve  at point  as shown in figure (11). 

6. With the compass placed at point , mark an arc of radius  along curve  at a point . , as 

depicted in the algebra view window. 
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Fig 11: A Geometrical Trisection illustrative Proof for  angle 

 

3.3.4 trisection of  angle to justfy validity of the proposed range  of angles 

for trisetion solutions 

This section applies the proposed algorithm in trisection of  angle, to justify the theorem that the trisection of both a 

particular angle and an arbitrary angle for compass and straightedge (ruler) construction lie in the array  

as defined earlier. Consider the following construction and the obtained results: 

 

1. Given that , use radius  to construct a circular curve through point ray . 

2. Join points  and  using a straight line, and construct the bisection of ray  at a point . 

3. Using circles of radius  and the ray , trisect the chord  at points  and  as shown in figure (12). See 

trisection example on annex-1.  

4. Draw a straight line from the center of the fourth circle (point ) of trisection, on ray , through point  to cut the curve 

 at point  as shown.  

5. Again, draw a straight line through points  and , to cut curve  at point  as shown in figure (12). 

6. With the compass placed at point , mark an arc of radius  along curve  at a point . , while its 

reflection at point  is , as depicted in the algebra view window in figure (12). 
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Fig 12: Trisection of 45 angle using GeoGebra software 

3.3.5 Geometrical Trisection of  angle to confirm that all the angles greater than  

angle are trisectible within the range;  

This construction begins by the bisection of a  degree angle to produce , and the above 

construction steps repeated to produce figure (13): 

 

1. Given that , construct a bisection of  to get an angle of . 

2. Using radius  to construct a circular curve to cut the bisection at a point . 

3. Join points  and  using a straight line, and construct the bisection of ray  at a point . 

4. Using circles of radius  and the ray , trisect the chord  at points  and  as shown in figure (13). See 

trisection example on annex-1.  

5. Draw a straight line from the center of the fourth circle (point ) of trisection, on ray , through point  to cut the curve 

 at point  as shown.  

6. Again, draw a straight line through points  and , to cut curve  at point  as shown in figure (13). 

7. With the compass placed at point , mark an arc of radius  along curve  at a point . , as 

depicted in the algebra view window of the GeoGebra software. 

 

 



 
I S S N  2 3 4 7 - 1 9 2 1  

 V o l u m e  1 3  N u m b e r  4  

                     J o u r n a l  o f  A d v a n c e  i n  M a t h e m a t i c s   

 

7324 | P a g e                                        
A u g u s t ,  2 0 1 6                                           h t t p s : / / c i r w o r l d . c o m /  

 

Fig 13: Trisection of 22.5 angle to confirm that 45 angle is only trisectible within the limits  

 

4.0 APPLICATION  

4.1 Trisection of Obtuse Angles 

Generally, it is required that, a correct angle trisection method should work for any given angle, regardless of its  s ize. As  

stated earlier,  is only precisely trisectible within the limit . The goal of this section is to provide an 

illustrative construction of trisecting an obtuse angle. The most influential trisection solution of an obtuse angle was 
presented by Archimedes (287-217 B.C.), [4], [11]. The construction involves using a marked straightedge and a 
compass, mechanically to construct an angle one third the size of a given angle [5], [15]. As demonstrated in his proof, i t 
is difficult to verify the trisection of an obtuse angle, than it is to proof the trisection results of an acute angle. In th is  work, 
based on the stated limits of the angle trisection solution, the trisection proof presented is considered to generalize for the 

trisection of any angle. Clearly, if one is able to provably trisect an angle within the range  and that all 

angle in this configuration are trisectible, so is any required trisection proof within the same array, and thus any other 

given angle is trisectible. Thus the following example of trisecting  angle is an illustration of how the construction 

should be performed and not a proof. The results in figure (14) were obtained using GeoGebra software for the follows 
steps of construction: 

4.2 Geometrical Trisection of  

Angle  was obtained randomly by locating points ,  and  on a plane, and drawing the two rays  

and  to a common point . To trisect this angle, its size has to be geometrically reduced to an angle  of value 

within the range  (defined by ), as depicted in figure (14); (where  has to be constructed 

before fractioning the given angle). In this case, . That is;  octsect . The 

trisection of  can be performed as follows; 

1. Join points  and  using a straight line, and construct the bisection of ray  at a point . 
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2. Using circles of radius  and the ray , trisect the chord  at points  and  as shown in figure (14). See 

trisection example on annex-1.  

3. Draw a straight line through points  and , to cut curve  at point  as shown in figure (14). 

4. Again draw a straight line from the center of the fourth circle (point ) of trisection, on ray , through point  to cut the 

curve  at point  as shown.  

5. With the compass placed at point , mark eight  equal intervals using radius  along curve . For this example, 

this operation was performed from point  to produce , which was then reflected to the opposite side on the 

curve as .  

As seen from the algebra window of the GeoGebra software, , while . Clearly, 

.  

 

Fig 14: Trisection Results of Obtuse Angle  

Considering the construction results in figure (14),  (which has to be constructed before the trisection 

process is executed), is a bisection of . Therefore,  obey the condition . The 

process of trisecting  by stroking the curve  a number of times along the circumference  on the plane 

does not violate any classical geometric rule. The same application is employed in the construction of regular po lygons , 
such as an hexagon [20]. 

5.0 RESULTS AND DISCUSSION 

The geometrical representation of results in this work is from figure (6) to figure (17). Figure (6) and figure (7) presents the 
general trisection results, based on the proposed algorithm. These diagrams illustrate both the geometrical and the 
analytical interpretation of the obtained results, to ratify the exactness of the methods, respectively. As stated earlier, i t is  

entirely not clear to what degree of arbitrariness is an angle of . In this proof, the  angle is taken to be both a 

specific angle, and an arbitrary angle. The  is thus regarded as the maximum limit of the proposed angle trisection 

solution, within which, any given angle inclusive of the  angle is trisectible. Figure (8) and figure (9) present the 
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verified solutions to the trisection of  angle. Further, figure (10) and figure (11), provide clear results of trisecting 

angles of  and  respectively, to show that the revealed method works for any given angle within the 

specified spectrum. Figure (12) depicts the general trisection results of all the angles outside the scale; , 

by trisecting an angle of magnitude . As observed from figure (12), the size of , while that of the 

reflected . These variations are not observed from the trisection results of all the other cases wi th in  the 

scale of , where the obtained results demonstrate the exactness of the method. This imply the valid i ty o f 

theorem , in its consideration towards a solution to the old age classical problem of angle trisection. From the obta ined 

results (figure (6) to figure (13)), the purpose of the circle in green and radius (in all cases point  is an image of ) is  

to show the application of the compass equivalence theorem in determining the accuracy of the provided methods. The 

goal of trisecting an angle of  was to show that the trisection of the  angle could, precisely be sought by 

trisecting an angle, which is a submultiple of , and lying in the interval . Therefore, to trisect , 

one has to duplicate the curve subtending  as in figure (13), along the curve . As conferred in section 

, an angle of  would lie in the superset , while its trisection solution is found by working out the proposed 

construction on its submultiple angle within the subset . Thus it is geometrically possible to trisect all angles, if the 

proposed method is performed under the range . Figure (14) provide a clear illustration to e laborate on 

the trisection of an obtuse angle. To this point, the demonstrated results involve the trisection of al l angle in the in terva ls  

. The classical geometric trisection of any angle greater in magnitude than an angle of  (that is: 

) can geometrically be obtained by subtracting the reflex angle  from  and performing the proposed 

construction for the difference . The trisection results of the angle  would then be given by 

 as described in [8], among the other many simple ways of solving such a construction.  

Classical geometric trisection of the Special Angles  and  

Theorem 5: It is geometrically possible to trisect an angle of magnitude  

As stated earlier, the term area or volume of modern world did not apply in classical geometry. However, study results 
show that Euclid employed the arithmetic operation of multiplication when determining the content (Area in modern world) 
of similar objects such as triangles and rectangles, by use of the term commeasurable. In classical geo metry, angles  are 
also considered as magnitudes. Employing the same technique of proportions of magnitudes of similar kind, th is  paper 

consider the ratio  to justify the assertion that all angles are trisectible within intervals . 

Consider,  angle is not definable between a union of two rays as most angles would appear, and so is  an angle of 

magnitude . This view completely eliminate the classical trisection of the angle  (trisection angle of  goes to 

infinity, since it is only defined by a single axis), due to consideration that in classical geometry, the magnitude  did  not 

exist. However,  is an angle multiple of , the limit of the proposed range, when the  is defined in a circle 

on a plane. Based on proportionality, , where in this case, the result  is taken to be a magnitude of 

two ratios. This implies, the trisection of  would be obtained by classical trisection of , and stroking   equal  

intervals of  curve subtending trisection angle of  at a point , along the circle circumference. Alternatively, one can 

generate an angle of value  using the provided algorithm, where the supplementary angle would be of magnitude 

. Thus the singular angle  is geometrically trisectible. 

5.1 Accuracy of the Proposed Method 

The accuracy of the generated method could well  be determined using an interactive computer software, since the 
traditional Greek’s tools of geometry produce an accuracy of up to tenths, though with an application of a Vanier scale, 
higher precisions than tenths can be obtained. Figures (15) and (16) provide a comparative view of the resul ts  obta ined 

when the proposed method is applied for the trisection of  at different reference angles (  and ) respectively. 

5.2 Trisection of  angle to confirm the trisection of  angle at  Accuracy 

Consider figure (15) obtained after carrying out the following steps of construction using GeoGebra software:  

 

1. For given two points  and , use radius  to construct  angle  as shown in figure (15). 
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2. Join points  and  using a straight line, and construct the bisection of ray  at a point . 

3. Using circles of radius  and the ray , trisect the chord  at points  and  as shown in figure (15). See 

trisection example on annex-1.  

4. Draw a straight line from the center of the fourth circle (point ) of trisection, on ray , through point  to cut the curve 

 at point  as shown.  

5. Again, draw a straight line through points  and , to cut curve  at point  as shown in figure (15). 

6. With the compass placed at point , mark an arc of radius  along curve  at a point . .  

From figure (15), , and .  has been fractioned into three mean 

proportions of size; . From these results, point  is a reflection of point . As seen from the 

algebra window, ,  , and . 

 

Fig 15: Trisection of  angle to an accuracy of  decimal places 

 5.3 Trisection of  angle to confirm the trisection of  angle at  Accuracy 

Consider the follows procedure and the obtained results: 

 

1. For given two points  and , use radius  to construct a  angle  as shown in figure (16). 

2. Join points  and  using a straight line, and construct the bisection of ray  at a point . 

3. Using circles of radius  and the ray , trisect the chord  at points  and  as shown in figure (16). See 

trisection example on annex-1.  

4. Draw a straight line from the center of the fourth circle (point ) of trisection, on ray , through point  to cut the curve 

 at point  as shown.  
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5. Again, draw a straight line through points  and , to cut curve  at point  as shown in figure (16). 

6. With the compass placed at point , mark an arc of radius  along curve  at a point .  as 

depicted in figure (16).  is a reflection of . 

 

Fig 16: Trisection of  angle to confirm the accuracy of trisecting  angle to  

Consider figures (15) and (16). Both results show the trisection of  at two reference angles of magnitude  and 

 respectively. From the figures, it is observed that, the smaller the size of the angle to be trisected, the higher the 

accuracy. That is; from figure (15), two of the angles are  and , while the respective angles  in 

figure (16) have sizes  and . Thus as the size of the angle to be trisected has to be reduced to 

a reasonable value within the proposed range. However, all the obtained results are logically precise, since both the  

angle and the  angle lie within the limits . According to this paper, this is the highest accuracy and 

possibly the exact solution to be discovered under the set restrictions of solving the angle trisection problem. Moreover, i t 
should be considered that, Euclid did not work with the real numbers in classical geometry, instead, he employed us e of 
magnitudes. All classical proofs were inherent from the constructions. As demonstrated in this paper, the obtained results  
are geometrically exact, and therefore the angle trisection problem is solved. The use of the open source GeoGebra (5.0) 
in this paper was preferred because of its good geometry and algebra toolboxes, which create the environment for 
algebraic visualization of the geometrically generated results.  

6.0 CONCLUSION 

Throughout the presented discussion in this paper, an attempt has been made to proof that the angle trisection problem of 
the ancient Greek mathematics is geometrically solvable, by providing an elegant multis tep method governed by the 
classical rules of Euclidean geometry. The analogs involved concerns the quantum look of some elemental quantities 
(elemental lengths and curves), purposely to inspect the geometrical relationships of different quantities on a gi ven plane. 
It has also been shown that the angle trisection impossibility statement, together with the presented non -Euclidean 
solutions [14], [17], [18], has no geometric rationality. It can therefore be concluded that, the angle trisection impossibi l ity 
statement is not geometrically valid, and that the angle trisection problem is resolvable following the provided method, for 

the configuration  and the condition demonstrated in Annex-1. The proposed proof works for both 

compass-straightedge (ruler) construction, and the computer aided design approaches. Trisection of any angle in the 

range  infer the trisection of any angle (whole number angles and non-whole number angles defined 
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between any two rays) as illustrated in sections , and , thus the set hypothesis achieved. However, as dis cus sed 

earlier, any other form of solution involving the use of algebra  (trigonometry) is not a classical geometric solution. 
Moreover, the use of a computer software in this works was purely for results visualization, and not as part of the provided 
proofs. The geometrical analysis of the result did not employ the use of coordinates  (as done in analytical geometry), and 
this aspect brings in the traditional Euclid’s ways of analysis, based on proportions between quantities of s im i lar kinds . 
The use of the interactive computer software pose some challenge in that, they have some  limiting factors bas ed on the 
software development logic. Therefore, with this present theorem developed under a multistep construction procedure, the 
approximate results displayed using the GeoGebra software cannot be final for the discretion of the propos ed m ethods. 
This consideration is due to the fact that in geometric constructions, no construction can produce an exact measurement 
(only reasonably correct logical flow make sense). Genetically, the proposed method is rationally, geometrically correct. It 
reveals one of the most elegant provable compass and straightedge construction of the 21st century. 
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ANNEXES 

Annex-1 Classical Trisection of the Chord  or  of all Constructions 

The following steps generalize for the geometric trisection of the line segment  or , joining points  and  or 

points  and  (or any other chord of similar kind) in all provided constructions. Initially, one is require to construct the 

bisection of the ray  at a point, say , and reflect the point  about point  to get point  (the governing trisection 

condition for Alex kimuya’s Trisection theorem in  configuration). 

1. Construct the first circle using radius  and center . 

2. Without adjusting the span of the compass, construct the second, third, and the fourth circles using centers , , and  

respectively. 

3. Join points  or  (if using ) to pint  using a straight line, and lebel , the point of intersection between line  and 

the fourth circle. 

4. With the compass placed at point , mark point  on the second circle using radius  as shown in figure 17.. 

5. Again, with the compass at point , mark a point  on the third circle using chord  as illustrated below. 

6. Draw a straight line through points  and  to cut the chord  at a point . 

7. Draw a straight line through points  and  to cut chord  at a point .  

The segment  is geometrically trisected. Lines  and are parallel (according to Thale’s theorem). One can use 

comparisons to verify the equality of the three line proportions, , , and , to each other. 

Consider the figure 17: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 17: How to Trisect the chord  
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