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ABSTRACT 

In this paper, bifurcation of solution of guasilinear quasilinear DAE is eventually reducible to an ordinary differential equati

on (ODEs) and that this reduction so we canapply the classical bifurcation theory of the (ODEs). The taylor expansion appl
ied tothe reduced DAEs to prove that is equivalent to an ODE which is a normal form undersome non 
degeneracy Conditions 
theorems given in this work deal with the saddle node,transcritical and pitchfork bifurcation with twoparameters. Some illus
trated examples are given to explain the idea of the paper. 

Keywords : Differential Algebraic Equation ; Quasilinear; Bifurcation. 

INTRODUCTION 

Nearly all DAEs arising in scientific or engineering problems are quasilinear.Thisarticle presents bifurcationin guasilinear di

fferentialalgebraic equations (DAEs) differfrom ordinary differential equations (ODEs).Over the years several approaches 

havebeen introduced for the study of local existence and uniquenessquestions for DAEs.While they exhibit major technical
 differences and are based on different assumptions,all these approaches agreewith the basic principle that a DAE is even

tually reducibleto an ODE and that this reduction should be donevia a recursiveprocess .The bifurcation in guasilinear para
meterized DAEs form 

A(µ, x) 𝑥 = G(µ, x), µ ∈  R
2
, x ∈  R

1
, (1.1) 

it will be investigated. Accordingly, we shall assume that for some open interval I ⊂ Rand open subset U n ⊂ Rn 

the mappings A : U n×I ×I  £(Rn) and G : U n×I ×I Rn are of class C∞. And proves a bifurcation 

theorem based on assumptions on theTaylor coefficients. Since we will impose conditions on these coefficients we 

will be ableto show that the system undergoes saddle node ,transcritical and pitchfork bifurcationthat is a little more 

akin to bifurcation ODE . 

A simple comparison of the areas of the sciences in which DAEs are involved withthose in which examples 

of bifurcation in ODEs arise [1],[3] that bifurcation of periodicsolutions occurs from (0,0)and [4] Our exposition is based 

on Jepson, A. and Spence[2] and the references therein reveals a considerable overlap and suggests that an appropriate 

variant of the bifurcationtheorem should be available in the DAE setting.it is important note that all theorems and condition

s 

for Bifurcation to be occurredin the reduced DAEs will be given in terms of A and G in (1,1) and thiswillbe 

extension of the bifurcation theory to DAEs of index one. 

In the index one case, our coal is it use the reduction of (1.1) to an ODE In withthe reduction (1.1) method given in [5] 

then apply classical bifurcation theory to the reduced ODEs.  

This paper is organized as follows: Section 2 deals with the problem of reducingparameterized families of DAEs 

simultaneously.Since reduction of DAEs to ODE formleads to implicit rather than explicit ODEs, it is important to 

rephrase some of thehypotheses of the classical bifurcation theorems in that setting. This is done in section 

3. The bifurcation theorems for quasilinear DAEs is proved in theorems (3.1,3.2,3.3) 

(for two-parameters ) in Section 4 we will study of the behavior bifurcation 
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and discusstheir implementation in Maple. 

2 Reduction of Parametrized DAEs [5] 

The bifurcation in guasilinear parameterized DAEs form (1.1) will be investigatedand DAEs will be reduced to an  

equivalent parameterized ODEs. Then classical bifurcation theory can be applied. In the reduction peroses we 

will follow the methodof reduction given in [5]. So the following theorem is an essential in our work, which 

summarized the reduction of DAEs (1.1).  

Theorem 2.1. [5] 

Let(𝑥 ,𝜇 ) ∈  W1 and let Φ =id× 𝜑:𝜖I I 𝑈𝑟1 →I 𝑈𝑛  be a local 𝐶∞parametrization of W1 near(𝑥 ,𝜇 ).There exist an 

open subinterval 𝐼 ∁𝐼with 𝜇 ∈  I ×Iand an open neighborhood 𝑂𝑛∁𝑈𝑛of 𝑥 with the following property :For µ ∈𝐼  

,a 𝐶∞mapping x : J  on an open interval J ⊂ R is a solution of the DAE (1.1) if and
 

only if x(t)  = ϕ(µ, ξ( t))  ,  ∀ t ∈  J ,  and ξ : J   is a  solution of the system
 
A1(µ, ξ)   = G1(µ, ξ) , 

where W1 = (x,  µ) ∈ U 
n

 × I : G(x, µ) ∈ rgeG(x, µ),  and A1 : I×I×U 
r1

  £(R
r1,rgeA( , )) 

£(R
r1),  G1 : I × I × U 

r1
  rgeA( , )) (R

r1) are the C
∞
 mapping given b 

       A1(µ, ξ)  :=  A(µ, ϕ(µ, ξ))Dξϕ(µ, ξ) ,                              (2.1)     

         G1(µ, ξ) :=   G(µ, ϕ(µ, ξ)) ,                                    (2.2)  

and   ∈ £(R
n

)is an arbitrary linear projection onto rge A(µ, x)) (R
r1).or Fixed µ ∈ I × I and  ∈ , the DAE 

(1.1) reduces to the form 

A1(µ, ξ)   = G1(µ, ξ) ,                   (2.3) 

The fixed but arbitrary µ = (µ1, µ2) ∈  I × I are also given by the solutions of thenon parametrized DAE 

 

A(µ, x)   = G(µ, x),                                        (2.4)      

where 

  A=  ,G=  

For the sake of argument, assume that the DAE (1.1) withµ= has index one at  ∈   (so that ( , )  ∈  W1).  

With the previous notation, this means that the operator  ( , )  where ϕ( , ) =  ,  

has full rank r1 and hence is invertible.By continuityA1(µ, ξ) remains invertible for (µ, ξ) near ( , )  ∈  R × R
r1
 and 

it thus follows fromTheorem 2.1, that in the vicinity of ( , )  ∈  W1 , the parameterized DAE (1.1) is 

equivalent to the explicit parameterized ODE: 

 = A1(µ, ξ)
−1

G1(µ, ξ), ξ ∈  U 
rn

.                              (2.5) 

To motivate the discussion in the next section, suppose also =0 , =0 

3 Local two-Parameter Bifurcations of Equilibrium Points 

We will now consider the general guasilinear parametrized DAEs equation 
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A(µ, x) = G(µ, x), µ ∈  R
2
, x ∈  R

1
, (3.1) 

 

and µ = (µ1, µ2), and prove a bifurcation theorems based on assumptions on the Taylorexpansion of G. We assume that  

G(x, µ)for all value of µ ,A(x,  µ) is independent of xand µ. 

3.1 Saddle-Node bifurcation 

The saddle-node bifurcation can take place in any system and is, in fact, a very typicalbifurcation to happen when  

a parameter is varied. Maybe because this bifurcation isso typical, it has a lot of other names. The saddle-node  

bifurcation is also called foldbifurcation, tangent bifurcation, limit point bifurcation, or turning point bifurcation. 

from theorem (1.1) it follow that near (0,0) that DAEs (1.1) reduced to the system 

 

   = A1 (µ, ξ)
−1

 G1 (µ, ξ) , ξ ∈  U 
rn

 .where U 
r
 ⊂ R

r1
 is an open subset A1 : I × I × U 

n
 (f (R

r1
, regA(0, 0))  

≈  (R
n

)) and G1 : I × I × U 
n
  (f (R

r1
, regA(0, 0)) ≈  (R

n
)) areof class C

∞
. 

the following theorem related to this kind of bifurcation. 

 

 

Figure 1: The normal form of a saddal- node bifurcation, where r ranges from  to-  using mapleTheorem 

Theorem 3.1. Consider one-dimensional quasilinear DAEs 

A(x, µ)  = G(x, µ), µ ∈ R
2
, x ∈ R

1
 (3.2) 

where  G∈ 𝑅3has at 𝜇=0the eguilibrium x=0 ,and  
𝜕𝐺

𝜕𝑥
(0,0,0)≠ 0.Assume that  the following 

two non-degeneracy conditions are satisfied: 

(i) 
𝜕2𝐺

𝜕 x 
2

 
(0,0,0) ≠ 0 

(ii)  
𝜕𝐺

𝜕 𝜇1  
 (0,0,0)≠ 0&

𝜕𝐺

𝜕 𝜇2  
 (0,0,0)≠ 0 

 then near (0,0,0), (3.2) is topologically equivalent to the one of the following normalforms: 
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= O( )  (3.3) 

Proof. According to the reduction processes mentioned in (Section 2) DAE will be 

 

reduced to ODEs: 

  = A1(ξ, µ)
−1

G1(ξ, µ), (3.4) 

where G1(ξ, µ) and A1(ξ, µ)
−1

 from theorem 2.1 reduced to G(x, µ) and A(x, µ). Then 

by Taylor expansion about (0,0,0)we have: 

(ξ, , )  = (0, 0, 0) + (0,0,0) ξ + (0,0,0) + (0,0,0) +

+  

where. 

 𝐺1(0, 0, 0) =0  ,
𝜕𝐺1

𝜕 ξ 
 (0,0,0) =0  ,                           

𝜕2𝐺1

𝜕   ξ 
2

 
≠ 0 

Next we remove the linear term w.r.t ξ by introducing a new variable z: 

ξ = z + δ, (3.5) 

where δ is unknown parameter the inverse coordinate transformation is 

z = ξ −  δ. 

Differentiate the direct transformation (3.5) we get: 

= [+ + + + +

 

Therefore, 

= [ + +  

+z( + + +

+z( + ]… 

by removing the linear terms  z( +  andz( +  which is 

required that: 

( =-       and    ( =- . 

Then the equation becomes: 

= + +  

Where 
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= + +  

= + . 

Now consider as a new parameter = ( , and we have  

is independent of  and since   we can neglecting terms with 

respectively then we have: 

 

So for  ,   ,    is increasing and   ,   ,  is increasing,  

but if 
𝜕𝐺1

𝜕 𝜇1 
< 0&

𝜕𝐺1

𝜕 𝜇2 
< 0  then  ,  are decreasing when < 0, < 0 resp. Now let the following assumption 

𝛾1 =  
𝛽1𝑖𝑓

𝜕𝐺1

𝜕 𝜇1 
> 0

𝛽1𝑖𝑓
𝜕𝐺1

𝜕 𝜇1 
< 0

 𝛾1= 
𝛽2𝑖𝑓

𝜕𝐺1

𝜕 𝜇2 
> 0

𝛽2𝑖𝑓
𝜕𝐺1

𝜕 𝜇2 
< 0

  

Then the equation is: 

𝑑𝑧

𝑑𝑡

=±𝛾1
+𝛾2 ±

1

2

𝜕  2𝐺1

𝜕 z 
2

 
𝑧2. 

Next assume y = z then we have: 

=  =   + . 

Substituting z = we get           =  + . 

Suppose that  = and  =  Then we get the normal form 

= O( )   

3.2 Trans-critical bifurcation 

If two curves of fixed points intersect at the origin in the µ −  x plain, both existed on 

either side of µ = 0 then the origin is called a transcritical bifurcation (TCB)  point see[8]. 
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Figure 2: The normal form of a Trans-critical bifurcation, where r ranges from  to -  using mapleTheorem 

Theorem 3.2. Consider one-dimensional quasilinear DAEs 

A(x, µ)  = G(x, µ), µ ∈ R
2
, x ∈ R

1
 (3.6) 

where  G∈ 𝑅3has at 𝜇=0 the eguilibrium x=0 ,and  
𝜕𝐺

𝜕𝑥
(0,0,0)≠ 0.Assume that  the following two non-degeneracy conditions 

are satisfied:: 

(i) 
𝜕2𝐺

𝜕 x 
2

 
(0,0,0) ≠ 0 

(ii) (0,0,0)≠ 0&  (0,0,0) ≠ 0 

 then near (0,0,0), (3.2) is topologically equivalent to the one of the following normalforms: 

𝑦  = ±𝛼1y ±𝛼2y ±𝑦2 +o(𝑦3)                                                                                               (3.7) 

Proof. According to the reduction processes mentioned in (Section 2) DAE will be 

reduced to ODEs: 

 = A1(ξ, µ)
−1

G1(ξ, µ),                   (3.8) 

where G1(ξ, µ) and A1(ξ, µ)
−1

 from theorem 2.1 reduced to G(x, µ) and A(x, µ). Then 

by Taylor expansion about (0,0,0)we have: 

(ξ, , )  = (0, 0, 0) + (0,0,0) ξ + (0,0,0) + (0,0,0) + +

+  

where. 

  𝐺1(0, 0, 0) =0  ,
𝜕𝐺1

𝜕 ξ 
 (0,0,0) =0  ,                           

𝜕2𝐺1

𝜕   ξ 
2

 
≠ 0 

As in the proof of Theorem (3.1) we get: 
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( =-       and    ( =- . 

Then the equation becomes: 

= + +  

Where 

= +  

= + . 

Now consider as a new parameter = ( , and we have  

is independent of  and since   we can neglecting terms with 

respectively then we have: 

  . 

So for  ,  
𝜕  2𝐺1

𝜕  z 𝛿   𝜇1
 ,         is increasing and   ,  &

𝜕
 2
𝐺1

𝜕 z 𝛿  𝜇2
 ,   

is increasing, but if  
𝜕  2𝐺1

𝜕  z 𝛿   𝜇1
< 0&

𝜕  2𝐺1

𝜕  z 𝛿   𝜇2
 then  ,  are decreasing when < 0, < 0 resp. Now let the following 

assumption 

𝛾1 =

 
 
 

 
 𝛽1𝑖𝑓

𝜕
 2
𝐺1

𝜕 z 𝛿  𝜇1
> 0

𝛽1𝑖𝑓
𝜕

 2
𝐺1

𝜕 z 𝛿  𝜇1
< 0

 𝛾1=

 
 
 

 
 𝛽2𝑖𝑓

𝜕
 2
𝐺1

𝜕 z 𝛿  𝜇2
> 0

𝛽2𝑖𝑓
𝜕

 2
𝐺1

𝜕 z 𝛿  𝜇2
< 0

  

Then the equation is: 

𝑑𝑧

𝑑𝑡

=±𝛾1
𝜕  2𝐺1

𝜕 z 
2
 

+𝛾2
𝜕  2𝐺1

𝜕 z 
2

 
𝑧 ±

1

2

𝜕  2𝐺1

𝜕 z 
2
 
𝑧2. 

Next assume y = z then we have: 

𝑑𝑦

𝑑𝑡
=|

1

2

𝜕  2𝐺1

𝜕   z 
2

 
|

1

2

𝑑𝑧

𝑑𝑡
=±𝛾1|

1

2

𝜕  2𝐺1

𝜕   z 
2

 
|
𝜕  2𝐺1

𝜕 z 
2

 
𝑧 ± 𝛾2|

1

2

𝜕  2𝐺1

𝜕   z 
2

 
|
𝜕  2𝐺1

𝜕 z 
2

 
𝑧+|

1

2

𝜕  2𝐺1

𝜕   z 
2

 
|

1

2

𝜕  2𝐺1

𝜕   z 
2

 
𝑧2. 

Substituting z = we get    
𝑑𝑦

𝑑𝑡
=±𝛾1|

1

2

𝜕  2𝐺1

𝜕 z 
2

 
|𝒚 ± 𝛾2|

1

2

𝜕  2𝐺1

𝜕 z 
2
 

| y+

1

2

𝜕  2𝐺1

𝜕  z  
2

 

1

2
 |
𝜕  2𝐺1

𝜕  z  
2

 
|
𝑦2 . 

Suppose that  = and = . Then we get the normal form 

𝑦  = ±𝛼1y ±𝛼2y ±𝑦2 +o(𝑦3) 

3.3 Pitchfork bifurcation 

If two curves of fixed points intersect at the origin in the µ −  x plain and only oneexists in both 

sides of µ = 0, moreover, the other curve of fixed points lays entirely toone side of µ = 0, then the origin is called a  
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pitchfork bifurcation (P F B )  point see [8]. 

Theorem 3.3. Consider one-dimensional quasilinear DAEs 

A(x, µ)  = G(x, µ), µ ∈ R
2
, x ∈ R

1
 (3. 

where  G∈ 𝑅3has at 𝜇=0 the eguilibrium x=0 ,and  
𝜕𝐺

𝜕𝑥
(0,0,0)≠ 0.Assume that  the following two non-degeneracy conditions 

are satisfied:: 

(i) 
𝜕  3𝐺1

𝜕 x 
3
 

(0,0,0) ≠ 0 

(ii) (0,0,0)≠ 0&  (0,0,0) ≠ 0 

 then near (0,0,0), (3.2) is topologically equivalent to the one of the following normalforms: 

 

𝑦  = ±𝛼1y ±𝛼2y ±𝑦3 +o(𝑦4) (3.10) 

Proof. According to the reduction processes mentioned in (Section 2) DAE will be 

reduced to ODEs: 

  = A1(ξ, µ)
−1

G1(ξ, µ), (3.11) 

where G1(ξ, µ) and A1(ξ, µ)
−1

 from theorem 2.1 reduced to G(x, µ) and A(x, µ). Thenby Taylor expansion 

about (0,0,0)we have: 

𝐺1(ξ, µ1, µ2)  = 𝐺1(0, 0, 0) + 
𝜕𝐺1

𝜕 ξ 
 (0,0,0) ξ + 

𝜕𝐺1

𝜕 𝜇1 
 (0,0,0)𝜇1+ 

𝜕𝐺1

𝜕 𝜇2 
 (0,0,0)𝜇2+

𝜕  2𝐺1

𝜕 ξ 
2

 

ξ 
2

2
+

𝜕  2𝐺1

𝜕 ξ 𝛿 𝜇1
ξ𝜇1 +

𝜕  2𝐺1

𝜕 ξ 𝛿 𝜇2
ξ𝜇2+

𝜕  2𝐺1

𝛿 𝜇1𝜕 𝜇2 
𝜇1𝜇2 +

𝜕  2𝐺1

𝜕 𝜇1 
2

 

𝜇1 
2

2
+

𝛿  2𝐺1

𝛿 𝜇2 
2

 

𝜇2 
2

2
+

𝜕  3𝐺1

𝜕 ξ 
3
 

ξ 
3

6
+ ⋯ 

where. 

𝐺1(0, 0, 0) =0  ,
𝜕𝐺1

𝜕 ξ 
 (0,0,0) =0  ,                    

𝜕2𝐺1

𝜕   ξ 
2

 
= 0  ,                       

𝜕3𝐺1

𝜕   ξ 
3

 
≠ 0 

From equation (3.11) we get: 

 

𝑑𝑧

𝑑𝑡
=𝐴1 𝑧 + 𝛿, 0,0 −1[+ 

𝜕𝐺1

𝜕 𝜇1 
 𝜇1+ 

𝜕𝐺1

𝜕 𝜇2 
 𝜇2+

𝜕  2𝐺1

𝜕 z 
2

 

(z+ξ) 
2

2
+

𝜕  2𝐺1

𝜕z 𝛿 𝜇1

 z + δ 𝜇1 +
𝜕  2𝐺1

𝜕z 𝛿 𝜇2

 z + δ 𝜇2+ 

𝜕  2𝐺1

𝛿 𝜇1𝜕 𝜇2 
𝜇1𝜇2 +

𝜕  2𝐺1

𝜕 𝜇1 
2

 

𝜇1 
2

2
 +

𝛿  2𝐺1

𝛿 𝜇2 
2
 

𝜇2 
2

2
+ +

𝜕  3𝐺1

𝜕 z 
3

 

(z+ξ) 
3

6
+]… 

Therefore, 

𝑑𝑧

𝑑𝑡
=𝐴1(𝑧 + 𝛿, 0,0)−1[ 

𝜕𝐺1

𝜕 𝜇1 
 𝜇1+ 

𝜕  2𝐺1

𝜕 𝜇1 
2

 

𝜇1 
2

2
+

𝜕  2𝐺1

𝜕z 𝛿 𝜇1
𝛿𝜇1+

1

2

𝜕  2𝐺1

𝛿 𝜇1𝜕 𝜇2 
𝜇1𝜇2 + 1

2

𝜕  2𝐺1

𝜕 z 
2

 

 𝛿2

2
+

1

2

𝜕  3𝐺1

𝜕 z 
3
 

 𝛿3

36
+z(

𝜕  2𝐺1

𝜕z 𝛿 𝜇1
𝛿𝜇1+

1

2

𝜕  2𝐺1

𝜕 z 
2
 
𝛿 +

1

2

𝜕  3𝐺1

𝜕 z 
3
 

𝛿

12
) +

𝑧2(
1

4

𝜕  2𝐺1

𝜕 z 
2
 
𝛿2 +

1

2

𝜕  3𝐺1

𝜕 z 
3

 

𝛿

12
)

1

2

𝜕  2𝐺1

𝜕 z 
2

 

𝑧2

2
+

1

2

𝜕  3𝐺1

𝜕 z 
3

 

 𝑍3

36
+

𝜕𝐺1

𝜕 𝜇2 
 𝜇2+ 

𝜕  2𝐺1

𝜕 𝜇2 
2
 

𝜇2 
2

2
+

𝜕  2𝐺1

𝜕z 𝛿 𝜇2
𝛿𝜇2+

1

2

𝜕  2𝐺1

𝛿 𝜇1𝜕 𝜇2 
𝜇1𝜇2 + 1

2

𝜕  2𝐺1

𝜕 z 
2

 

 𝛿2

2
+

1

2

𝜕  3𝐺1

𝜕 z 
3
 

 𝛿3

36
+z(

𝜕  2𝐺1

𝜕z 𝛿 𝜇2
𝛿𝜇2+

1

2

𝜕  2𝐺1

𝜕 z 
2
 
𝛿 +

1

2

𝜕  3𝐺1

𝜕 z 
3

 

𝛿

12
) +  𝑧2(

1

4

𝜕  2𝐺1

𝜕 z 
2
 
𝛿2 +

1

2

𝜕  3𝐺1

𝜕 z 
3
 

𝛿

12
) +

1

2

𝜕  2𝐺1

𝜕 z 
2
 

𝑧2

2
+

1

2

𝜕  3𝐺1

𝜕 z 
3

 

 𝑍3

36
].. 

and removing the linear terms  z(
𝜕  2𝐺1

𝜕z 𝛿 𝜇1
𝛿𝜇1+

𝜕  3𝐺1

𝜕 z 
3

 

𝛿2

12
)  and z(

𝜕  2𝐺1

𝜕z 𝛿 𝜇2
𝛿𝜇2

+𝜕
 3𝐺1

𝜕 z 
3
 

𝛿2

12
)which isrequired that: 

𝛿1(𝜇)=- 

𝜕  2𝐺1
𝜕z  𝛿  𝜇1

𝛿

𝜕  3𝐺1

𝜕  z  
3

 

𝜇1and  𝛿1(𝜇)=- 

𝜕  2𝐺1
𝜕z  𝛿  𝜇 2

𝛿

𝜕  3𝐺1

𝜕  z  
3

 

𝜇2. 

Then the equation becomes: 

𝑑𝑧

𝑑𝑡
=𝛽1

𝜕  3𝐺1

𝜕 z 
3

 
𝑧+𝛽2

𝜕  3𝐺1

𝜕 z 
3
 
𝑧+

𝜕  3𝐺1

𝜕 z 
3

 
𝑧3 
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˙ 

Where 

= + ++
𝜕  3𝐺1

𝜕   z 
3

 

 𝛿2

12
 

= + ++
𝜕  3𝐺1

𝜕   z 
3

 

 𝛿2

12
. 

Now consider as a new parameter = ( , and we have  

is independent of  and since  
𝜕  2𝐺1

𝜕  z 𝛿   𝜇1

𝜕  2𝐺1

𝜕  z 𝛿   𝜇2
 we can neglecting terms with 

respectively then we have: 

  . 

So for  ,  
𝜕  2𝐺1

𝜕  z 𝛿   𝜇1
 ,         is increasing and   ,  &

𝜕
 2
𝐺1

𝜕 z 𝛿  𝜇2
 ,   

is increasing, but if  
𝜕  2𝐺1

𝜕  z 𝛿   𝜇1
< 0&

𝜕  2𝐺1

𝜕  z 𝛿   𝜇2
 then  ,  are decreasing when < 0, < 0 resp. Now let the following 

assumption 

 

𝛾1 =

 
 
 

 
 𝛽1𝑖𝑓

𝜕
 2
𝐺1

𝜕 z 𝛿  𝜇1
> 0

𝛽1𝑖𝑓
𝜕

 2
𝐺1

𝜕 z 𝛿  𝜇1
< 0

 𝛾1=

 
 
 

 
 𝛽2𝑖𝑓

𝜕
 2
𝐺1

𝜕 z 𝛿  𝜇2
> 0

𝛽2𝑖𝑓
𝜕

 2
𝐺1

𝜕 z 𝛿  𝜇2
< 0

  

Then the equation is: 

𝑑𝑧

𝑑𝑡

=±𝛾1
𝜕  3𝐺1

𝜕 z 
3
 
𝑧+𝛾2

𝜕  3𝐺1

𝜕 z 
3
 
𝑧 ±

1

2

𝜕  3𝐺1

𝜕 z 
3
 
𝑧3. 

Next assume y =|
1

2

𝜕  3𝐺1

𝜕   z 
3

 
|z then we have: 

𝑑𝑦

𝑑𝑡
=|

1

2

𝜕  3𝐺1

𝜕   z 
2

 
|

1

2

𝑑𝑧

𝑑𝑡
=±𝛾1|

1

2

𝜕  3𝐺1

𝜕   z 
2

 
|
𝜕  3𝐺1

𝜕 z 
3

 
𝑧 ± 𝛾2|

1

2

𝜕  3𝐺1

𝜕   z 
2

 
|
𝜕  3𝐺1

𝜕 z 
3

 
𝑧+|

1

2

𝜕  3𝐺1

𝜕   z 
3

 
|

1

2

𝜕  3𝐺1

𝜕   z 
3

 
𝑧3 . 

Substituting z =
𝑦

|
1

2

𝜕  3𝐺1

𝜕   z  
3

 
|
we get : 

𝑑𝑦

𝑑𝑡
=±𝛾1

1

2

𝜕  3𝐺1

𝜕  z  
3

 

1

2
 |
𝜕  3𝐺1

𝜕  z  
3

 
|
𝑦 ± 𝛾2

1

2

𝜕  3𝐺1

𝜕  z  
3

 

1

2
 |
𝜕  3𝐺1

𝜕  z  
3

 
|
 y+

1

2

𝜕  3𝐺1

𝜕  z  
3

 

1

2
 |
𝜕  3𝐺1

𝜕  z  
3

 
|
𝑦3 . 

Suppose that 𝛼1= 𝛾1|
1

2

𝜕  3𝐺1

𝜕   z 
3

 
|and 𝛼2= 𝛾2|

1

2

𝜕  3𝐺1

𝜕   z 
3

 
|Then we get the normal form 

𝑦  = ±𝛼1y ±𝛼2y ±𝑦3 +o(𝑦4) 

4 Applications OF DAEs 

There are three types of one-zero-eigenvalue bifurcations: saddle-node, trans-criticaland pitchfork bifurcation. 

Each one of them satisfies different genericity conditions;their bifurcation diagrams are also different.  

Without loss of generality let us assumethat (x,  µ) = (0, 0) is point of one-dimensional parameterized dynamical system: 

A(µ, x)𝑥 = G(µ, x) µ ∈  R
n

, x  ∈  R
n

. (4.1) 

 

Now, for (4.1) to undergo a one-zero-eigenvalue bifurcation at (0, 0), the following 

conditions should be satisfied: 
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G(0, 0) = 0, Gx(0, 0) = 0.. (4.2) 

These conditions guarantee that the fixed point (0,0) is not hyperbolic.The natural environment 

for this kind of work are the computer algebra systems likeMaple and Mathematica. 

Their impact on dynamical systems studies is due to thefact that many calculations are too tedious for manual work, but do not ch

allengethe computer resources . 

In this paper we present algorithms for symbolical study ofone parameter local bifurcations in guasilinear DAEs of equilibrium points an

d discusstheir implementation in Maple. 

 

 

Figure 3: The normal form of a Pitchfork bifurcation, where r ranges from 𝜋 to −𝜋using maple 
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