A NOTE ON SOLVABILITY OF FINITE GROUPS

Rola. A. Hijazi

Department of Mathematics, Faculty of Science 14466, King Abdulaziz University, Jeddah 21424, Saudi Arabia

Abstract. Let G be a finite group. A subgroup H of G is said to be c-normal in G if there exists a normal subgroup K of G such that $G = HK$ and $H \cap K \leq H_G$, where H_G is the largest normal subgroup of G contained in H. In this note we prove that if every Sylow subgroup P of G has a subgroup D such that $1 < |D| < |P|$ and all subgroups H of P with $|H| = |D|$ are c-normal (S-permutable) in G, then G is solvable. This results improve and extend classical and recent results in the literature.

Keywords and phrases: Sylow subgroup; c-normal subgroup; c-supplement subgroup; solvable group; supersolvable group.

2010 Mathematics Subject Classification: 20D10, 20D15, 20D20, 20F16.
1 INTRODUCTION

All groups considered in the sequel will be finite. Most of the notation is standard and can be found in Huppert [10].

The relationship between the properties of the Sylow subgroups of a group G and its structure has been investigated by a number of authors. In particular, Gaschütz and Itô [10, p. 436, Satz 5.7] proved that a group G is solvable if all its minimal subgroups are normal (a subgroup of prime order is called a minimal subgroup). Buckley [5] proved that a group of odd order is supersolvable if all its minimal subgroups are normal. Srinivasan [14] got the supersolvability of G under the assumption that the maximal subgroups of all Sylow subgroups are S-permutable in G (a subgroup which permutes with all Sylow subgroups of a group G is called S-permutable in G; see Kegel [11]). Recall that a subgroup H of a group G is said to be c-normal in G if there exists a normal subgroup K of G such that $G = HK$ and $H \cap K \leq H_c$, where $H_c = \text{Core}_G(H)$ is the largest normal subgroup of G contained in H. This concept was introduced by Wang [15] in 1996 and has been studied extensively by many authors. In fact, Wang extended the above results by proving that a group G is supersolvable when all minimal subgroups and the cyclic subgroups of order 4 are c-normal in G or the maximal subgroups of all Sylow subgroups of G are c-normal in G. In 2000, Ballester-Bolinches et al. [4] introduced the concept of c-supplementation of a finite group which is weaker than c-normality. A subgroup H of a group G is said to be c-supplement in G if there exists a subgroup K of G such that $G = HK$ and $H \cap K \leq H_c$. By using this concept, Ballester-Bolinches et al. [4] proved that a group G is solvable if and only if every Sylow subgroup of G is c-supplemented in G. Moreover, as applications, they proved that if all minimal subgroups and the cyclic subgroups of order 4 of a group G are c-supplemented in G, then G is supersolvable. In 2008, Asaad and Ramadan [2] dropped the assumption that every cyclic subgroup of order 4 is c-supplemented in G and proved that: If every minimal subgroup of G is c-supplemented in G, then G is solvable. In 2012, Asaad [1] achieved interesting results about the structure of the group G when certain subgroups of prime power orders are c-supplemented in G. In 2014, Heliel [9] continued the above mentioned studies and obtained results improved and generalized the results of Hall [7-8], Ballester-Bolinches and Guo [3], Ballester-Bolinches et al. [4] and Asaad and Ramadan [2] as follows:

Theorem A. If each subgroup of prime odd order of a group G is c-supplemented in G, then G is solvable.

Theorem B. Let G be a group. Then G is solvable if and only if every Sylow subgroup of odd order of G is c-supplemented in G.

In connection with the above two Theorems, the following conjecture is posed at the end of Heliel [9].

Conjecture. Let G be a finite group such that every non-cyclic Sylow subgroup P of odd order of G has a subgroup D such that $1 < |D| < |P|$ and all subgroups H of P with $|H| = |D|$ are c-supplemented in G. Is G solvable?

In the same year 2014, Li et al. [12] presented a counterexample to show that the answer of this conjecture is negative and also gave a generalization of Theorems A and B. Based on the above mentioned results, the main goal of this note is to prove the following results:

Theorem C. Suppose that each Sylow subgroup P of G has a subgroup D such that $1 < |D| < |P|$ and all subgroups H of P with $|H| = |D|$ are S-permutable in G. Then G is solvable.

Theorem D. Suppose that each Sylow subgroup P of G has a subgroup D such that $1 < |D| < |P|$ and all subgroups H of P with $|H| = |D|$ are c-normal in G. Then G is solvable.

Remark. The research on c-normal subgroups has formed a series, which is similar to the series of S-permutable subgroups. However, the two series are independent of each other.

2 Proofs

First we give an improvement of Gaschütz and Itô result that was mentioned in the introduction as follows:

Theorem 3.1. Suppose that each Sylow subgroup P of a finite group G has a subgroup D such that $1 < |D| < |P|$ and all subgroups H of P with $|H| = |D|$ are normal in G. Then G is solvable.
Proof. Assume that the result is false and let G be a counterexample of minimal order. If all minimal subgroups of G are normal in G, then G is solvable by Gaschütz and Itô result [10, p. 436, satz 5.7], a contradiction. Thus there exists a subgroup H of G of prime order, say p, such that L is not normal in G. Let P be a Sylow p-subgroup of G such that $1 \leq P$. Then there exists a subgroup H of P such that $L \leq H < P$ with $[H] = [D]$. By the hypothesis, H is normal in L and since L is not normal in G, we have $L \leq H < P$. Clearly, $\Phi(H)$ is characteristic in H and since $H \triangleleft G$, we have $\Phi(H) \triangleleft G$. If $\Phi(H) \neq 1$, then $G/\Phi(H)$ satisfies the hypothesis of the theorem and so $G/\Phi(H)$ is solvable by the minimal choice of G. Hence G is solvable as the class of solvable groups is a saturated formation, a contradiction. Thus $\Phi(H) = 1$ and H is elementary abelian p-group [6, p. 174, Theorem 1.3]. In fact, $[H] > p$ and so H is noncyclic. We argue that $[P/H] \neq p$. If not, $[P] = p[H]$ and P is noncyclic. Then P contains a subgroup N such that $[P : N] = p$ and $N \neq H$. By hypothesis, H and N are both normal in G and so $H \cap N$ is normal in G. Then, by Schur-Zassenhaus Theorem [6, p. 221, Theorem 1.2], there exists a subgroup K of G such that $G = PK$ and $P \cap K = 1$. But K is solvable by the minimal choice of G, then G is solvable, a contradiction. Thus $[P/H] = p^n$, where $n \geq 2$. Let L_p/H be a subgroup of P/H of order p. Then $[L_p] = [P/H]$ and since L_p is noncyclic as above, we have $L_p \leq G$ and so $L_p/H < G/H$. Hence G/H is solvable by the minimal choice of G and so G is solvable, a final contradiction completing the proof of the theorem.

Proof of Theorem C. Assume that the result is false and let G be a counterexample of minimal order. Then, by Theorem 3.1, there exists a subgroup H of G with $[H] = [D]$ such that H is not normal in G. By the hypothesis, K is S-permutably complemented in G. By [13, Lemma A], $O^p(G) \leq N_G(H)$ and since H is not normal in G, we have $N_G(H) < G$. Let M be a maximal subgroup of G such that $N_G(H) \leq M < G$. Then M is normal in G and $[G/M] = p$ (recall that M is a Sylow p-subgroup of G). Clearly, $P \cap M$ is a Sylow p-subgroup of M and $H < P \cap M$. Hence if $1 \leq H < P \cap M$, M satisfies the hypothesis of the Theorem and so M is solvable by the minimal choice of G and consequently so G is solvable, a contradiction. Thus we may assume that $H = P \cap M$, so $[P : H] = p$, that is, $H < P$. Hence $G = P, O^p(G) \leq N_G(H) \leq M < G$, a contradiction completing the proof of the Theorem.

Proof of Theorem D. Assume that the result is false and let G be a counterexample of minimal order. Then, by Theorem 3.1, there exists a subgroup H of G such that $[H] = [D]$ and H is not normal in G. Without loss of generality we may assume that $H < P$, where P is a Sylow p-subgroup of G for some prime p dividing the order of G. Then, by the hypothesis, H is c-normal in G; that is, there exists a normal subgroup K of G such that $G = HK$ and $H \cap K < H_G$. As H is not normal in G, we have $H_G < H$. Hence if $H_G \neq 1$, G/H_G satisfies the hypothesis of the theorem by [15, Lemma 2.1], and so G/H_G is solvable and since H_G is of prime power order, it follows that G is solvable, a contradiction. Thus we may assume that $H_G = 1$. Since $G/K \leq H$ and $H < P$, where P is a Sylow p-subgroup of G, it follows that there exists a subgroup M of G such that $K \leq M, M < G$ and $[G/M] = p$. Clearly, $P \cap M$ is a Sylow p-subgroup of M. Hence if $[D] = [H] < [P \cap M]$, M satisfies the hypothesis of the theorem by [15, Lemma 2.1], and so M is solvable by the minimal choice of G. But $[G/M] = p$, that is, G/M is solvable, then G is solvable, a contradiction. So we may assume that $[P \cap M] = [D]$. Then by the hypothesis, $[P \cap M] = [D]$. Set $P \cap M = L$. By [15, Lemma 2.1], L is c-normal in M, that is there exists a normal subgroup N of M such that $M = LN$ and $L \cap N \leq L_M$. Hence if $L_M = 1$, N is a normal p'-Hall subgroup of N. Clearly, N is a p'-Hall subgroup of G and n satisfies the hypothesis of the theorem and so N is solvable by the minimal choice of G. Then M is solvable and so G is solvable, a contradiction. Thus we may assume that $L_M \neq 1$. Hence if
\[L_M = L = P \cap M \triangleleft M, \quad M = LN, \quad N \triangleleft M \quad \text{and} \quad L \cap N = 1 \] by Schur-Zassenhaus Theorem [6, p. 221, Theorem 1.2]. As above, \(N \) is solvable and so \(G \) is solvable, a contradiction. Thus \(1 \neq L_M < L \). Now we consider the normal closure of \(L_M \), that is, \(L^G_M = \langle L^G_M : g \in G \rangle \). Since \(G = MH \), we have \(L^G_M = L^M_M = L^M_M \leq P \) (where \(m \in M \) and \(h \in H \)) and so \(L^G_M \leq P \). Hence if \(L^G_M = P \), once again Schur-Zassenhaus Theorem implies that \(G = PK \), \(P \cap K = 1 \) and \(K \) is solvable by the minimal choice of \(G \) and so \(G \) is solvable, a contradiction. Thus we may assume that \(L^G_M < P \). Hence if \(|L^G_M| \neq |D| \), \(G/L^G_M \) is solvable by the minimal choice of \(G \) and so \(G \) is solvable, a contradiction. Now we may assume that \(|L^G_M| = |D| \). Since \(|P \cap M| = |D| \) and \(|P/P \cap M| = p \) and \(L^G_M < P \), we should have \(|L^G_M| = |D| \). Also, \(L^G_M \neq P \cap M \) (otherwise, \(G \) is solvable, a contradiction). Then \(G = L^G_M M \) and \(L^G_M \cap M \triangleleft G \) and \(|L^G_M \cap M| < |D| \).

Hence \(G/(L^G_M \cap M) \) is solvable by the minimal choice of \(G \) and so \(G \) is solvable, a final contradiction completing the proof of the theorem.

References