BEST CO-APPROXIMATION AND BEST SIMULTANEOUS CO-APPROXIMATION IN INTUITIONISTIC FUZZY NORMED LINEAR SPACES

Kadhim Bahlool Tarish¹, Mohammed Jassim Mohammed²

¹ Department of Mathematics, College of Education for Pure Science, Thi-Qar University, Thi-Qar, Iraq
² Department of Mathematics, College of Education for Pure Science, Thi-Qar University, Thi-Qar, Iraq

ABSTRACT

The main purpose of this paper is to study the t-best co-approximation and t-best simultaneous co-approximation in intuitionistic fuzzy normed spaces. We develop the theory of t-best co-approximation and t-best simultaneous co-approximation in quotient spaces. This new concept is employed by us to improve various characterisations of t-co-proximinal and t-co-Chebyshev sets.

Keywords

t-norm, t-conorm; intuitionistic fuzzy normed linear space; open(closed) ball and bounded set in intuitionistic fuzzy normed linear space.
1. INTRODUCTION

The theory of a fuzzy sets was firstly introduced by Zadeh [14] in 1965 and thereafter several authors applied it to different branches of pure and applied mathematics. On the other hand, the notion of fuzzyness has a wide application in many areas of science and engineering.

In 1986, Atanassov [2] introduced the concept of intuitionistic fuzzy sets. Park [8] first introduced the concept of intuitionistic fuzzy metric space and Saadati and Park [9] introduced the concept of intuitionistic fuzzy normed space, while the notion of intuitionistic fuzzy n-normed linear space was introduced by S. Vijayabalaji, N. Thillaigovindan and Y. Bae [13].

In this paper we study the set of all t-best co-approximation and t-best simultaneous co-approximation in intuitionistic fuzzy normed linear spaces and we develop the theory of t-best co-approximation and t-best simultaneous co-approximation in quotient spaces. This new concept is employed us to improve various characterizations of t-co-proximinal and t-co-Chebyshevsets.

2. PRELIMINARIES

Definition 2.1. [11] A binary operation $\cdot : [0,1] \times [0,1] \rightarrow [0,1]$ is said to be a continuous t-norm if the following axioms are satisfied:

(a) \cdot is associative and commutative.
(b) \cdot is continuous.
(c) $a \cdot 1 = a$ for all $a \in [0,1].$
(d) $a \cdot b \leq c \cdot d$ whenever $a \leq c$ and $b \leq d$ for each $a, b, c, d \in [0,1].$

Definition 2.2. [11] A binary operation $\diamond : [0,1] \times [0,1] \rightarrow [0,1]$ is said to be a continuous t-conorm if the following axioms are satisfied:

(a) \diamond is associative and commutative
(b) \diamond is continuous
(c) $a \diamond 0 = a$ for all $a \in [0,1]$
(d) $a \diamond b \leq a \diamond c$ whenever $a \leq c$ and $b \leq d$ for each $a, b, c, d \in [0,1].$

Remark 2.3. [11]

(1) For any $r_1, r_2 \in (0,1)$ with $r_1 > r_2$, there exists $r_3, r_4 \in (0,1)$ such that $r_1 \cdot r_3 \geq r_2$ and $r_1 \geq r_2 \diamond r_4$.

(2) For any $r_5 \in (0,1)$, there exists $r_6, r_7 \in (0,1)$ such that $r_6 \cdot r_7 \geq r_5$ and $r_7 \diamond r_7 \leq r_5$.

Definition 2.4. [9] The 5-tuple $(X, \mu, v, \cdot, \diamond)$ is said to be an intuitionistic fuzzy normed linear space (IFNLS) if X be a linear space over the field F (R or C), \cdot is a continuous t-norm, \diamond is a continuous t-conorm, and μ, v fuzzy sets on $X \times (0, \infty)$ satisfy the following conditions for every $x, y \in X$ and $s, t > 0$:

(1) $\mu(x, t) + v(x, t) \leq 1$
(2) $\mu(x, t) > 0$
(3) $\mu(x, t) = 1$ if and only if $x = 0$
(4) $\mu(a x, t) = \mu(x, t) \cdot |a|$ for each $a \neq 0$
(5) $\mu(x+t, s+t) \geq \mu(x, t) \cdot \mu(y, s)$
(6) $\lim_{t \to \infty} \mu(x, t) = 1$
(7) $v(x, t) < 1$
(8) $v(x, t) = 0$ if and only if $x = 0$
Lemma 2.5.[9]: Let $(X, \mu, \nu, \tilde{\sigma})$ be an intuitionistic fuzzy normed linear space then:

(i) $\mu(x+y, t) = \mu(x, t) \cap \mu(y, t)$ and $\nu(x-y, t) = \nu(y, t) \cap \nu(x, t)$ for every $t > 0$ and $x, y \in X$.

(ii) $\mu(x, t)$ and $\nu(x, t)$ are non-decreasing and non-increasing with respect to t, respectively.

Example 2.6. [9]: Let $(X, ||.||)$ be a normed linear space, and let $a \ast b = \min(a, b)$ and $a \odot b = \max(a, b)$

for all $a, b \in [0, 1]$. For all $x \in X$ and $t > 0$, $\mu(x, t) = \frac{t}{t+|\beta|}$ and $\nu(x, t) = \frac{1}{t+|\beta|}$

Then $(X, \mu, \nu, \tilde{\sigma})$ is an intuitionistic fuzzy normed linear space.

Definition 2.7.[9]: Let $(X, \mu, \nu, \tilde{\sigma})$ be an intuitionistic fuzzy normed linear space. We define an open ball $B(x, r, t)$ with the center $x \in X$ and the radius $0 < r < 1$, as $B(x, r, t) = \{y \in X : \mu(x-y, t) > 1-r, \nu(x-y, t) < r\}$ for every $t > 0$ also a subset $A \subseteq X$ is called open if for each $x \in A$, there exist $t > 0$ and $0 < r < 1$ such that $B(x, r, t) \subseteq A$. Let $\tau_{(\mu, \nu)}$ denote the family of all open subset of X. $\tau_{(\mu, \nu)}$ is called the topology induced by intuitionistic fuzzy norm.

Definition 2.8.[9]: Let $(X, \mu, \nu, \tilde{\sigma})$ be an intuitionistic fuzzy normed linear space. For $t > 0$, we define closed ball $B[x, r, t]$ with center $x \in X$ and radius $0 < r < 1$ as $B[x, r, t] = \{y \in X : \mu(x-y, t) \geq 1-r, \nu(x-y, t) \leq r\}$.

Definition 2.9.[9]: Let $(X, \mu, \nu, \tilde{\sigma})$ be IFNLS. A subset G of X is called intuitionistic fuzzy-bounded set (IF-bounded) if there exists $t > 0$ and $0 < r < 1$ such that $\mu(x, t) \geq 1-r$ and $\nu(x, t) \leq r$ for all $x \in G$.

3. t-BEST CO-APPROXIMATION IN INTUITIONISTIC FUZZY NORMED LINEAR SPACES

Definition 3.1: Let $(X, \mu, \nu, \tilde{\sigma})$ be IFNLS and G be a nonempty subset of X. An element $x_0 \in G$ is called an intuitionistic fuzzy t-best co-approximation to x from G (IF-t-best co-approximation) if for $t > 0$, $\mu(x_0 - g, t) \geq \mu(x - g, t)$ and $\nu(x_0 - g, t) \leq \nu(x - g, t)$ for all $g \in G$. The set of all IF-t-best co-approximation to x from G will be denoted by $IF - R^G_t(x)$.

Remark 3.2: The set $IF - R^G_t(x)$ of all IF-t-best co-approximation to x from G can be written as:

$IF - R^G_t(x) = \{g_0 \in G : \mu(x_0 - g_0, t) \geq \mu(x - g_0, t) \text{ and } \nu(x_0 - g_0, t) \leq \nu(x - g_0, t) \text{ for all } g \in G\}$

Definition 3.3: Let $(X, \mu, \nu, \tilde{\sigma})$ be IFNLS and G be a nonempty subset of X. The set of the t-co-metric complement, Define as: for $t > 0$ and $0 < r < 1$ such that $\mu(x, t) \geq 1-r$ and $\nu(x, t) \leq r$ for all $x \in G$.

Proposition 3.4: Let $(X, \mu, \nu, \tilde{\sigma})$ be IFNLS and G be a subspace of X. Then for all $x \in X$, $g_0 \in IF - R^G_t(x)$ if and only if $x - g_0 \in IF - \tilde{G}$ for $t > 0$.

Proof: (\Rightarrow) Suppose that $g_0 \in IF - R^G_t(x)$, $x \in X$

$\Rightarrow \mu(x_0 - g_0, t) \geq \mu(x - g_0, t) \text{ and } \nu(x_0 - g_0, t) \leq \nu(x - g_0, t)$, $\forall g \in G$.

Let $g_1 = g + g_0$, $\forall g \in G$, $\Rightarrow g_1 \in G$.

$\Rightarrow \mu(x_0 - g_1, t) \geq \mu(x - g_1, t)$ and $\nu(x_0 - g_1, t) \leq \nu(x - g_1, t)$

Since $\mu(g_1 - g_0, t) = \mu(g_0 - g_1, t)$

$\Rightarrow \mu(x - g_0 - g_0, t) \geq \mu(x - g_0, t)$

$\Rightarrow \mu(g_0, t) \geq \mu(x - g_0, t)$

$\Rightarrow \mu(g_0, t) \geq \mu(x - g_0, t)$

Similarly, we get $\nu(g_0, t) \leq \nu(x - g_0, t)$, $\forall g \in G$.

$\Rightarrow x - g_0 \in IF - \tilde{G}$.

(\Leftarrow) Assume $x - g_0 \in IF - \tilde{G}$

$\Rightarrow \mu(g, t) \geq \mu(x - g_0, t)$ and $\nu(g, t) \leq \nu(x - g_0, t)$, $\forall g \in G$.
Let \(g_1 = g - g_0 \Rightarrow g_1 \in G \)
\[
\mu(g_1, t) \geq \mu(g_1 - (x - g_0), t) \quad \text{and} \quad \nu(g_1, t) \leq \nu(g_1 - (x - g_0), t)
\]
\[
\Rightarrow \mu(g - g_0, t) \geq \mu(g - g_0 - (x - g_0), t) \quad \text{and} \quad \nu(g - g_0, t) \leq \nu(g - g_0 - (x - g_0), t)
\]
\[
\Rightarrow \mu(g - g_0, t) \geq \mu(g - x, t) \quad \text{and} \quad \nu(g - g_0, t) \leq \nu(g - x, t), \forall g \in G
\]
Hence \(g_0 \in IF - R_{\mu}(x) \) if and only if \(x - g_0 \in IF - G \).

Definition 3.5: Let \((X, \mu, \nu, \circ, \bullet)\) be an IFNLS and \(G\) be a nonempty subset of \(X\). If for every \(x \in X\) has at least one IF-t-best co-approximation in \(G\), then \(G\) is called an intuitionistic fuzzy-t-co-proximinal set (IF-t-co-proximinal set).

Definition 3.6: Let \((X, \mu, \nu, \circ, \bullet)\) be an IFNLS and \(G\) be a nonempty subset of \(X\). If for every \(x \in X\) has exactly one IF-t-best co-approximation in \(G\), then \(G\) is called an intuitionistic fuzzy-t-co-Chebyshev set (IF-t-co-Chebyshev set).

Definition 3.7: Let \((X, \mu, \nu, \circ, \bullet)\) be an IFNLS. A subset \(G\) is said to be convex set if \((1 - \lambda)x + \lambda g_0 \in G\) whenever \(g_0 \in G, x \in X\) and \(0 < \lambda < 1\).

Theorem 3.8: Let \((X, \mu, \nu, \circ, \bullet)\) be an IFNLS and \(G\) is a nonempty subset of \(X\), if \(g_0 \in IF - R_{\mu}^t(x)\) and \((1 - \lambda)x + \lambda g_0 \in G\) for \(0 < \lambda < 1, t > 0\), then \((1 - \lambda)x + \lambda g_0 \in IF - R_{\mu}^t(x)\).

Proof: Let \(g_0 \in IF - R_{\mu}^t(x)\) and \((1 - \lambda)x + \lambda g_0 \in G\) for \(0 < \lambda < 1, t > 0\)
\[
\Rightarrow \mu(g_0 - g, t) \geq \mu(g - x, t) \quad \text{and} \quad \nu(g_0 - g, t) \leq \nu(g - x, t), \forall g \in G(1)
\]
Therefore, for a given \(t > 0\), take the natural number \(n\) such that \(t > \frac{1}{n}\)

By assumption and definition 2.4., we have
\[
\mu(((1 - \lambda)x + \lambda g_0) - g, t) = \mu(((1 - \lambda)x - \lambda g + \lambda g_0) - g, t) = \mu((1 - \lambda)x - (1 - \lambda)g + \lambda(g_0 - g), t) = \mu((1 - \lambda)(x - g) + \lambda(g_0 - g), t)
\]
\[
\geq \mu\left(x - g, \frac{1}{2(1 - \lambda)n}\right) \ast \mu\left(g_0 - g, \frac{t}{2}\right)
\]
\[
\geq \mu\left(x - g, \frac{1}{2(1 - \lambda)n}\right) \ast \mu\left(x - g, \frac{1}{2\lambda n}\right) = \lim_{n \to \infty} \mu\left(x - g, \frac{1}{2\lambda n}\right) = \mu(x - g, t) \quad [\text{since (1) and } t > \frac{1}{n}]
\]
and for a given \(t > 0\), take the natural number \(n\) such that \(t < \frac{1}{n}\)
\[
u(((1 - \lambda)x + \lambda g_0) - g, t) = \nu((1 - \lambda)x - \lambda g + \lambda g_0) - g, t) = \nu((1 - \lambda)x - (1 - \lambda)g + \lambda(g_0 - g), t) = \nu((1 - \lambda)(x - g) + \lambda(g_0 - g), t)
\]
\[
\leq \nu\left(x - g, \frac{1}{2(1 - \lambda)n}\right) \ast \nu\left(g_0 - g, \frac{t}{2}\right)
\]
\[
\leq \nu\left(x - g, \frac{1}{2(1 - \lambda)n}\right) \ast \nu\left(x - g, \frac{1}{2\lambda n}\right) = \lim_{n \to \infty} \nu\left(x - g, \frac{1}{2\lambda n}\right) = \nu(x - g, t) \quad [\text{since (1) and } t < \frac{1}{n}]
\]
Thus \((1 - \lambda)x + \lambda g_0 \in IF - R_{\mu}^t(x)\).

Corollary 3.9: Let \((X, \mu, \nu, \circ, \bullet)\) be an IFNLS. If \(G\) is convex subset of \(X\), then \(IF - R_{\mu}^t(x)\) is convex subset of \(X\).

Proof: Let \(G\) is convex subset of \(X\) and \(g_0 \in IF - R_{\mu}^t(x), for every x \in X\) and \(0 < \lambda < 1\)
Since \(G\) is convex subset of \(X\)
By theorem 3.8, we get
\[(1 - \lambda)x + \lambda g_0 \in IF - R_{\mu}^t(x)
\]
Hence \(IF - R_{\mu}^t(x)\) is convex subset of \(X\).
Theorem 3.10: Let \((X, \mu, v, \delta)\) be an IFNLS and \(G\) be a subspace of \(X\), then:

(i) \(IF - R_{ag}^{[\alpha]}(ax) = IF - aR_{g}^{[\alpha]}(x)\) for every \(x \in X\), \(a \in \mathbb{R}\(0\))\).

(ii) \(IF - R_{g+y}^{[\alpha]}(x+y) = IF - R_{g}^{[\alpha]}(x) + y\) for every \(x, y \in X\), \(a \in \mathbb{R}\(0\))

Proof: (i) \(g_0 \in IF - R_{ag}^{[\alpha]}(ax)\)
\[
\Rightarrow g_0 \in aG, \mu(g_0 - g, \alpha(t) \geq \mu(ax - g, |\alpha t) \text{ and } v(g_0 - g, |\alpha t) \leq v(ax - g, |\alpha t), \forall g \in aG
\]
\[
\Rightarrow \mu\left(\frac{1}{\alpha}g_0 - g, t\right) \geq \mu(x - \frac{1}{\alpha}g, t) \text{ and } v\left(\frac{1}{\alpha}g_0 - g, t\right) \leq v\left(x - \frac{1}{\alpha}g, t\right), \forall \frac{1}{\alpha} g \in G
\]
\[
\Rightarrow \mu\left(\frac{1}{\alpha}g_0 - g_1, t\right) \geq \mu(x - g_1, t) \text{ and } v\left(\frac{1}{\alpha}g_0 - g_1, t\right) \leq v(x - g_1, t), \forall g_1 = \frac{1}{\alpha} g \in G
\]
\[
\Rightarrow \frac{1}{\alpha}g_0 \in IF - R_{0}^{[\alpha]}(x) \Leftrightarrow g_0 \in IF - aR_{0}^{[\alpha]}(x)
\]
Hence \(IF - R_{ag}^{[\alpha]}(ax) = IF - aR_{g}^{[\alpha]}(x)\)

(ii) \(g \in IF - R_{g+y}^{[\alpha]}(x+y)\)
\[
\Rightarrow \mu(g - (g+y), t) \geq \mu((x+y) - (g+y), t) \text{ and } v(g - (g+y), t) \leq v((x+y) - (g+y), t), \forall g + y \in G + y
\]
\[
\Rightarrow \mu(g, t) - g, t \geq \mu(x, t) \text{ and } v(g, t) \leq v(x, t), \forall g \in G
\]
\[
\Rightarrow g - y \in IF - R_{0}^{[\alpha]}(x) \Leftrightarrow g \in IF - R_{0}^{[\alpha]}(x) + y
\]
Hence \(IF - R_{g+y}^{[\alpha]}(x+y) = IF - R_{g}^{[\alpha]}(x) + y\)

Corollary 3.11: Let \((X, \mu, v, \delta)\) be an IFNLS and \(G\) be a subspace of \(X\), then the following statements are hold:

(i) \(G\) is IF-t-co-proximinal set (resp. IF-t-co-Chebyshev set) if and only if \(\alpha G\) is IF-\(|\alpha|\)t-co-proximinal set (resp. IF-\(|\alpha|\)t-co-Chebyshev set) for any scalar \(\alpha \in \mathbb{R}(0)\)

(ii) \(G\) is IF-t-co-proximinal set (resp. IF-t-co-Chebyshev set) if and only if \(G + y\) is IF-t-co-proximinal set (resp. IF-t-co-Chebyshev set) for every \(y \in X\).

Proof: (i) \(G\) is IF-t-co-proximinal \(\Leftrightarrow IF - R_{0}^{[\alpha]}(x) \neq \emptyset\)
by Theorem 3.10
\[
\Rightarrow IF - aR_{g}^{[\alpha]}(x) \neq \emptyset
\]
\[
\Rightarrow IF - R_{ag}^{[\alpha]}(ax) \neq \emptyset
\]
Then \(\alpha G\) is IF-t-co-proximinal set.

Similarly, we get
\[
\alpha G\] is IF-t-co-Chebyshev set.

(ii) \(G\) is IF-t-co-proximinal set \(\Leftrightarrow IF - R_{0}^{[\alpha]}(x) \neq \emptyset\)
\[
\Rightarrow IF - R_{g}^{[\alpha]}(x) + y \neq \emptyset \Leftrightarrow IF - R_{g+y}^{[\alpha]}(x+y) \neq \emptyset
\]
Then \(G + y\) is IF-t-co-proximinal set.

Similarly, we get
\(G + y\) is IF-t-co-Chebyshev set.

4. t-CO-PROXIMALITY AND t-CO-CHEBYSHEVITY IN QUOTIENT SPACES

Definition 4.1.[3]: Let \((X, \mu, v, \delta)\) be an IFNLS and \(M\) is a closed subspace of \(X\), for \(t > 0\), we define
\[
\emptyset(x + M, t) = \sup\{\mu(x + y, t) : y \in M\}
\]
\[
\varphi(x + M, t) = \inf\{v(x + y, t) : y \in M\}
\]
where \(x + M = \{x + m : m \in M\}\).

Theorem 4.2. [3]: Let \((X, \mu, v, \delta)\) be an IFNLS and \(M\) is a closed subspace of \(X\), \(\emptyset(x + M, t)\) and \(\varphi(x + M, t)\) are defined in Definition 4.1, and \(X/M = \{x + M : x \in X\}\). Then \((X|M, \emptyset, \varphi, \delta)\) is an intuitionistic fuzzy normed linear space.
Theorem 4.3: Let \((X, \mu, v, \nu, \alpha)\) be an IFNLS and \(M\) is a closed subspace of \(X\) and \(G \supseteq M\) a subspace of \(X\). If \(G\) is an IF-t-co-proximinal set of \(X\), then \(G|M\) is an IF-t-co-proximinal set of \(X|M\).

Proof: Let \(G\) is an IF-t-co-proximinal set of \(X\).
\[
\exists g_0 \in G, x \in X \text{ such that } \mu(g_0 - g, t) \geq \mu(x - g, t) \text{ and } v(g_0 - g, t) \leq v(x - g, t), \forall g \in G
\]
\[
\mu(g_0 - m + m - g, t) \geq \mu(x - m + m - g, t) \text{ and } v(g_0 - m + m - g, t) \leq v(x - m + m - g, t), \forall m \in M
\]
\[
\mu((g_0 + m) - (g + m), t) \geq \mu((x + m) - (g + m), t) \text{ and } v((g_0 + m) - (g + m), t) \leq v((x + m) - (g + m), t), \forall g \in G
\]
\[
G_0 + M \in IF - R_{G|M}^t(x + M)
\]
\[
IF - R_{G|M}^t(x + M) \neq \emptyset
\]
\[
G|M\text{ is an IF-t-co-proximinal set of } X|M.
\]

Corollary 4.4: Let \((X, \mu, v, \nu, \alpha)\) be an IFNLS and \(M\) is a closed subspace of \(X\) and \(G \supseteq M\) a subspace of \(X\). If \(G|M\) is an IF-t-co-proximinal set of \(X|M\), then \(G\) is an IF-t-co-proximinal set of \(X\).

Proof: Let \(G|M\) is an IF-t-co-proximinal set with \(X|M\).
\[
\exists IF - R_{G|M}^t(x + M) \neq \emptyset
\]
\[
G_0 + M \in IF - R_{G|M}^t(x + M)
\]
\[
\mu(g_0 - g, t) \geq \mu(x - g, t) \text{ and } v(g_0 - g, t) \leq v(x - g, t), \forall g \in G
\]
\[
\mu((g_0 + m) - (g + m), t) \geq \mu((x + m) - (g + m), t) \text{ and } v((g_0 + m) - (g + m), t) \leq v((x + m) - (g + m), t), \forall m \in M
\]
\[
G_0 \in IF - R^t_{G|M}(x)
\]
\[
IF - R^t_{G|M}(x) \neq \emptyset
\]
\[
G\text{ is an IF-t-co-proximinal set of } X.
\]

Theorem 4.5: Let \((X, \mu, v, \nu, \alpha)\) be an IFNLS and \(M\) is a closed subspace of \(X\) and \(G \supseteq M\) a subspace of \(X\). If \(G|M\) is an IF-t-Co-Chebyshev set with \(X|M\), then \(G\) is an IF-t-Co-Chebyshev set with \(X\).

Proof: Let \(G|M\) is an IF-t-Co-Chebyshev set with \(X|M\) and \(G\) has two distinct \(t\)-best co-approximation of \(x \in X\) such as \(y_1, y_2\) in \(X\).
\[
\exists \mu(y_1 - g, t) \geq \mu(x - g, t) \text{ and } v(y_1 - g, t) \leq v(x - g, t), \forall g \in G
\]
also \(\mu(y_2 - g, t) \geq \mu(x - g, t) \text{ and } v(y_2 - g, t) \leq v(x - g, t), \forall g \in G
\]
\[
\mu((y_1 + m) - (g + m), t) \geq \mu((x + m) - (g + m), t) \text{ and } v((y_1 + m) - (g + m), t) \leq v((x + m) - (g + m), t), \forall m \in M
\]
also \(\mu((y_2 + m) - (g + m), t) \geq \mu((x + m) - (g + m), t) \text{ and } v((y_2 + m) - (g + m), t) \leq v((x + m) - (g + m), t), \forall m \in M
\]
\[
y_1 + M, y_2 + M \in IF - R^t_{G|M}(x + M)
\]
since \(y_1 \neq y_2 \Rightarrow y_1 + M \neq y_2 + M
\]
\[
IF - R^t_{G|M}(x + M) is not IF - t - co - Chebyshev, this contradiction(\#).
\]
\[
y_1 = y_2
\]
Then \(G\) is an IF-t-Co-Chebyshev set with \(X\).

Definition 4.6.6: Let \((X, \mu, v, \nu, \alpha)\) be an IFNLS and \(M\) is a closed subspace of \(X\), for \(t > 0\) and \(x \in X\) the distance between \(x\) and \(M\) define as :
\[
d_\mu(x, M, t) = \sup \{ \mu(x - y, t) : y \in M \} \text{ and } d_v(x, M, t) = \inf \{ v(x - y, t) : y \in M \}.
\]

Theorem 4.7: Let \(M\) and \(G\) are two subspaces of \((X, \mu, v, \nu, \alpha)\) such that \(M \subset G\) and \(x + G \in X/G\), \(g_1 \in G\). If \(g_1\) is IF-t-best co-approximation to \(x\) from \(G\), then \(g_1 + M\) is an IF-t-best co-approximation to \(x + M\) from the quotient space \(G/M\).
Proof: Suppose that \(g_1 \) is IF-t-best co-approximation to \(x \) from \(G \) and \(g_1 + M \) is not IF-t-best co-approximation to \(x + M \) from the quotient space \(G/M \).

\[
\exists \, \hat{g}_1 + M \in G/M \text{ such that } \mu(\hat{g}_1 + M - (g_1 + M), t) < \mu(x + M - (\hat{g}_1 + M), t) \quad \text{and} \\
v(\hat{g}_1 + M - (g_1 + M), t) > v(x + M - (\hat{g}_1 + M), t)
\]

\[
\Rightarrow \mu(\hat{g}_1 + g_1, M + t) < \mu(x - \hat{g}_1 + m, t) \quad \text{and} \\
v(\hat{g}_1 + g_1, M + t) > v(x - \hat{g}_1 + m, t)
\]

Since \(d_\mu(x, M, t) = \sup(\mu(x-y, t) : y \in M) \) and \(d_\mu(x, M, t) = \inf(v(x-y, t) : y \in M) \)

\[
\Rightarrow \sup(\mu(x - \hat{g}_1 + m, t)) > \inf(\mu(x - \hat{g}_1 + m, t) \quad \text{and} \\
\Rightarrow d_\mu(x, \hat{g}_1 + M, t) > d_\mu(\hat{g}_1 - g_1, M, t) \quad \text{and} \\
d_\mu(x, \hat{g}_1 + M, t) > d_\mu(\hat{g}_1 - g_1, M, t)
\]

This implies that there exists \(g \in M \) such that

\[
\mu(x - \hat{g}_1 + g, t) > d_\mu(\hat{g}_1 - g_1, M, t) \quad \mu(x - \hat{g}_1 + g, t) < d_\mu(\hat{g}_1 - g_1, M, t) \quad \mu(x - (g + \hat{g}_1), t) > v(x - (g + \hat{g}_1), t)
\]

\[
\Rightarrow \exists g + \hat{g}_1 \in G \text{ such that } \mu((g + \hat{g}_1) - g_1, t) < \mu(x - (g + \hat{g}_1), t) \quad \text{and} \\
v((g + \hat{g}_1) - g_1, t) > v(x - (g + \hat{g}_1), t)
\]

\[
\Rightarrow g_1 \text{ is not an IF-t-best co-approximation to } x \text{ from } G \text{, this contradiction with hypothesis } (#).
\]

Then \(g_1 + M \) is an IF-t-best co-approximation to \(x + M \) from the quotient space \(G/M \). \(\blacksquare \)

5.1-BEST SIMULTANEOUS CO-APPROXIMATION IN INTUITIONISTIC FUZZY NORMED LINEAR SPACES

Definition 5.1: Let \((X, \mu, v, *, \otimes)\) be an IFNLS and \(G \) be a subset of \(X \), \(M \) be IF-bounded subset in \(X \). An element \(g_0 \in G \) is called IF-t-best simultaneous co-approximation to \(M \) from \(G \), if for \(t > 0 \),

\[
\mu(g_0 - g, t) \geq \inf(\mu(m - g, t) : m \in M) \quad \text{and} \quad v(g_0 - g, t) \leq \sup(v(m - g, t) : m \in M) \text{ for all } g \in G.
\]

The set of all IF-t-best simultaneous co-approximation to \(M \) from \(G \), will be denoted by \(IF - S_0^t(M) \) and define as follows:

\[
IF - S_0^t(M) = \{ g_0 \in G : \mu(g_0 - g, t) \geq \inf_{m \in M} \mu(m - g, t) \quad \text{and} \quad v(g_0 - g, t) \leq \sup_{m \in M} v(m - g, t), \forall g \in G \}
\]

Definition 5.2: Let \(G \) be a subset of \((X, \mu, v, *, \otimes)\). It is called IF-t-best simultaneous co-proximinal subset of \(X \), if for each IF-bounded subset \(M \) in \(X \), there exists at least one IF-t-best simultaneous co-approximation from \(G \) to \(M \).

Definition 5.3: Let \(G \) be a subset of \((X, \mu, v, *, \otimes)\). It is called IF-t-best simultaneous co-Chebyshev subset of \(X \), if for each IF-bounded subset \(M \) in \(X \) there exists a unique IF-t-best simultaneous co-approximation from \(G \) to \(M \).

Theorem 5.4: Let \((X, \mu, v, *, \otimes)\) and \(G \) be a subset of \(X \). If \(M \) is IF-bounded subset of \(X \), \(+, *, \otimes \) satisfying the condition \(a \otimes b \geq a, a \otimes b \leq a, \forall a, b \in [0, 1] \), then \(IF - S_0^t(M) \) is IF-bounded subset of \(X \).

Proof: Let \(M \) is IF-bounded subset of \(X \) and \(g_0 \in IF - S_0^t(M) \)

\[
\Rightarrow \exists \text{ there exist } 0 < r < 1 \text{ such that } \mu(x, t) \geq 1 - r, v(x, t) \leq r, \forall x \in M, t > 0 \quad \text{and} \\
\mu(g_0 - g, t) \geq \inf_{m \in M} \mu(m - g, t) \text{ and } v(g_0 - g, t) \leq \sup_{m \in M} v(m - g, t), \forall g \in G
\]

\[
\Rightarrow \text{ for every } g \in G, m \in M, \mu(g_0, 3t) = \mu(g_0 - m + m, 3t) \geq \mu(g_0 - m, 2t) \ast \mu(m, t)
\]

\[
\geq \mu(g_0 - g + g - m, 2t) \ast (1 - r)
\]

\[
\geq \mu(g_0 - g, t) \ast \mu(g - m, t) \ast (1 - r)
\]

\[
\geq \inf_{m \in M} \mu(m - g, t) \ast \mu(m - g, t) \ast (1 - r)
\]

\[
\geq \inf_{m \in M} \mu(m - g, t) \ast (1 - r)
\]

\[
\geq 1 - r_0 \text{ for some } 0 < r_0 < 1
\]

\[
\Rightarrow v(g_0, 3t) = v(g_0 - m + m, 3t) \leq v(g_0 - m, 2t) \otimes v(m, t)
\]

\[
\leq v(g_0 - g + g - m, 2t) \otimes r
\]

\[
\leq v(g_0 - g, t) \otimes v(g - m, t) \otimes r
\]

\[
\leq \sup_{m \in M} v(m - g, t) \otimes v(m - g, t) \otimes r
\]

\[
\leq \sup_{m \in M} v(m - g, t) \otimes r
\]

\[
\leq r_0 \text{ for some } 0 < r_0 < 1
\]

Then \(IF - S_0^t(M) \) is an IF-bounded subset of \(X \). \(\blacksquare \)
Theorem 5.5: Let \((X, \mu, \nu, \lambda)\) FNLS and \(M\) is IF-bounded subset of \(X\). If \(G\) is a convex subset of \(X\) and \(*, \lambda\) satisfying the condition \(a * b \geq a, a \& b \leq a, \forall a, b \in [0,1]\), then IF - \(S_{\lambda}^M(G)\) is a convex subset of \(X\).

Proof: Suppose that \(G\) is a convex subset of \(X\)
\[
(1 - \lambda)x + \lambda g_0 \in G
\]
for every \(g_0 \in G, x \in X\) and \(0 < \lambda < 1\)

Therefore, for a given \(t > 0\), take \(n \in N\) such that \(t > \frac{1}{n}\), we get
\[
\mu((1 - \lambda)m + \lambda g_0) - g, \frac{t}{n}
\]
\[
= \mu((1 - \lambda)m - \lambda g + \lambda g_0) - g, \frac{1}{n}
\]
\[
= \mu((1 - \lambda)m - \lambda g + \lambda g_0 - g, \frac{t}{2n})
\]
\[
\geq \mu(\frac{m - g}{2(1 - \lambda)} + \frac{t}{2n}) = \lim_{n \to \infty} \inf_{m \in M} \mu(\frac{m - g}{2n}) = \inf_{m \in M} \mu(m - g, t)
\]
and for a given \(t > 0\), take \(n \in N\) such that \(t < \frac{t}{n}\), we get
\[
v((1 - \lambda)m + \lambda g_0) - g, \frac{t}{n}
\]
\[
v((1 - \lambda)m - \lambda g + \lambda g_0) - g, \frac{1}{n}
\]
\[
v((1 - \lambda)m - \lambda g + \lambda g_0 - g, \frac{t}{2n})
\]
\[
\leq \sup_{m \in M} v(\frac{m - g}{2(1 - \lambda)} - \frac{t}{2n}) = \sup_{m \in M} v(m - g, t)
\]

Theorem 5.6: Let \(G\) is a subset of \((X, \mu, \nu, \lambda)\) and \(M\) is IF-bounded in \((X, \mu, \nu, \lambda)\). Then the following assertions are hold for \(t > 0\):

1. IF - \(S_{\lambda}^M(x + M) = IF - S_{\lambda}^M(x)\) , \(\forall x \in X\) .
2. IF - \(S_{\lambda}^{|a|}^M(aM) = IF - a S_{\lambda}^M(M)\) , \(\forall a \in R\) .

Proof: (1) let \(g_0 \in IF - S_{\lambda}^M(M + x)\)
\[
\Rightarrow \forall \epsilon > 0, \ \mu(g_1 - x - g_0, \epsilon) = \inf_{m \in M} \mu(m - (g_1 - x - g_0), \epsilon) \Rightarrow \mu(g_1 - (g_0 + x), \epsilon) \geq \inf_{m \in M} \mu(m - (g_1 - x - g_0), \epsilon) \Rightarrow \mu(\frac{g_1 - (g_0 + x)}{2(1 - \lambda)}, \epsilon) \geq \inf_{m \in M} \mu(m - (g_1 - x - g_0), \epsilon) \Rightarrow \mu(\frac{g_1 - (g_0 + x)}{2(1 - \lambda)}, \epsilon) \geq \inf_{m \in M} \mu(m - (g_1 - x - g_0), \epsilon)
\]

Similarly, we get \(\sup_{m \in M} v(m + x - g_1, \epsilon) \leq \sup_{m \in M} v(m + x - g_1, \epsilon)\)

Then \(g_0 + x \in IF - S_{\lambda}^M(M + x)\)

Let \(g_0 + x \in IF - S_{\lambda}^M(M + x)\)
\[
\Rightarrow \forall \epsilon > 0, \ \mu(g_1 - x - g_0, \epsilon) = \inf_{m \in M} \mu(m + x - (g_1 + x), \epsilon) \Rightarrow \inf_{m \in M} \mu(m + x - (g_1 + x), \epsilon)
\]

Similarly, we get
\[
\sup_{m \in M} v(m + x - g_1, \epsilon) \leq \sup_{m \in M} v(m + x - g_1, \epsilon), \forall x \in X
\]

Then \(IF - S_{\lambda}^{|a|}^M(aM) = IF - a S_{\lambda}^M(M)\) , \(\forall a \in R\)

Proof: clearly equality holds for \(a = 0\)

Let \(a \neq 0\), \(g_0 \in IF - S_{\lambda}^{|a|}^M(aM)\) if and only if
such that \(\mu(g_0 - g, |\alpha|t) \geq \inf_{m \in M} \mu(m - g, |\alpha|t) \) and
\[
v(g_0 - g, |\alpha|t) \leq \sup_{m \in M} v(m - g, |\alpha|t), \forall g \in G
\]
\[
\Leftrightarrow \mu\left(\frac{1}{\alpha}g_0 - \frac{1}{\alpha}g, t\right) \geq \inf_{m \in M} \mu\left(m - \frac{1}{\alpha}g, t\right) \quad \text{and} \quad v\left(\frac{1}{\alpha}g_0 - \frac{1}{\alpha}g, t\right) \leq \sup_{m \in M} v\left(m - \frac{1}{\alpha}g, t\right), \forall \frac{1}{\alpha}g \in G
\]
\[
\Leftrightarrow \mu\left(\frac{1}{\alpha}g_0 - g_1, t\right) \geq \inf_{m \in M} \mu\left(m - g_1, t\right) \quad \text{and} \quad v\left(\frac{1}{\alpha}g_0 - g_1, t\right) \leq \sup_{m \in M} v\left(m - g_1, t\right), \forall g_1 = \frac{1}{\alpha}g \in G
\]
\[
\frac{1}{\alpha}g_0 \in IF - S^\text{int}_{\text{inf}}(M) \iff g_0 \in IF - \alpha S^\text{int}_{\text{inf}}(M)
\]

Then \(IF - S^\text{int}_{\text{inf}}(\alpha M) = IF - \alpha S^\text{int}_{\text{inf}}(M) \)

Acknowledgement: Authors would like to thank the referee for his comments and suggestions to have the manuscript done perfectly and for assistance in responding to concerns and questions regarding my paper.

REFERENCES

