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ABSTRACT 

In this paper, we propose a new approach in order to interpret the variation of the conductibility of the PSS polyion with the 
nature and the concentration of the alkaline counter-ions Li

+
, Na

+
 and K

+
, and the hydrophobic cations Et4N

+ 
and Bu4N

+
. 

This approach is based on a recent model in which the stretched polyion is represented by a chain of successive charged 
spheres, partially condensed by the counter-ions. We have found that the moderate variation of the hydrodynamic friction 
on the polyion with the size RM of condensed counter-ions, cannot completely explain the important decrease (of about 

35% from K
+
 to Bu4N

+
) of the conductibility (PSS,M ) of the PSS polyion with the nature of the counter-ions. Consequently, 

we have proposed a supplementary explanation by taking into account of the translational dielectric friction on the moving 
polyion. Formal analysis of this friction shows that it is very sensitive to the local structure of water surrounding the 
polyions. As this local structure depends in its turn, on the nature of the condensed counter-ions; we suggested that this 
specific sensitivity could explain the high dependence of the mobility of the polyion with the nature of its counter-ions.     
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1. INTRODUCTION  

Contrary to the case of the simple electrolytes, the conductivity of poly electrolytes does not obey to a universal linear 
limiting law relating their equivalent conductivity at high dilution to the square root of ionic strength: I

1/2
. Consequently, 

there is no currently available satisfactory theory describing the dynamic behavior of dilute flexible polyelectrolytes in 
aqueous solution despite some interesting progress toward this objective [1-10]. This difficulty arises from the complex 
interdependence between polyion conformation, the processes of condensation of counter-ions M

+
, the ionic screening 

effect and frictional effects. 

In a series of previous papers [11-13], H. Vink proposed a semi- empirical approach for the interpretation of the 
conductivity of some polyelectrolytes, in order to: a) verify the Manning’s theory [3, 8] and: b) to study the dependence of 
the conductibility of some polyions with the nature of their counter-ions. The main results of these studies concerning 
dilute MPSS polyelectrolyte solutions are: 

- The degree of condensation (1- α) of counter-ions is practically independent as well as of the concentration and 
of the nature of studied counter-ions Li

+
, Na

+
 and K

+
, and that its value (0.65) is very close to that predicted by 

the theory of Manning. However, for organic counter-ions (Et4N
+
 and Bu4N

+
), α is in general slightly lower than 

that of the Manning value α
Manning

.  

- The ionic friction coefficient on the polyion (βir) can be assumed to be equal to that predicted by the Manning’s 
theory. 

- The experimental conductibility P,M of the PSS polyion depends strongly on the nature of the counter-ion M
+
 in a 

range of concentration between 510
-4

M and 3.510
-3 

M. Indeed, by combining the experimental equivalent 

conductivities MP
exp

 with their corresponding experimental “transference numbers”, TP,M , the author has been 

able to extract for each type of counter-ions and for a given concentration, the conductibility  P,M of the PSS 

polyion and he has found that P,M increases with the mobility of the counter-ions in accordance with the following 

order: M
+
  H

+
, Li

+
, Na

+
, K

+
, Et4N

+
 and Bu4N

+
.  

However, this last result is qualitatively and quantitatively in complete contradiction with the Manning’s theory for which 

both the degree of condensation (1- α) and the conductibility P,M of the PSS polyion are independent on the nature of 
counter-ions. 

The explanation suggested by the author is that the contribution of the condensed counter-ions to the hydrodynamic 
friction of the polyion increases with their size.   

In fact, as polyanions and positive free counter-ions move along opposed directions, electrostatic coupling gives therefore 

place to a process of braking rather than to a mutual entrainment. Consequently, P,M will rather decrease with the mobility 
of the counter-ions (friction effect). In contrast the condensed counter-ions are retained by the polyion and the ensemble 
forms a stable entity without internal frictional coupling resulting from the difference between motilities.   

The present work proposes another approach in order to obtain an adequate analytical expression describing correctly the 
variation of the global conductibility of the MPSS polyelectrolyte with the nature and the concentration of the counter-ions. 
This new approach is based on a recent model in which the stretched polyion is represented by a chain of successive 
charged spheres, partially condensed by the counter-ions, and without introduction of specific parameters other than the 
structural parameters of the polyion, the valence and the effective radius of the counter-ion. Such approach will make it 
possible to check if the introduction of these only parameters will allow or not to explain the possible dependence of the 
conductibility of the polyion with nature of the counter-ions.  

2. THEORETICAL MODEL OF MANNING 

According to the Manning’s conductance theory of a salt-free polyelectrolyte solution MP, the conductibility P
Manning 

of the 
corresponding polyion P of LS structural length and ZSe structural charge, is independent on the nature of the counter-ion 
M and varies with its total concentration C°M (mol.l

-1
) as follows [3, 4]: 

 

P
Manning  

= - α
Manning 

(Fe3πηbS)Ln[χDbS](1 + βir
Manning

)
-1                                                                                                                                                             

(1)      

             

P
Manning 

expresses the different friction effects undergone by the polyion i.e.: the hydrodynamic effect, the electrophoretic 
effect and the ionic relaxation effect via the viscosity η of the solvent (η = 0.8903 10

-2 
poises for water at 25 °C), the screen 

parameter χD and the ionic friction coefficient βir
Manning

. F is the Faraday so that: Fe  6π = 0.82. On the other hand, P
Manning 

is proportional to the apparent charge of the polyion and therefore to the degree of dissociation α
Manning

 of the counter-ions 
which is in this case, independent on the concentration and on the nature of the counter-ions: 

 

α
Manning  

= bS  |ZM|LB                                                                                                                                                              (2) 
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bS = LS 
 
ZS, is the distance of separation between two successive ionizable groups, ZM is the valence of the counter-ion 

and LB = e
2
(εokBT) is the Bjerrum length, where kB is the Boltzmann constant and εo is the permittivity of the solvent. 

βir
Manning 

is the Manning ionic friction coefficient on the polyion due to the counter-ions
 
which is also independent on the 

concentration and on the nature of the counter-ion [3]: 

 

βir
Manning  

= 0.13                                                                                                                                                                      (3)                    

The screen parameter of Debye χD is given by:  

 

χD
2 

= 410
-27

NALB [α
Manning

 ZM
2
C°M]

  
                                                                                                                                      (4)   

   

NA is the Avogadro number. For water at 25 °C: LB = 7.156A° and C°M (mol.l
-1

) is the total concentration of counter-ions. 
The practical expression of χD (in A°

-1
) is:  

 

χD = 8.7 10
-2

(bSC°M)
1/2

                                                                                                                                                           (5)  

 

Note that χD
-1

 measure the cylindrical mean radius of the ionic atmosphere around the polyion assumed to be an infinite 
thread of apparent charge: Zape = (α

Manning
 ZSe). Combination of (Eq.1, Eq. 2, Eq. 3 and Eq. 5) leads to the following 

practical expression of P
Manning 

(in cm
2 


-1 
equiv

-1
):  

 

P
Manning  

= - 22.78Ln[8.7 10
-2

(bS C°M)
1/2 

bS]                                                                                                                           (6)
  

 

It is therefore clear that P
Manning  

is independent of the nature of the counter-ion.  

In the other hand, the expression of the ionic conductivity M of the counter-ions M can be decomposed as follows:  

  

M
 
= (°M - |∆M

el
|)(1 + βir

Manning
)
-1                                                     

                                                                                                       (7) 

 

°M is the ionic equivalent conductivity of the counter-ion at infinite dilution which expresses both the hydrodynamic friction 
due to the viscosity η of the solvent (Stokes [14]), and the dielectric friction effect [15] caused by the polarization of solvent 
molecules by the charge ZMe of the moving counter-ion.   

|∆M
el
| measures the electrophoretic effect undergone by the counter-ion. The general expression of |∆M

el
| is according to 

the Debye-Onsager-Fuoss theory [14] given by:   

 

|∆M
el
|
 
= (|ZM|Fe 6πηdM)    ;     dM = RM + (χD)

-1
                                                                                                                                         (8)  

 

RM is the effective radius of the counter-ion “M” and dM is the radius of its ionic atmosphere, and χD is its corresponding 
Debye screen parameter. The final expression is therefore: 

 

|∆M
el
|
 
= (82|ZM|  0.8903)(8.7 10

-2
(bS C°M)

1/2
)  [1 + 8.7 10

-2
(bS C°M)

1/2
RM]                                                                        (9) 

                      

Now, the Manning expression of the conductibility MP
Manning

 of the polyelectrolyte MP is: 

 

MP
Manning

 = α
Manning

 [P
Manning 

+ M]                                                                                                                                      (10) 

 

Combination of (Eq.2, Eq.3, Eq.6, Eq.7, Eq.9 and Eq.10) leads to the following practical expression of MP
Manning

 (in cm
2 


-

1 
equiv

-1
):  
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MP
Manning

 = (bS   8.08)°M - 25.74Ln[0.087(bSC°M)
1/2

bS]- 8.01(bSC°M)
1/2
 [1+ 0.087(bSC°M)

1/2
RM]                                   (11) 

 

Tables 1a, 1b and Figures 1a, 1b give the variations with the total ionic concentration C°M of the Manning conductibility 

MP
Manning

 and of the experimental equivalent conductivity MP of a polyelectrolyte MP, corresponding to the following 
polyelectrolytes (Polystyrene Sulphonates): KPSS, NaPSS, LiPSS, Et4NPSS and Bu4NPSS in water at 25 °C. Note that 
the PSS polyanion is characterized by the structural parameters: LS = 7250 A°, ZS = -2900 and therefore bS = 2.5 A° and     
α

Manning 
= 0.35. We can conclude from these comparisons that conductibilities calculated from Manning’s approach are 

larger than the experimental equivalent conductivity MP. 

 

Table 1a. Variation with the counter-ion concentration C°M
+ 

of the Manning conductibilities MP
Manning

 and the experimental 

equivalent conductivity MP of a polyelectrolyte MP, of different polyelectrolytes (Polystyrene Sulphonate MPSS): KPSS, 
NaPSS and LiPSS in water at 25 °C. 

 

C°M
+ 

mol.l
-1

 

KPSS
Manning

 

cm
2


-1
equiv

-1
 

KPSS 

cm
2


-1
equiv

-1
 

NaPSS
Manning

 

cm
2


-1
equiv

-1
 

NaPSS 

cm
2


-1
equiv

-1
 

LiPSS
Manning

 

cm
2


-1
equiv

-1
 

LiPSS 

cm
2


-1
equiv

-1
 

5 10
-4

 61.489 44.585 54.242 35.734 50.711 31.879 

1 10
-3

 58.691 44.210 51.443 35.586 47.912 31.777 

1.5 10
-3

 57.047 43.921 49.799 35.462 46.269 31.675 

2 10
-3

 55.877 43.718 48.629 35.364 45.099 31.573 

2.5 10
-3

 54.968 43.601 47.720 35.290 44.190 31.471 

3 10
-3

 54.223 43.570 46.975 35.241 43.446 31.370 

3.5 10
-3

 53.592 43.624 46.344 35.2175 42.815 31.268 

 

 

Table 1b. Variation with the counter-ion concentration C°M
+ 

of the Manning conductibilities MP
Manning

 and the experimental 

equivalent conductivity MP of a polyelectrolyte MP, of different Polystyrene Sulphonate MPSS: Et4NPSS and Bu4NPSS in 
water at 25 °C. 

 

C°M
+ 

mol.l
-1

 

Et4NPSS
Manning

 

cm
2


-1
equiv

-1
 

Et4NPSS 

cm
2


-1
equiv

-1
 

Bu4NPSS
Manning

 

cm
2


-1
equiv

-1
 

Bu4NPSS 

cm
2


-1
equiv

-1
 

5 10
-4

 48.853 24.942 44.764 18.100 

1 10
-3

 46.054 24.525 41.966 17.608 

1.5 10
-3

 44.411 24.187 40.323 17.202 

2 10
-3

 43.242 23.927 39.154 16.882 

2.5 10
-3

 42.332 23.746 38.245 16.646 

3 10
-3

 41.588 23.643 37.501 16.496 

3.5 10
-3

 40.957 23.618 36.871 16.432 
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Figure 1a. Comparison for different C°M
+
 of: the Manning conductibility KPSS

Manning
, NaPSS

Manning
, LiPSS

Manning
, the 

experimental conductibility KPSS, NaPSS and LiPSS, for different Polystyrene Sulphonate MPSS: KPSS, NaPSS and 
LiPSS in water at 25 °C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1b. Comparison for different C°M
+
 of: the Manning conductibility Et4NPSS

Manning
, Bu4NPSS

Manning
, the experimental 

conductibility Et4NPSS, Bu4NPSS of Et4NPSS and Bu4NPSS in water at 25 °C. 

 

3. VINK’S APPROACH 

3.1 Principle of Experimental determination of αM and PSS,M  

According to Vink’s approach [11-13], the experimental equivalent conductivity MP of a polyelectrolyte MP can be written 
empirically as following: 

 

MP    αM[M + P,M]   (1 - βirP,M)αM[’M + ’P,M]                                                                                                                  (12) 
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Eq. 12 relates MP to four physical quantities: βirP,M, αM, ’M and ’P,M. As previously, the factor (1 - βirP,M) represents the 
interionic friction due to the ionic relaxation effect. It is important to note that from irreversible thermodynamics 
considerations and for a salt-free polyelectrolyte, the friction coefficient βirP,M is the same for polyions and counter-ions      
[6, 11-13, 16]. αM is the degree of dissociation of the polyelectrolyte which determines the effective charge Zape of the 
polyion so that:  

 

Zape = αMZSe                                                                                                                                                                                                                                                           (13) 

   

ZS is the stoichiometric charge number of the polyion. 

Note that ’M and ’P,M are different from respectively the equivalent conductivity of the free counter-ions (M) and from the 

equivalent conductivity of the polyion (P,M).  

All these quantities generally depend on the concentration of the polyelectrolyte and on the nature of the counter-ions. 

This last dependence is indicated by the index M. The experimental determination of βirP,M, αM, ’M and ’P,M needs in 
addition to Eq.12 of three other relations. 

The second relation is obtained from the net charge transported by the polyion which is measured by its electric transport 
number tP,M:  

 

tP,M = P,M (P,M + M) = ’P,M (’P,M + ’M)                                                                                                                          (14) 

 

Where the dependence of tP,M with the nature of the counter-ion is indicated by the index M. However, in solutions with 
ionic association only the corresponding ionic constituent transport number TP,M is experimentally determinable [12]:    

 

TP,M = tP,M αM                                                                                                                                                                       (15) 

 

Tables 2a and 2b, give the variation of TP,M and MP with the concentration for different types of counter-ions.  

From equations (Eq.14 and Eq.15) we obtain another form of Eq.14: 

 

P,M = TP,M MP                                                                                                                                                                    (16) 

 

From Eq.16, P,M appears as well as a pure experimental quantity because it is related to the experimental values: TP,M 

and MP.  

The third relation is obtained by neglecting the electrophoretic friction undergone by the counter-ions M, for dilute 
solutions, so that:  

 

 ’M  °M                                                                                                                                                                                                                                                                   (17) 

  

°M is equal to the ionic conductibility of M at infinite dilution. 

According to Vink’s approach, the fourth relation is obtained by assuming Manning’s model for the ionic friction coefficient 
βir, so that [13]: 

 

(1 - βirP,M) = (1 - βir
Manning

) = 0.87                                                                                                                                         (18) 

 

It means that βir is independent on the nature and on the concentration of counter-ions. Logically, in turn, if Eq. 18 is valid, 

then also: αM = α
Manning  

= bS  |ZM|LB = 0.35. (Or at least αM  Cste: Manning’s regime [6-7, 17]). It is possible to test this 
assumption by calculating αM after combination of Eqs. (12, 15, 17):  

 

αM  MP  [(1- βir)°M + TP,M MP]                                                                                                                                        (19)  
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Table 3 gives for different types of counter-ions the variation of their corresponding αM with the counter-ion concentration 

according to Eq. 19, using (1-βir) = 0.87, and the experimental values of TP,M and MP given in tables 2a and 2b. It shows 
that for all ions, αM increases slowly with the concentration of about 3% in the concentration range between 510

-4
 M and 

3.5 10
-3

 M. On the other hand, αM values are practically the same for Na
+
 and K

+
 with a mean value of about 0.35 (i.e. 

equal to the Manning’s value). However, αM values of Li
+
 are larger of about 4.5%. In contrast, αM values for organic 

counter-ions Et4N
+
 and Bu4N

+
 are lower (of about respectively 10% and 11.5%). We can conclude that Manning’s 

assumption based on electrostatic condensation seems valid for alkaline ions, but in the case of organic counter-ions, the 
condensation effect is enhanced by the hydrophobic attraction between polyions and organic cations. 

Moreover, in order to justify his assumption expressed by Eq. 18, Vink proposed a new method based on the following 
equation obtained after rearranging Eq. 19: 

 

TP,M = (1αM) - (1- βir) [°M MP]                                                                                                                                          (20) 

 

Indeed, if (in accordance with Manning’s theory), both αM and (1- βir) are independent on the counter-ion species, we get     

(1- βir) as the slope of the line obtained when TP,M is plotted against (°M  MP) (calculated for the different counter-ions; 
see tables 2a and 2b). However, calculations according to Eqs. (18 and 19), show that for a given concentration C°M

+
, the 

αM vary slightly with the nature of the counter-ions. Therefore, we can replace αM in Eq. (20), by its means value <αM> 
given in table 3, so that: 

 

(<αM>
-1 

- TP,M) = (1- βir) [°M MP]                                                                                                                                       (21) 

 

Note that this method is valid even if <αM> depends on the counter-ion concentration.  

Tables 2a and 2b give the experimental variations with the counter-ion concentration C°M
+ 

of  MP, TP,M and (°M MP) in 

the case of different polyelectrolytes (Polystyrene Sulphonate MPSS: KPSS, NaPSS, LiPSS, Et4NPSS and Bu4NPSS), in 
water at 25 °C. All these data allow the calculation for each polyelectrolyte and for different concentrations (C°M

+
= 110

-3
 M, 

210
-3

 M, 310
-3

 M), of its corresponding dissociation coefficient αM. On the other hand, figure 2 shows that for the three 
concentrations (C°M

+
= 110

-3
 M, 210

-3
 M, 310

-3
 M, with respectively: <αM> = 0.328 , 0.342 and 0.35), the three curves giving 

the variation of  (<αM>
-1 

- TP,M) with (°M  MP), are practically superimposed on only  one line passing by the origin, and 

having a slope (1- βir), practically independent on the concentration with a mean value of about (0.87) i.e. equal to that 
predicted by Eq. 18 and by Manning’s theory.   

 

Table 2a. Variation with the counter-ion concentration C°M
+ 

of: the experimental conductibility MPSS , the experimental 

transport number TP,M
MPSS

 and (λ°M ΛMPSS) of different Polystyrene Sulphonate MPSS: KPSS, NaPSS and LiPSS in water 

at 25 °C. 

C°M
+ 

mol.l
-1

 

KPSS 

cm
2


-1
equiv

-

1
 

TP,M
KPSS

 
λ°K

+
ΛKPSS 

(°K
+
 = 73.5) 

NaPSS 

cm
2


-1
equiv

-

1
 

TP,M
NaPSS

 

λ°Na
+
ΛNaPSS 

(°Na
+
 = 

50.1) 

LiPSS 

cm
2


-1
equiv

-

1
 

TP,M
LiPSS

 
λ°Li

+
ΛLiPSS 

(°Li
+
=38.7) 

5 10
-4

 44.585 1.482 1.6485 35.734 1.885 1.4020 31.879 1.914 1.2139 

1 10
-3

 44.210 1.439 1.6625 35.586 1.772 1.4078 31.777 1.805 1.2178 

1.5 10
-3

 43.921 1.399 1.6734 35.462 1.679 1.4127 31.675 1.714 1.2219 

2 10
-3

 43.718 1.361 1.6812 35.364 1.606 1.4167 31.573 1.641 1.2257 

2.5 10
-3

 43.601 1.325 1.6857 35.290 1.554 1.4196 31.471 1.588 1.2297 

3 10
-3

 43.570 1.291 1.6870 35.241 1.522 1.4216 31.370 1.552 1.2336 

3.5 10
-3

 43.624 1.260 1.6848 35.2175 1.510 1.4225 31.268 1.536 1.2377 
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Table 2b. Variation with the counter-ion concentration C°M
+ 

of: the experimental conductibility MPSS, the experimental 

transport number TP,M
MPSS

 and (λ°MΛMPSS) of Et4NPSS and Bu4NPSS in water at 25 °C.  

C°M
+ 

mol.l
-1

 

Et4NPSS 

cm
2


-1
equiv

-

1
 

TP,M
Et4NPSS

 
λ°Et4N

+
ΛEt4NPSS 

(°Et4N
+
 = 32.7) 

Bu4NPSS 

cm
2


-1
equiv

-

1
 

TP,M
Bu4NPSS

 
λ°Bu4N

+
ΛBu4NPSS 

(°Et4N
+
 = 19.5) 

5 10
-4

 24.942 2.122 1.3110 18.100 2.513 1.0773 

1 10
-3

 24.525 2.056 1.3333 17.608 2.373 1.1073 

1.5 10
-3

 24.187 1.996 1.3520 17.202 2.264 1.1337 

2 10
-3

 23.927 1.942 1.3666 16.882 2.187 1.1552 

2.5 10
-3

 23.746 1.895 1.3771 16.646 2.141 1.1712 

3 10
-3

 23.643 1.854 1.3831 16.496 2.125 1.1818 

3.5 10
-3

 23.618 1.819 1.3845 16.432 2.141 1.1868 

 

Table 3. Variation with the counter-ion concentration C°M
+ 

of the degree of dissociation αM of different Polystyrene 

Sulphonate MPSS: KPSS, NaPSS, LiPSS, Et4NPSS and Bu4NPSS in water at 25 °C. (< αM > is the average degree of 
dissociation for each concentration). 

C°M
+ 

mol.l
-1

 K Na Li Et4N Bu4N < αM > 

5 10
-4

 0.343 0.322 0.336 0.306 0.290 0.319 

1 10
-3

 0.346 0.334 0.349 0.311 0.299 0.328 

1.5 10
-3

 0.350 0.344 0.360 0.315 0.307 0.335 

2 10
-3

 0.354 0.353 0.369 0.319 0.313 0.342 

2.5 10
-3

 0.358 0.358 0.376 0.323 0.316 0.346 

3 10
-3

 0.362 0.362 0.381 0.327 0.317 0.350 

3.5 10
-3

 0.367 0.364 0.383 0.331 0.315 0.352 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Variations of y = (< αM > 
-1

- TP,M) with (°M  MP) with x =  (°M / MPSS), for three concentrations:
 
1 10

-3 
M,             2 

10
-3 

M and  3 10
-3 

M, for different Polystyrene Sulphonate MPSS: KPSS, NaPSS, LiPSS, Et4NPSS and Bu4NPSS in water 
at 25 °C. 
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However, despite the apparent compatibility of the Vink’s approach with the Manning’s model, at least concerning the 
quasi-stability of the values αM and (1- βir), direct calculation according to Eq.16, of the “experimental” values of the 

conductibility PSS,M of the PSS polyion partially condensed by the counter-ions M, shows a significant dependence of 

PSS,M  with the nature of the counter-ion M (see table 4a). This result is quantitatively and qualitatively in contradiction with 

the Manning’s theory. Indeed, the values of P
Manning

, calculated according to Manning’s equation (Eq. 6), are greater than 

their corresponding “experimental” values: PSS,M  of about 60%. On the other hand P
Manning

 is independent on the nature 
of the counter-ions M. Table 4a and figure 3a, summarize all the results in the case of KPSS, NaPSS, LiPSS, Et4NPSS 
and Bu4NPSS in water at 25 °C. 

 

Table 4a. Variation with the counter-ion concentration C°M
+ 

of: the experimental conductibility PSS,M, the Manning 

conductibility P
Manning  

, for different Polystyrene Sulphonate MPSS: KPSS, NaPSS, LiPSS, Et4NPSS and Bu4NPSS in 
water at 25 °C. 

  C°M
+ 

mol.l
-

1
 

PSS,K 

cm
2


-1
equiv

-

1
 

PSS,Na 

cm
2


-1
equiv

-1
 

PSS,Li 

cm
2


-1
equiv

-

1
 

PSS,Et4N 

cm
2


-1
equiv

-

1
 

PSS,Bu4N 

cm
2


-1
equiv

-

1
 

P
Manning

 

cm
2


-1
equiv

-

1
 

5 10
-4

 66.075 67.358 61.016 52.926 45.485 110.889 

1 10
-3

 63.618 63.058 57.357 50.423 41.783 102.995 

1.5 10
-3

 61.445 59.541 54.291 48.277 38.945 98.377 

2 10
-3

 59.500 56.794 51.811 46.466 36.921 95.100 

2.5 10
-3

 57.771 54.840 49.975 44.998 35.639 92.558 

3 10
-3

 56.248 53.636 48.686 43.834 35.054 90.482 

3.5 10
-3

 54.966 53.178 48.027 42.961 35.180 88.726 
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Figure 3a. Comparison between variations with the counter-ion concentration C°M
+
 of: the experimental conductibility 

KPSS, 

NaPSS, LiPSS, Et4NPSS and Bu4NPSS, the Manning conductibility P
Manning

, for different Polystyrene Sulphonate MPSS: 

KPSS, NaPSS, LiPSS, Et4NPSS and Bu4NPSS in water at 25 °C. 

 

Moreover, according to the previous Vink’s approach, and with the assumption that both <αM> and (1- βir) are independent 
on the counter-ion species, combination of Eqs. 16 and 20 lead to following expression of the calculated conductibility 


C

P,M of the PSS polyion in terms of these two parameters: 
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
C

P,M =  (1- βir) ’P,M = [MP <αM>] - λ°M (1- βir)                                                                                                                    
(22) 

 

Table 4b and figure 3b, summarize all the results in the case of KPSS, NaPSS, LiPSS, Et4NPSS and Bu4NPSS in water at    

25 °C. Note that if Vink’s approach is exact, the different 
C

P,M must be identical to their corresponding experimental 

values PSS,M  given in table 4a. However, we note a non- negligible dispersion of the results. 

 

Table 4b. Variation with the counter-ion concentration C°M
+ 

of: the calculated equivalent conductivities                              


C

PSS,M, the Manning conductibility P
Manning 

and the average degree of dissociation < αM >, for different Polystyrene 
Sulphonate MPSS: KPSS, NaPSS, LiPSS, Et4NPSS and Bu4NPSS in water at 25 °C. 

C°M
+ 

mol.l
-1

 < αM > 


C
PSS,K 

cm
2


-1
equiv

-1
 


C

PSS,Na 

cm
2


-1
equiv

-

1
 


C

PSS,Li 

cm
2


-1
equiv

-

1
 


C

PSS,Et4N 

cm
2


-1
equiv

-

1
 


C

PSS,Bu4N 

cm
2


-1
equiv

-

1
 

P
Manning

 

cm
2


-1
equiv

-

1
 

5 10
-4

 0.319 75.819 68.431 66.265 49.739 39.774 110.889 

1 10
-3

 0.328 70.841 64.906 63.212 46.322 36.717 102.995 

1.5 10
-3

 0.335 67.162 62.269 60.883 43.751 34.384 98.377 

2 10
-3

 0.342 63.885 59.816 58.649 41.512 32.397 95.100 

2.5 10
-3

 0.346 62.069 58.407 57.287 40.181 31.144 92.558 

3 10
-3

 0.350 60.540 57.101 55.959 39.102 30.166 90.482 

3.5 10
-3

 0.352 59.986 56.462 55.160 38.647 29.716 88.726 
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Figure 3b. Comparison between variations with the counter-ion concentration C°M
+
 of: the calculated equivalent 

conductivities 
C

KPSS, 
C

NaPSS, 
C

LiPSS, 
C

Et4NPSS and 
C

Bu4NPSS, the Manning conductibility P
Manning

, for different Polystyrene 

Sulphonate MPSS: KPSS, NaPSS, LiPSS, Et4NPSS and Bu4NPSS in water at 25 °C. 

 

3.2 Vink’s interpretation of the dependence of the experimental PSS,M with the nature of the 
counter-ions. 

As indicated previously, the Manning’s model is not able to explain the dependence of the polyion conductibility with the 
nature of the counter-ions M because the polyion is assumed to be an infinite thread and the counter-ions are modeled as 
punctual charges. In contrast, Vink suggests a more realistic description which offers an explanation of the dependence of 
the conductibility of the polyion with the size RM of the condensed counter-ions species. Indeed, according to his model, 



    ISSN 2321-807X 

2568 | P a g e                                                        A u g u s t  0 9 ,  2 0 1 4  

the hydrodynamic friction on the polyion increases with the minimal distance of approach (RC,M = RC + RM + nRw) between 
a condensed counter-ion and a charged polyion group. RC is the radius of the polyion, Rw is the radius of water molecule 
and nRw is a correction due to the hydration effect with: n = 0, 1 or 2.    

In the following section we will demonstrate that this interpretation is correct in its principle but it cannot explain the 

important decrease of PSS,M with the size RM of the condensed counter-ions species (from K
+
 to Bu4N

+
) which is of about 

35%. 

4. MODELING OF POLYION AS STRETCHED CHAIN OF CHARGED SPHERES  

4.1 Conductivity of Stretched Polyelectrolyte in Dilute Solutions  

The expression of the equivalent conductivity P,M of a polyion is in fact more complex because its ionic equivalent 

conductivity at infinite dilution P° expresses both hydrodynamic friction effect via P°
Hyd

 and dielectric friction effect via 

βP
dfi

 [6]. For this reason, we can decompose P,M as follows:     

     

P,M  = (αCMP°
Hyd

 - ∆λP
el
)  (1 + βir

P
 + βP

dfi
) = P

Henry 
 (1 + βir

P
 + βP

dfi
)                                                                                   (23) 

 

αCM is the degree of dissociation of the polyelectrolyte for which the polyion is modeled as a chain of charged spheres. 

P°
Hyd

 is the purely hydrodynamic contribution due to the viscosity η of the solvent, and ∆λP
el
 is the so-called 

electrophoretic effect which expresses the hydrodynamic friction on the ionic atmosphere of the polyion. βir
P
 is the ionic 

friction coefficient of the polyion. 

4.1.1 Hydrodynamic friction and Electrophoretic effect 

In previous works [6-8, 16, 17], we have noted that the first term (αCMP°
Hyd

 - ∆λP
el
) is identical to the expression of the 

Henry equivalent conductivity P
Henry 

given by [6, 18]:   

  

P
Henry 

= αCMZSFe  6πC’AP                                                                                                                                               (24) 

 

F is the Faraday, e is the proton charge and C’AP is in fact the electrostatic Gouy capacitance (in c.g.s.u.e units) of the 

ellipsoidal (or cylindrical) capacitor constituted by the polyion and by its ionic atmosphere of mean radius dP. Eq. 24 is a 
generalization of the Stokes-Hubbard equation [19]. 

 

(C’AP)
-1

 = [RP 
-1

 -  dP 
-1

] ;  dP  = LS  Ln[g(dP, LS)] ;   RP  = LS  Ln[g(RC, LS)]                                                        (25)   

  

 RP  is the mean radius of the polyion (analog to the radius of gyration) which is also equal to the electrostatic 
capacitance CAP (in c.g.s.u.e units) of the ellipsoidal (or cylindrical) polyion [18, 19]. 

 

g(x, LS) = [(4x
2 

+ LS
2
)
1/2 

+ LS]  [(4x
2 

+ LS
2
)
1/2 

- LS]                                                                                                                 (26) 

 

dP = RC + 1 2P MSA                                                                                                                                                             (27) 

 

g(x, LS) is “the configuration function” which depends on the conformation of the polyion. The thickness dP is of the ionic 
atmosphere is a function of the radius RC of the cylindrical chain and of αCM and C°M via the Debye-MSA screen parameter 

PMSA [20] and the Debye length χD
-1

.  

 

2P MSA = [-1 + (1 + 4χD RM)
1/2

]  2RM      ;        χD
2
 = 410

-27
NALB(ZM

2
αCMC°M)

                     
                                                          (28) 

 

ZM is the valence of the counter-ion, RM is the effective radius of the solvated counter-ion “M”, NA is the Avogadro number 

and LB is the Bjerrum length.  
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4.1.2 Ionic friction on the polyion 

Recall that in addition to the electrophoretic effect, one must take into account the ionic relaxation effect due to the 
polarization of the ionic atmosphere of the moving polyion by the external field. This local polarization induces a reacting 
relaxation field in order to moderate the perturbation caused by the external field. The result is a decrease of the mobility 
of the polyion when the concentration of the counter-ions increases via the ionic friction coefficient βir

P
 as indicated in Eq. 

23. The expression of βir
P

 is given by [6-8]: 

 

βir
P

 = αCM |ZSZM|LB (3dP
2 

+ LS
2
4)  [18(dP

2 
+ LS

2
4)

3/2
                                                                                                            (29) 

 

Note that for a free salt polyelectrolyte, the ionic friction coefficient βir
P

 of the polyion is equal to the ionic friction coefficient 
βir

M
 of the counter-ions [6, 13]: 

 

βir
P 

= βir
M

                                                                                                                                                                              (30)                                                                                                                                                

 

Note also that for spherical configuration: LS  dP  0, then: βir
P
  αCMZM ZSLB (6dP), this limiting expression converges 

toward the Debye-Onsager relation applicable for spherical ions. In contrast, for polyions of very large length: LS  dP and 

thus: βir
P
  1 9  C°M if αCM  α

Manning
. Consequently, (1 - βir

P
)  0.889, this limit is in conformity with both Manning and 

Vink approaches.   

 

4.1.3 Importance of the Dielectric Friction Effect  

In this paragraph we will discuss succinctly the dielectric frictional effect on a slowly moving polyion due to dielectric loss in 
its surrounding medium. Calculations of the dielectric frictional force on a charged sphere were performed successively by 
R. Zwanzig [15], J. Hubbard and L. Onsager [23] and P. G. Wolynes [21]. However, this dielectric effect is completely 
ignored by the Manning’s model and it is not cited in the Vink’s approach. 

Indeed, the apparent charge (αCMZSe) of a polyion moving along Oz with a velocity v, induces a polarization of its 
surrounding dielectric medium which in turn creates after a relaxation time τ (delay) a dielectric frictional force Fz acting on 
the polyion. In fact, this force depends on the conformation (shape) of the polyion [6-8, 16-18]. In the case of a coiled 
polyion represented by an ellipsoidal conformation, the expression of Fz is [18]:     

 

Fz = -(2/3)(vτ)(o - )o
-2

(αCMZSe)
2
(Rapp)

-3
 =  - 

D
 v                                                                                                             (31) 

The sign “-” expresses the fact that the direction of the frictional force is opposite to the direction of v. The factor (vτ) 
expresses the delay effect so that Fz vanishes for immobile polyion: v = 0, or in the case of instantaneous response: τ = 0.      

o and  are the static and high-frequency dielectric constants of the solvent and the (o - )o
 -2 

term expresses the 

dielectric saturation effect. Rapp is the apparent radius of the polyion which depends on its eccentricity [18], and 
D
 is the 

translational dielectric friction related to the βP
dfi

 coefficient via the Henry mobility uP
Henry

 = P
Henry 

F, according to [18]: 

 

βP
dfi

 = CMZSe
-1


D 
uP

Henry
 = (23)(uP

Henry
 τ)(o - )o

-2
CMZSe(Rapp)

-3
                                                                              (32) 

 For coiled polyions, βP
dfi

  1, because of the term (Rapp)
-3

, and therefore according Eq. 23, the dielectric friction effect 

remains weak. It is interesting to note that when the moving polyion is assumed to be a thread of infinite length (L ) 

with a continuous linear charge (Manning’s Model), so that the local distribution of its surrounding solvent molecules 
remains undisturbed, the polyion appears therefore as an equivalent immobile polyion (no dielectric friction).  

In the specific case of a stretched polyion modeled as a chain of ZS identical spheres of charge qn = αCMe and of radius 
Rg,M (a linear discontinuous distribution of ionized groups), each partially charged group undergone a dielectric friction 

effect proportional to (Rg,M)
-3

 and not to (Rapp)
-3

 (with Rg,M  Rapp) and consequently, the conformation transition from 
coiled state to stretched state will be accompanied by a sharp increase of the dielectric friction on the polyion. The 

corresponding expression of the dielectric friction coefficient βP
dfi 

is therefore given by [17, 22]: 

 

βP
dfi  

= (2eCM  3)(τ uP
Henry

  ZS bS
3
)[(o - )o

-2
]|(fM

3
- 4.808) ZS + 6.58| ; fM = bS  Rg,M                                                                                (33)   

 

With, according to Eqs. (24 -28): uP
Henry

 = (e|ZS|CM  6πη C’AP). Now, if we replace the relaxation time τ by its Debye’s 

expression:  = (6Rw
3
 kBT), with LB = e

2
 εokBT, the general explicit expression of βP

dfi
 becomes:   
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βP
dfi  

= (2  3)CM
2
(Rw   bS)

3
(LB  C’AP)[1- ε∞ εo] |(fM

3
- 4.808) ZS + 6.58 |                                                                               (34)   

 

In fact, the dielectric friction undergone by each spherical group can be decomposed into a self contribution due to the 

polarization induced by its own charge αCMe and into a crossed contribution due to the polarization caused by the other ZS 

-1 spherical groups (interference effect indicated by the index “i” in βP
dfi

). Notice however that, if the distance: bS = LS  ZS, 

between two successive charged groups is sufficiently large, fM
-1

  0 and the interference effect vanishes.   

It is interesting to note that βP
dfi 

increases with dilution as CM
2
 and it reaches its maximal value β°P

dfi 
at infinite dilution i.e. 

when CM  1 (Ostwald) and C’AP   RP : 

 

β°P
dfi  

= (2  3)(Rw   bS)
3
(LB   RP )[1- ε∞ εo] |(fM

3
- 4.808) ZS + 6.58 |                                                                                 (35)  

                                         

Consequently, according to Eqs. (29, 33 and 34), the two friction coefficients: βir
P
 (ionic friction) and βP

dfi
 (dielectric 

friction), can be written respectively in terms of an ionic parameter B and of a dielectric parameter CM as follows: 

 

βir
P
 = αCM B    ;      βP

dfi
 = CM

2
CM                                                                                                                                         (36) 

 

With:  

 

B = |ZSZM|LB (3dP
2 

+ LS
2
4)  [18(dP

2 
+ LS

2
4)

3/2
  and CM   β°P

dfi 
( RP   C’AP)                                                                    (37)  

 

Note that the dependence of αCM and CM with the nature of the counter-ion is indicated by the index M.  

In the other hand, the term (αCMP°
Hyd

 - ∆λP
el
) expressing in Eq.23 the hydrodynamic contribution and the electrophoretic 

contribution can also be written in terms of the hydrodynamic parameter AM defined as follows: 

 

(αCMP°
Hyd

 - ∆λP
el
) = αCM ZSFe  6πC’AP  αCMAM                                                                                                             (38)  

 

The introduction of Eqs. (36 and 38) into Eq. 23 leads to the following “Universal form” of the expression of the 

conductibility P,M of the stretched polyion:   

 

P,M = αCMAM  [1 + αCMB + CM
2
CM]                                                                                                                                     (39) 

  

We have used previously this general form in order to distinguish between the Manning’s regime for which the degree αCM 

remains quasi constant, and the Ostwald’s regime for which P,M varies more appreciably with the dilution process via αCM 

[17, 22].  

In this paper we will use this expression in order to explain the possible specific dependence of the conductibility P,M of 
the polyion with the nature of the counter-ions. Indeed, According to Eq. 39, this specificity can result from the 
dependence with the nature of the counter-ion M, of αCM , CM and AM parameters relating to respectively the process of 

ionic condensation, the dielectric friction (via the specific group radius Rg,M), and the  hydrodynamic-electrophoretic 
friction.  

Only the two parameters: αCM and AM are considered in the Vink’s approach. Moreover, the comparison for each 

concentration between the αCM of the different counter-ions given in table 3, show that organic cations Et4N
+
 and Bu4N

+
 

present a certain specific association with the charged groups of the PSS polyion due to their hydrophobic character. In 
contrast, ionic condensation of the alkaline cations Li

+
, K

+
 and Na

+
 seems to be quasi independent on the nature of the 

counter-ion and their mean value is equal to the Manning value which is about 0.35. Consequently, according to Vink’s 

interpretation, the important deviations:   (P,M - P,M’) observed between two polyion conductibilities of any couple of 
counter-ions M and M’ must be interpreted in terms of hydrodynamic friction parameter AM (via the specific cylindrical 

radius RCM = RC + RM + nRw). In contrast, it is obvious that this specificity disappears in the case of the Manning’s Model. 
In the following paragraph, we will show that in the case of stretched polyion, the most important factor at the origin of the 

specificity of P,M to M comes rather from the high sensitivity of the dielectric parameter CM to the local structure 

parameters characterizing the surrounding of each specific group of  apparent radius Rg,M.     
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4.2 Interpretation of the dependence of the conductibility of PSS with the nature of the 
counter-ion.   

In this section we will calculate for each counter-ion M of concentration C°M the different specific parameters: RCM, AM, CM 

and Rg,M defined previously, in order to interpret the dependence of the conductibility of PSS with the nature of each 
counter-ion.    

Table 5 gives the different ionic radii RM and the different specific cylindrical radii RCM = RC + RM + Rw relating to the 
counter-ions Li

+
, K

+
, Na

+
, Et4N

+
 and Bu4N

+
, using RC = 6.85 A° [17] (radius of the PSS chain) and Rw = 1.4 A° (radius of 

the water molecule). 

 

Table 5. Radii RM and specific cylindrical radii RCM relating to the counter-ions Li
+
, K

+
, Na

+
, Et4N

+
 and Bu4N

+
. 

 K
+
 Na

+
 Li

+
 Et4N

+
 Bu4N

+
 

RM  (A°) 1.33 0.98 0.68 4.0 4.94 

RCM  (A°) 8.18 9.23 10.33 10.85 11.79 

 

Calculation of the specific empirical parameters CM which are related to the dielectric friction is achieved according to the 

following equation after recombination of Eq. 39: 

 

CM = [αCMAM - P,M (1 + βir
P
)] / CM

2
P,M                                                                                                                                 (40) 

 

The P,M  indicates the experimental conductibility of PSS in presence of the counter-ion “M” (see table 4a). The 
expression of the hydrodynamic-electrophoretic parameter AM is extracted from Eq. (38). 

 

AM = ZSFe  6πC’AP                                                                                                                                                          (41) 

 

The capacity C’AP is defined by Eqs. (25, 26, 27 and 28). Tables 6 gives the variations with the total ionic concentration 
C°M of the hydrodynamic-electrophoretic parameters “AM” and the dielectric parameters CM relating to Polystyrene 

Sulphonate KPSS, NaPSS, LiPSS, Et4NPSS and Bu4NPSS in water at 25 °C.  

 

Table 6. Variations with counter-ions concentration C°M
+ 

of the hydrodynamic-electrophoretic parameters “AM” and the 
dielectric parameters CM relating to Polystyrene Sulphonate: KPSS, NaPSS, LiPSS, Et4NPSS and Bu4NPSS in water at        

25 °C. 

C°M
+ 

mol.l
-1

 
AK CK ANa CNa ALi CLi AEt4N CEt4N ABu4N CBu4N 

5 10
-4

 274.115 2.628 268.103 2.147 258.606 2.885 258.125 4.710 254.202 6.743 

1 10
-3

 249.068 1.961 242.303 1.754 232.975 2.381 233.317 3.996 228.801 6.421 

1.5 10
-3

 234.376 1.674 227.029 1.670 217.822 2.239 218.800 3.724 213.916 6.469 

2 10
-3

 223.902 1.527 216.184 1.651 207.068 2.194 208.495 3.595 203.495 6.523 

2.5 10
-3

 215.723 1.444 207.883 1.606 198.849 2.144 200.502 3.506 195.637 6.459 

3 10
-3

 208.990 1.391 201.275 1.497 192.292 2.060 193.969 3.418 189.486 6.219 

3.5 10
-3

 203.255 1.341 195.907 1.301 186.992 1.899 188.445 3.308 184.609 5.768 

 

According to this table we can conclude that: 

- The hydrodynamic-electrophoretic friction increases with the RCM radius of the condensed counter-ion, from K
+
 to 

Bu4N
+
 (see table 5). However, this increase cannot, completely explain the great dependence of the conductibility 

of the polyion with the nature of its counter-ion. 
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- The dielectric friction is practically the same for Na
+
 and K

+
, it undergoes a weak increase for Li

+
 and it increases 

by a factor two for Et4N
+
 and by a factor three for the Bu4N

+
. 

In order to interpret the dependence of CM with the nature of the counter-ions, we will express the parameter CM in terms 

of the physical parameters influencing the dielectric friction effect (i.e. the dielectric relaxation time τ, the local dielectric 

permittivities o and  around each group). Combination of Eqs. (33 and 36), leads to:  

 

CM = (e
2
 9πη) (1 C’AP bS

3
)[τ (εo - )o

-2
]|(fM

3
- 4.808) ZS + 6.58 | ;  fM = bS  Rg,M                                                                                              (42) 

 

Eq. 42 can be recombined in order to express the group radius Rg,M as a function of τ: 

 

Rg,M = bS [9πηCMC’APbS
3
εo

2
{e

2
|ZS|τ (εo - )}

-1 
+ 4.808 - 6.58/ZS]

-1/3                                                                                                                             
(43) 

 

Calculation of Rg,M needs the knowledge of the relaxation time τ of water molecules, the static permittivity εo and the high-

frequency permittivity  of water. Experimental values of τ, εo and  for pure water at 298.15 K are: εo = 78.3,  = 4.49 
and τ = 8.32 ps [24]. Note that this last value is less than the value estimated according to the Debye’s expression:                  

 = (6Rw
3
 kBT) = 11.187 ps at 298.15 K. Table 7 gives the variations with the total ionic concentration C°M of the 

calculated group radii Rg,M in A°, relating to Polystyrene Sulphonate KPSS, NaPSS, LiPSS, Et4NPSS and Bu4NPSS in 
water at 25 °C. One indicates by < Rg,M >, the mean group radius of the polyion PSS partially condensed by counter-ions 
M. The Examination of these results shows that the obtained mean radii: < Rg,M >, depend on the nature of the counter-

ions and are in general greater than the structural group radius of the PSS polyion which is equal to Rg = bS  2 = 1.25 A°. 
Deviation of < Rg,M > from Rg can be interpreted by replacing τ and εo in Eq. 43 by their “local” values τ’ and ε’o. Indeed, 
the relaxation time of water molecules around the polyion PSS and its counter-ions is different from its bulk value τ, so that 

τ’ is in fact a mean value  τ. In same way, ε’o  εo because of the dielectric saturation effect in the surrounding of the 
polyion and the counter-ions. It is obvious that the local structure of water depend on the nature of the condensed counter-
ions, this could explain the specificity of the dielectric parameter CM to the nature of counter-ions via τ’ and ε’o.       

 

Table 7. Variations with counter-ions concentration C°M
+ 

of the the group radii Rg,M in A° and < Rg,M > are the mean group 

radii, relating to Polystyrene Sulphonate: KPSS, NaPSS, LiPSS, Et4NPSS and Bu4NPSS in water at 25 °C. 

C°M
+ 

mol.l
-1

 
Rg,K Rg,Na Rg,Li Rg,Et4N Rg,Bu4N 

5 10
-4

 1.350 1.370 1.335 1.265 1.203 

1 10
-3

 1.372 1.378 1.345 1.275 1.193 

1.5 10
-3

 1.381 1.379 1.346 1.276 1.178 

2 10
-3

 1.385 1.375 1.343 1.274 1.167 

2.5 10
-3

 1.387 1.375 1.341 1.272 1.161 

3 10
-3

 1.388 1.378 1.342 1.271 1.162 

3.5 10
-3

 1.389 1.388 1.348 1.272 1.162 

< Rg,M > 1.378 1.377 1.343 1.272 1.175 

 

5. CONCLUSION 

   The Manning’s model is not able to explain the dependence of the conductibility of the PSS polyion with the nature of 
the counter-ions M, because the counter-ions are assumed as punctual charges. However, predictions according to this 

model of both the degree of condensation and the ionic friction coefficient (  0.35 and βir  0.13) are acceptable in 

particular for the alkaline cations (Li
+
, Na

+
 and K

+
), but with a small observed negative deviation (  0.31) for the two 

hydrophobic cations (Et4N
+
 and Bu4N

+
).   

In contrast, Vink has suggested a more realistic qualitative description in taking into account of the cylindrical radius RC of 
the polyion and the size RM of the condensed counter-ions, so that the hydrodynamic friction on the polyion increases with 
the minimal distance of approach (RC,M = RC + RM + nRw) between a specific condensed counter-ion and a charged 
polyion group.  

In this work, we have used  a recent model in which the stretched PSS polyion is represented by a chain of successive 
charged spheres, partially condensed by the counter-ions, in order to quantify the dependence of the hydrodynamic 
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friction on PSS polyion with the size of alkaline cations (Li
+
, Na

+
 and K

+
) and with the size of two hydrophobic cations 

(Et4N
+
 and Bu4N

+
), and we have found that the moderate increasing of this friction with the RCM distance from K

+
 to Bu4N

+
, 

cannot completely explain the important decrease (of about 35% from K
+
 to Bu4N

+
) of  the conductibility (PSS,M ) of the 

PSS polyion with the size RM of its condensed counter-ion M. Consequently, we have proposed a supplementary 
explanation to the high dependence of the mobility of the polyion with the nature of its counter-ions, by taking into account 
of the translational dielectric friction on the moving polyion due to the time dependent polarization of its surrounding water 
molecules. This supplementary friction which is in the case of this model, the most important friction effect, can be 
evaluated quantitatively in terms of the specific dielectric parameter CM which is function on the relaxation time τ of water 

molecules, the static permittivity εo and the high-frequency permittivity  of water. Now, as these physical parameters are 
sensitive to the local structure of water surrounding the polyions, and in turn, this local structure depends on the nature of 
the condensed counter-ions, we suggested that the specificity of the parameter CM could explain the high dependence of 

the mobility of the polyion with the nature of its counter-ions.     
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