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ABSTRACT 

New layered double hydroxides (LDHs) CoNiFe, ZnNiFe and CoZnFe with M
II
/M

III 
molar ratio of 3, with acetate ions in the 

interlayer region have been prepared by forced  hydrolysis in polyol medium. 

The physico-chemical properties of all products were characterized by the methods of powder X-ray Diffraction, Infrared 
Spectroscopy, UV-Spectroscopy, Elemental analysis, Thermal analysis, Transmission Electron Microscopy and Scanning 
Electron Microscopy.  

It was found that all compounds present the typical features of hydrotalcite-like structure and exhibit a turbostratic 
character. 

The insertion of acetate anions into LDHs was confirmed and the interlayer spacing values were respectively 12.47, 13.64 
and 14.69 Å for CoNiFe, ZnNiFe and CoZnFe.  

We notice a difference between the interlayer spacing for all synthesized phases with and without zinc. This can be 
explained by a structural modification on the level of the layers and/ or different arrangement from the inserted species 
(anions + water) in the interlayer space for zinc materials.  

57
Fe Mössbauer spectrometry allows concluding the presence of Fe

3+
 cations which occupy octahedral sites and 

confirming the absence of Fe
2+

 in the as-prepared compounds. 
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1. INTRODUCTION 

Hydrotalcite-like compounds, also called anionic clays or layered double hydroxides (LDHs) are very attractive materials 
for a broad range of applications [1, 2].They can be presented by the general formula [M

II
1-x M

III
x (OH)2]

+x/n
 (A

-n
) x/n.mH2O. 

The positive layer charge is created by substituting a divalent cation with a trivalent one in the octahedral hydroxide layer, 
with anions (A

-n
) and water in the interlayer space [3]. 

LDHs are elaborated by several synthesis methods: coprecipitation at fixed pH  and exchange reactions [4], reconstruction 
[5],  mechanochemical process [6] and reverse microemulsion method [7]. However the coprecipitation  is the most 
commonly used method with  carbonate  as the intercalated anion in the most cases. Despite its widespread use, this 
method presents two main disadvantages. First, it needs a precise control of several parameters mainly the pH. Second, 
the carbonate anion has a great affinity toward the inorganic layer charged positively. This limits exchange reactions and 
thus the obtention of LDHs with desired intercalated anions.  

Recently an alternative synthesis method has been proposed. It takes advantages from the various properties of polyols. 
Indeed it has been shown that  two main reactions can be easily conducted in such medium: namely reduction and forced 
hydrolysis along with inorganic polymerization [8] [9]. The competition between  these two reactions can be easily 
controled by the hydrolysis ratio defined as h=nH2O/ nM. This led to the synthesis of various inorganic materials: metal, 
oxides,  layered hydroxide salts (LHS) and more recently LDH compounds: LDH-Ni-Al [10] and LDH-Ni-Fe [11] with 
acetate as the intercalated anion. 

In this paper, we want  to put this novel route, efficiency for synthesis of a series of layered double hydroxides containing 
three transition metals CoNiFe, ZnCoFe, and ZnNiFe with acetate anions intercalated in the interlayer space. The 
obtained LDH are characterised by several complementary analyses (X--ray diffraction, TEM, DTA-TGA, IR, UV and 
Mossbauer spectroscopy). Such LDHs based on transition metals are of great interest as precursors for metal-spinel 
oxides composites  with potential magnetic and catalytic properties [12]. 

2. EXPERIMENTAL METHODS 

2. 1. Materials 

 For all preparative procedures, Zn(CH3COO)2.4H2O, Ni(CH3COO)2.4H2O, Fe(CH3COO)2 , Co(CH3COO)2. 4H2O, NaOH 
and diethylène glycol (DEG) were purchased from Acros and used without any further purification.  

2. 2. Synthesis of LDHs Samples 

The samples were synthesized with a molar ratio (M/Fe) of 3 by forced  hydrolysis in polyol medium according to the 
method described by  Poul et  al. for elaboration of layered hydroxysalts [8].  It consists in the hydrolysis at 130°C of 

mixture of acetate salts dissolved in DEG with a total molar concentration of 0.1 mole/L. 

The precipitation of the corresponding LDHs occurred when the hydrolysis and alkalinity ratios h and b were fixed at 100 
and 2 respectively, where h=nH2O/n (M+Fe) and b= nNaOH/n (M+Fe).  

The suspensions were kept under continuous stirring for 6 hours. After separation by centrifugation,  the solids CoNiFe-
Ac, ZnNiFe and ZnCoFe-Ac were dried under air at 60°C. 

2.3. Characterization 

Powder X-ray diffraction (PXRD) patterns were obtained at room temperature using a Inel diffractometer with Co-Kα1 
radiation (λCoα1 = 1.7889 Å). The crystallite size was calculated using the Scherrer equation. Scanning electron microscopy 
study was performed using LEICA STEREOSCAN 440 instrument. Electron microscopy and diffraction studies were 
performed on a JEOL-100 CX II microscope. Infrared spectra were recorded by transmission on PERKIN ELMER 1750 
spectrometer on pressed KBr pellets with 4cm

-1
 resolution between 400 and 4000cm

-1
. Elemental analysis (metal, carbon 

and hydrogen) was performed by ICP method at the centre national de la recherche scientifique, service central d’analyse 
à SOLAIZE (France). Differential thermal and thermogravimetric analyses (DTA and TGA) were carried out on a Setaram 
TG 92-12 thermal analyzer with heating rate 1°C/mn under argon, in alumina crucible. UV-Visible spectra were recorded 
between 200 and 2500 nm, with Cary 5/Varian spectrometer. Polytetrafluoroethylene (PTFE) was used as a reference. 

The 
57

Fe Mössbauer spectra were recorded in a transmission geometry using a 
57

Co/ Rh -ray source. They were 

analyzed by a least-squares fitting method to lorentzian function. The isomer shifts () were referred to that of -Fe at 300 

K. The sample (area: 3 cm
2
) has been prepared by dispersion of the compound (40 mg) in a specific resin.  

3. RESULTS AND DISCUSSION 

3.1. X-ray diffraction study 

The X-ray diffraction patterns of all the synthesized compounds (Fig. 1) have typical features of turbostratic lamellar 
compounds [13]. Indeed,  three (00l) sharp and symmetric peaks at low diffraction angles, and two broad, less intense and 
asymmetric peaks can be clearly identified. The patterns were indexed in a hexagonal lattice with rhombohedral symmetry 
(R-3m), commonly used as a description of the layered double hydroxide structure [14]. The value of the crystallographic 
parameter a which is the average metal-metal distance in the brucite-like layers of the LDH compounds, has been 
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calculated from d110 (a=2d110), whilst, the value of parameter c which is related to the thickness of the brucite-like layers, 
the nature of the interlayer anion and water content, has been also determined. 

The insertion of acetate anions into LDHs was confirmed and the interlayer spacing values were respectively 12.47, 13.64 
and 14. 69 Å for CoNiFe, ZnNiFe and CoZnFe (Table 1).  
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Figure 1: XRD patterns of LDHs, (a) CoNiFe-Ac, (b) ZnNiFe-Ac, (c) ZnCoFe-Ac. 

 

Table 1: Lattice parameters (from XRD data) of LDH samples 

Compound a =2d110 
(Å) 

d001 (Å) Correlation length according to c 
axis (Å) 

Number of monolayers 
/crystallite 

CoNiFe-Ac 3.08 12.47 60 5 

ZnNiFe-Ac 3.06 13.64 228 16 

ZnCoFe-Ac 3.10 14.69 490 33 

 

We notice a difference between the interlayer spacing for all synthesized phases. This can be explained by a structural 
modification on the level of the layers and/ or different arrangement for the inserted species (anions + water) in the 
interlayer space for zinc materials. The correlation length along c deduced from the XRD analysis (Table 1) reveals a 
better cristallinity for ZnCoFe-Ac in comparison with CoNiFe-Ac and ZnNiFe-Ac compounds.  In this case, it corresponds 
to the stacking of approximately 33 layers by crystallite.   

3. 2. Morphology 

SEM images of all synthesized materials show the low level of cristallinity and confirm the turbostratic character of these 
compounds. Fig. 2(a) and (b) depict the SEM images of CoNiFe-Ac and ZnNiFe-Ac systems respectively, it is clearly seen 

that these particles are precipitated  as small, pseudo-spherical aggregates of platelets; they are also very similar to the 
morphology of other LDHs [15]. 

The particles of ZnCoFe-Ac (Fig. 2(c)) sample are formed by the aggregation of small platy crystallites without any definite 

shape. They appear to be denser compared to those of the CoNiFe-Ac and ZnNiFe-Ac.  
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Figure 2: SEM images of LDHs, (a) CoNiFe-Ac, (b) ZnNiFe-Ac, (c) ZnCoFe-Ac. 

For TEM images, the particles of all compounds appear as aggregates of thin crumpled sheets with irregular size and 
shape (Fig. 3). This aggregation is similar to that described by  Taibi et  al. for NiFe-Ac LDH [11].  Electron diffraction 

pattern of these samples confirm the hexagonal symmetry of the brucite structure, to which all the hydrotalcite-like 
materials belong. The  preferential orientation of the crystallites along the (00l) heaxogal plane is clearly established for 
CoNiFe sample (Fig. 4). 

 

Figure 3:TEM images of LDHs CoNiFe-Ac. 

 

Figure 3: TEM images of LDHs ZnNiFe-Ac. 

 

Figure 3: TEM images of LDHs ZnCoFe-Ac. 

 

Figure 4: Electronic diffraction of LDHs CoNiFe-Ac. 
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3. 3. Infrared Spectroscopy 

IR spectra for all samples are shown in Figure 5. The broad absorption bands at high frequency (3600-3400 cm
-1

) 

indicate the presence of OH groups and water molecules in the brucite-like layer.  The absorption band around 1640 cm
-1 

for CoNiFe-Ac and ZnCoFe-Ac is assigned to δH2O vibration of the water molecules [16, 17]. In the case of ZnNiFe-Ac, 
this band is obscured by the strong band due to the νas(-COO

-
) of the acetate anion [18]. 
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Figure 5: FT-IR spectra LDHs (a) CoNiFe-Ac, (b) ZnNiFe-Ac, (c) ZnCoFe-Ac. 

The presence of acetate anions in the interlayer of all compounds is attested by the presence of two large and intense 
bands in 1600-1000 cm

-1
 domain, which are assigned to νas(-COO

-
) and νs (-COO

-
) respectively. νas (-COO

-
) = 1561cm

-1
 

for CoNiFe-Ac and ZnCoFe-Ac and 1579 cm
-1

 for ZnNiFe-Ac. νs (-COO
-
) = 1410 cm

-1
 for CoNiFe-Ac and ZnNiFe-Ac and 

1386 cm
-1

 for ZnCoFe-Ac [19]. 

According to Nakamoto rules [20], the value of Δν = (νas- νs), where 175 ≤ Δν ≤ 151 cm
-1

 confirms that acetate anions are 
intercalated as free species in between the layers.  

The absorption bands around 1344 cm
-1

 are attributed to CH3 vibrations [19]. The existence of a low-intensity bands 
between1300 and 1000 cm

-1
 indicate the presence of DEG molecules as adsorbed species [11]. Bands at lower 

wavenumber (ν < 800 cm
-1

) are due to vibrations implying M-O, M-O-M and O-M-O bonds in the layer [17, 21]. 

The band close to 1360 cm
-1

 is absent in all spectra, confirming the intercalation of all compounds with acetate anions 
without any trace impurity of carbonate anions. 

3. 4. Thermal analysis 

The TG/DTA analysis for all samples is shown in Figure 6.  Three weight losses are observed for each sample. The first 

weight loss corresponds to the removal of adsorbed and interlayer water molecules, the second weight loss is due to 
dehydroxylation of the brucite-like layers, while the third one is due to the removal of interlayer anions [22].  

For all compounds, three endothermic effects can be distinguished in the DTA curve. The first endothermic peak due to 
the loss of surface and interlayer water was observed at 116°C with loss of mass of 6.3% for CoNiFe-Ac, at 83°C (7.3%) 
for ZnNiFe-Ac and at 82 and 127°C (9.4%) for ZnCoFe-Ac. 

The second effect , attributed to the dehydroxylation process, was seen at 187°C (10.3%) for CoNiFe-Ac, at 132 and 
229°C (13%) for ZnNiFe-Ac and at 200°C (10.3%) for ZnCoFe-Ac. 

The third and the last endothermic effects  which are likely  related to the decomposition of acetate anions,  appeared at 
290°C and 430°C (29.3%) for CoNiFe-Ac, at 288 and 414°C (31%) for ZnNiFe-Ac and at 292°C (21.4%) for ZnCoFe-Ac. 
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Figure 6: TG/DTA curves of LDHs (a) CoNiFe-Ac, (b) ZnNiFe-Ac, (c) ZnCoFe-Ac. 

 

3. 5. Chemical analysis 

First it should be noted that under synthesis conditions, Fe
2+

 was oxidized to Fe
3+

 as confirmed by Mössbauer analysis (as 
shown hereafter). This is due to the presence of a sufficient amount of water able to oxidize ferrous ion.  In Table 2, are 

summarized the results of elemental chemical analysis of the compounds and their corresponding formulae.  It can be 

observed that in CoNiFe-Ac compound, the calculated M
II
/Fe

III 
ratio is in a good agreement with the experiment data, but 

in ZnNiFe-Ac and ZnCoFe-Ac this ratio is larger than in the starting solution. 

For all samples, the results show that the observed carbon amount is higher than that expected in the acetate anions; this 
is due to the adsorption of polyol (DEG) on the surface of compounds as has been seen in the IR study. 

Similar results have been observed for Ni-Co hydroxyacetates prepared in polyol medium [23], where the amount of 
adsorbed polyol has not been taken into account in the chemical formula. 
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Table 2: Elemental chemical analysis data of LDH samples 

Compound Mass fractions (%) Molar ratio 

M
II
/Fe

III
 

 

X=M
III
/M

II
+Fe

III
 

Co Ni Zn Fe C H solution solid solution solid 

CoNiFe-Ac 17.32 17.33  10. 36 6.88 3.61 3 3.17 0.25 0.24 

ZnNiFe-Ac - 22.05 12.99 8.27 6.35 3.18 3 3.87 0.25 0.20 

ZnCoFe-Ac 24.59 - 22.46 10.1 7.79 3.61 3 4.24 0.25 0.19 

Compound Chemical formula DEG H2O 

% 

Total weight loss (%) 

Exp Exp Cal 

CoNiFe-Ac Co0.38 Ni0.38 Fe0.24(OH)2 Ac0.24, 0.52H2O 0.090 06.3 45.9 47.8 

ZnNiFe-Ac Zn0.28 Ni0.52Fe0.20(OH)2 Ac 0.20,  0.70H2O 0.097 07.3 51.3 50.3 

ZnCoFe-Ac Zn0.37Co0.44Fe0.19(OH)2 Ac0.19,  0.18H2O 0.044 09.4 41.7 41.1 

 

In our study, the amount of adsorbed polyol in the final products has been included in the chemical formula to calculate the 
theoretical weight losses, which are consistent with those observed by TGA analysis (Table2). Altogether, these results 
led to the chemical formula M

2+
1-x Fe

3+
x (OH) 2(CH3COO)x. mH2O.nDEG (see Table 2 for exact formula). 

3. 6. UV-Visible Spectroscopy 

For CoNiFe-Ac and ZnCoFe-Ac, the absorption bands at around 1200 and 500 nm  (Fig. 7(a) and (c)) are attributed to the 

d-d transitions of octahedral coordinated Co
2+ 

[24].They are assigned as ν1(Co
2+

):
4
T1g(F)          

4
T2g(F), ν2 (Co 

2+
) :   

4
T1g(F)          

4
A2g(F), and  ν3(Co

2+
): 

4
T1g(F)            

4
T1g (P) transitions in high spin state Co 

2+
 (d

7
) respectively [23,25, 26]. 

The UV-Visible spectra of the CoNiFe-Ac and ZnNiFe-Ac (Fig. 7(a) and (b)) show that Ni
2+

 ions are also located in 

octahedral sites with the presence of absorption bands at around 380, 665 and 1115 nm due to ν2 (Ni
2+

) :  

3
A2g(F)          

3
T1g(F), ν3(Ni

2+
 ) : 3A2g(F)             

3
T1g(P), and  ν1(Ni

2+
 ) :  3A2g(F)             

3
T2g(F) respectively [27-31] 

 (Table 3).   

 

Table 3: UV-Visible bands attribution of LDH samples 

 

Samples 

Co
2+

 (Oh)  Ni
2+

  (Oh) 

1((
4
T2g(F)),    2(

4
A2g(F)),      3(

4
T1g(P)) 

      /nm               /nm                 /nm

1(
3
T2g(F)),     2(

3
T1g(F)),      3( 

3
T1g(P))  

     /nm                /nm                 /nm 

CoNiFe-Ac      1200                625                   550      1402                752                  380 

ZnNiFe-Ac           -                    -                         -      1115               665, 572             380 

ZnCoFe-Ac         1220             625                   550        -                      -                     - 
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Figure 7: UV-Visible of LDHs (a) CoNiFe-Ac, (b) ZnNiFe-Ac, (c) ZnCoFe-Ac. 

 

3. 7. Mössbauer Spectroscopy 

Fig.8 shows the Mössbauer spectra for all samples at room temperature in order to probe local magnetic environment 
around the Fe sites and to determine the oxidation state of the Fe in LDHs matrix. 

Each spectrum shows only one doublet with isomer shift (δ) ranging from 0.33 to 0.34 mm/s and quadrupole splitting (Δ) 
0.45 - 0.56 mm/s  indicating Fe

3+
 nature of the Fe atom, and no evidence of Fe

2+
 signal was found [32].  The small value 

of quadrupole splitting (Δ) corresponds to high spin Fe
3+

 ions in octahedral site. 
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Figure 8: Mössbauer spectra of LDHs (a) CoNiFe-Ac, (b) ZnNiFe-Ac, (c) ZnCoFe-Ac. 
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4. CONCLUSION 

In the current study, a novel series of ternary layered double hydroxides with acetate anion intercalated  in the interlayer 
region has been prepared by forced hydrolysis in polyol medium, in the ratio range 3.17 ≤ M

II
Fe

III
 ≤ 4.24. 

X-Ray diffraction investigations show that these materials derive from the brucite structure with variable basal spacing, the 
Zinc based compounds having the more higher interlamellar distances. 

IR study  shows that acetate anions are located in between the brucite sheets as free species. No trace of  carbonate  
CO3 anion was detected. 

Because of the turbostratic character of CoNiFe-Ac, ZnNiFe-Ac and ZnCoFe-Ac, it was hard to get more insight  into their  
intralayer structural organization by X-ray diffraction analysis. Thus two complementary analysis techniques namely  UV-
Visible and Mössbauer Spectroscopy have been used. 

For all samples, UV-Visible spectra present characteristic bands of Co
2+

 and Ni
2+

 in octahedral sites, and 
57

Fe Mössbauer  
measurement reveals that Fe atoms are present in the LDHs lattice in Fe

3+
 state and no such Fe

2+
 ions are present. 

Owing to their chemical compositions, these based 3 d-transition LDHs are belevied to be very versatile precursors for a 
wide range of  metal-spinel nanocomposites.  
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