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ABSTRACT: The omega polynomial Ω(G,x), for counting qoc strips in molecular graph G was defined by Diudea as 

   , , xc
c

G x m G c   with m(G,c), being the number of qoc strips of length c. The Theta polynomial Θ(G,x) and the 

Theta index Θ(G) of a molecular graph G were defined as Θ(G,x)=  , .c.x  c

c
m G c  and Θ(G)=   2, .c

c
m G c , 

respectively.  

In this paper, we compute the Theta polynomial Θ(G,x) and the Theta index Θ(G) of molecular graph Polycyclic Aromatic 
Hydrocarbons PAHk, for all positive integer number k.  
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1. INTRODUCTION  

Let G be a simple molecular graph without directed and multiple edges and without loops, the vertex and edge-sets of 
which are represented by V(G) and E(G), respectively.  

A graph can be described by a connection table, a sequence of numbers, a matrix, a polynomial or by a single number 
(often called a topological index). A counting polynomial can be written as: 

P(G, x)=

k
 m(G,k) X 

k 

with the exponents showing the extent of partitions p(G), p(G)=P(G) of a graph property P(G) while the coefficients m(G, 
k) are related to the number of partitions of extent k. 

Let G(V,E) be a connected graph, two edges e=uv and f=xy of G are called co-distant: e co f, if and only if d(u,x)=d(v,y)=k 
and d(u,y)=d(v,x)=k+1 or vice versa, for a non-negative integer k.  

If co is an equivalence relation: [1-3]. 

ecoe  

e co f f co e  

hcoehcoffcoe &  

Then, C(e):={f∈E(G)| f co e} is the set of edges in G, co-distant to the edge e∈E(G) and G is called a co-graph. 

Consequently, C(e) is called an orthogonal cut set ocs of G and E(G) is the union of disjoint orthogonal cuts: 

  1 2 1... k kE G     C C C C  and ,i j C C  

for i≠j and i, j=1, 2, …, k. The relation ops is not necessarily transitive. Observe an ops is an ocs only in partial cubes. 

Observe co is a θ relation, (Djokovic-Winkler relation) [4, 5] and G is a co-graph if and only if it is a partial cube, a result 
due to Klavžar [6]. In a plane bipartite graph, an edge e is in relation θ with any opposite edge f if the faces of the plane 
graph are isometric (which is the case of the most chemical graphs). Then an orthogonal cut oc with respect to a given 
edge is the smallest subset of edges closed under this operation and C(e) is precisely a θ-class of G. 

The Omega polynomial Ω(G,x) for counting qoc strips in G was defined by M.V. Diudea as [7] 

Ω(G,x)=  G, xc

c

m c  

where m(G,c) is the number of opposite edge strips of length c. 

If ops is an ocs, as in partial cubes, we can write the following counting polynomials [8-23]: 

Sd(G,x)=   ( )
, x  

E G c

c
m G c



  

Θ(G,x)=  , .c.x  c

c
m G c  

Π(G,x)=   ( )
, .c.x  

E G c

c
m G c



  

Ω(G,x)and Θ(G,x) count equidistant edges in G while Sd(G, X ) and Π(G,x), count non-equidistant edges. The first two 
polynomials are counted once for a strip while the last two are counted for each edge, so that the coefficients are 
multiplied with k. 

In this present study, we compute the Theta polynomial Θ(G,x) and the Theta index Θ(G) of molecular graph Polycyclic 
Aromatic Hydrocarbons PAHk, for all positive integer number k.  

2. MAIN RESULTS AND DISCUSSION 

The Polycyclic Aromatic Hydrocarbons PAHk for all positive integer number k is ubiquitous combustion products. They 
have been implicated as carcinogens and play a role in graphitization of organic materials [24]. In addition, they are of 
interest as molecular analogues of graphite [25] as candidates for interstellar species [26] and as building blocks of 
functional materials for device applications [25-27]. Synthetic routes to Polycyclic Aromatic Hydrocarbons PAHk are 
available [28] and a detailed knowledge of all these features would therefore be necessary for the tuning of molecular 
properties towards specific applications.  
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Reader can see some first members of this family in Figure 1. In references [24-41] some properties and more historical 
details of this family of hydrocarbon molecules are studded. 

 

Figure 1. Two first members of the Polycyclic Aromatic Hydrocarbons PAHk. 

Theorem 1. The Theta polynomial Θ(G,x) and the Theta index Θ(G) k≥1, are equal to 

Θ(PAHk,x)    
1

2

0

6 x 6
k

k i k

i

k i k x






    

Θ(PAHk)=14k
3
-3k

2
+k. 

Proof. Consider be the general representation of Polycyclic Aromatic Hydrocarbons PAHk (k≥1) with 6k
2
+6k 

vertices/atoms and 9k
2
+3k edge/chemical bonds. 

Because, there are 6k
2
 Carbon atoms with degree 3 and 6k Hydrogen atoms with degree 1in vertex set V(PAHn), thus  

|E(PAHk)|=
23 6 +1 6

2

k k 
=9k

2
+3k 

Now, we counting all opposite edge strips ops m(PAHk,c) of the general representation of Polycyclic Aromatic 
Hydrocarbons PAHk, by using the Cut Method. The Cut Method and its general form studied by S. Klavzar [42]. 

By using the Cut Method, we see that the Polycyclic Aromatic Hydrocarbons is a co-graph and from Figure 2, one can see 

that there are k+1 distinct case of qoc strips for PAHk such that the size of a qoc strip Ci for i=1,..,k-1 is equal to k+i 
(=|Ci|=ci) and for i=0, |C0|=k.  

In other words,  

 For i=0; m(PAHk,c0)=6 and |Ck|=k. 

 For all i=1,..,k-1; m(PAHk,ci)=6 and |Ci|=k+i. 

 For i=k; m(PAHk,ck)=3 and |Ck|=2k. 

Thus the Theta polynomial of the Polycyclic Aromatic Hydrocarbons PAHk (k≥1) will be  

Θ(PAHk,x)=  , .c.xk

c

c
PAHm c  

 
0

, . .xk

k

i i

i

ic
m c cPAH



  

   0 1

0 1 10, ,
C C

k km c mPAH C x PAH Cc x  

   1

1 1, ,k k

k

C C

k k k k kPAH C x PAHm c m c C x

    

=
0 1 1

0 1 16 6 6 3k kC C C C

k kC x C x C x C x

    

=6(k)x
k
 +6(k+1)x

k+1
+…+6(

2k-1
)x

2k-1
+3(2k)x

2k
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Figure 2. The presentation of quasi-orthogonal cuts qoc strips of Circumcoronene PAH3. 
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Here the proof of theorem is completed.■ 
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