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Abstract 

Among the existing NN architectures, Multilayer Feedforward Neural Network (MFNN) with single hidden layer architecture 
has been scrutinized thoroughly as best for solving nonlinear classification problem. The training time is consumed more 
for very huge training datasets in the MFNN training phase. In order to reduce the training time, a simple and fast training 
algorithm called Exponential Adaptive Skipping Training (EAST) Algorithm was presented that improves the training speed 
by significantly reducing the total number of training input samples consumed by MFNN for training at every single epoch. 
Although the training performance of EAST achieves faster, it still lacks in the accuracy rate due to high skipping factor. In 
order to improve the accuracy rate of the training algorithm, Hybrid system has been suggested in which the neural 
network is trained with the fuzzified data. In this paper, a z-Score Fuzzy Exponential Adaptive Skipping Training (z-
FEAST) algorithm is proposed which is based on the fuzzification of EAST. The evaluation of the proposed z-FEAST 
algorithm is demonstrated effectively using the benchmark datasets - Iris, Waveform, Heart Disease and Breast Cancer for 
different learning rate. Simulation study proved that z-FEAST training algorithm improves the accuracy rate. 

 Keywords: Adaptive Skipping, Neural Network, Training Algorithm, Training Speed, MFNN,Fuzzification. 

 

1. INTRODUCTION 
Due to the implicit characteristics of approximating any nonlinear classification problem, Multilayer Feedforward 

Neural Network (MFNN) with a single hidden layer architecture has been scrutinized thoroughly as best for solving this 
problem (Mehra and Wah 1992;  Hornik et al 1989). For training the above network, the Back Propagation learning 
algorithm has been practiced (Rumelhart and McClelland 1986; Saman and Bryan 2011).  In order to enhance the training 
performance, the training speed is the factor that is considered to be very important. The training speed is highly depends 
on the dimensionality of training dataset. In general, training MFNN with a larger training datasets will generalize the 
network well. But, lengthy training time is needed for larger training dataset [3] which influence the training speed. In order 
to improve the training speed, EAST algorithm was exercised [6]. It exhibits the training input samples randomly for 
training which diminishes the total training input samples exponentially which in reduce the overall total training time, 
thereby speeding up the training process. But the accuracy rate is greatly affected. Since the Fuzzy Logic (FL) enhances 
the NN generalization capability and also Neuro fuzzy hybrid system are universal approximators (Kosko 1994) , a new 
Neuro fuzzy hybrid system with z-Score function has been put forward for improving the accuracy rate of EAST.  
 

2. RELATED WORKS 
   Typically, by incorporating the advantage of both neural network and the fuzzy system, Neuro_fuzzy hybrid 

system is more impressive than either the neural network or the fuzzy system. Anandakumar et al [1] proposed a 
classification model using Modified Levenberg-Marquardt learning algorithm that improves the accuracy and also 
consumes less time for convergence. Initially, the statistical ANOVA ranking technique is applied to find the higher ranked 
dataset. In order to analyze the public transportation system service quality, an ANN model is adapted [3]. Kulkarni and 
Shinde [5] proposed Neuro-fuzzy classification model for supervised data classification. By using Fuzzification method, 
membership value is calculated for each attribute values of the given class in the membership matrix.  For ANN training, 
this matrix is fed as an input to the model and obtains the corresponding membership value for each pattern to the target 
classes. At the end of each iteration, the target class for each pattern is predicted using Defuzzification method. 
MFNN has been trained by Levenberg-Marquardt (LM) algorithm [9], CAST [8], EAST [6] and LAST [7] to develop a fast 
ANN model for nonlinear pattern classification. Patricia Melin et al [10] applied competitive neural network trained with 
learning vector quantization algorithm for electrocardiogram signals classification. Taskin kavzoglu et al. [13] described the 
way of representing the training datasets for improving the performance of classification methods. The data representation 
relates the training dataset size and quality. In order to identify the outlier in the training dataset, the quality analysis is 
used. After some refinements, representation data is formed by conducting the training data selection which is an iterative 
process. Quang Hung do et al [14] implemented Neuro-Fuzzy approach for solving multiclass classification problem to 
predict the students‟ academic performance.   
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3. PROPOSED Z-FEAST METHODOLOGY 
3.1 Overview of z-FEAST Architecture 
The overall architecture of z-Feast classifier is represented diagrammatically in Figure 1. This Neuro-Fuzzy classifier for 
pattern classification consists of various blocks as specified in the figure. It consists of three steps: Fuzzification, ANN 
training with the backpropagation algorithm and Defuzzification[5].  
      Assume that the network contains n input nodes in the input layer, p hidden nodes in the hidden layer and m output 
nodes in the output layer. Since the above network is highly interconnected, the nodes in each layer are connected with all 
the nodes in the next layer. Let P represent the number of input patterns in the training dataset. The input matrix, X, of size 
p × n is presented to the network. The number of nodes in the input layer is equivalent to the number of columns in the 
input matrix, X. Each row in X is considered to be a real-valued vector xiє

n+1
 where 1 ≤ i ≤ n.  

In the Fuzzification process, the given training dataset is fed as input and the Z-score function is used as 
membership function. The membership matrix is obtained as output of this fuzzification process. The size of the matrix is 
S×D×C, where S is the number of input samples in the training dataset, D is the number of features / attributes and C is 
the number of target class. Then, this membership matrix, that is fuzzified data, is fed as input to the MFNN. The summed 
real-valued vector generated from the hidden layer is represented ziє

p+1
 where 1 ≤ i ≤ p. The estimated output real-

valued vector generated from the network is denoted as yiє
m
 where 1 ≤ i ≤ m and the corresponding target vector is 

represented as tiє
m
 where 1 ≤ i ≤ m. Let it signifies the it

th
 iteration number. 

Then, the network generated output, yi, is given as input to the defuzzification process. The MAX defuzzification 
method is applied for this process by assigning the pattern to the highest membership class.  The defuzzified vector is 
compared with the target vector for calculating the error rate.  

Let fN(x) be the activation function used in the hidden layer and fL(x) be the activation function used in the output 
layer. Let vij be the n × p weight matrix contains input-to-hidden weight coefficient for the link from the input node i to the 
hidden node j and voj be the bias weight to the hidden node j. Let wjk be the p × m weight matrix contains hidden-to-output 
weight coefficient for the link from the hidden node j to the output node k and wok be the bias weight to the output node k. 
 

 
Figure 1. Architecture of z-FEAST classifier 

 

3.2 Proposed z-FEAST Algorithm 

The working principle of the z-FEAST algorithm that is incorporated in the BPN algorithm is summarized below: 

Step 1. Weight Initialization: Initialize weights to small random values; 
Step 2. Furnish the input sample: Disseminate to the input layer an input sample vector xk having desired output vector 

yk; 
Step 3. Fuzzification Process:  

Convert Crisp to fuzzy value for the input vector xk. Input vectors are fuzzified using Z-score method. Z-score is 

modeled mathematically as 
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Where 

 x – Feature value 

 C – MF centre  

   is the MFs width 
 
The Membership Function‟s centre, C, is given by, 
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Where  

 d=1, 2… D, 

  j=1, 2… S and  

 xjd is the d
th

 feature of sample j.  

 

The Membership Function‟s width,  is given by, 

 dsdddddd cxcxcx
S




 ........
1

1
21      (3) 

Where   

 x1d, x2d,…….,xsd  are the d
th

 feature of the s
th
 pattern and   

 Cd  denote the mean value of d
th

  feature given in Equation (2) 

 
The membership matrix, fx, that is generated using the equation (1).  In this matrix, gs,c(d) represent the 

membership value of d
th
 feature of s

th
 pattern to the c

th
 class.  fx is given as 
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Step 4. Forward Phase: Starting from the first hidden layer and propagating towards the output layer: 
a. Calculate the activation values for the Hidden layer as: 

i. Estimate the net output value 

𝑧𝑖𝑛𝑗  𝑖𝑡 = 𝑣𝑜𝑗  𝑖𝑡 +  fxi it . vij it 

𝑛

𝑖=1

           (3) 

ii. Estimate the actual output   

𝑧𝑗  𝑖𝑡 =
1

1 + 𝑒−𝑧𝑖𝑛𝑗
                                         (4) 

b. Calculate the activation values for the Output layer as: 

i. Estimate the net output value 

𝑦𝑖𝑛𝑘  𝑖𝑡 = 𝑤𝑜𝑘  𝑖𝑡 +  𝑧𝑗  𝑖𝑡 .𝑤𝑗𝑘  𝑖𝑡 

𝑝

𝑗=1

       (5) 

ii. Estimate the actual output  

𝑦𝑘 𝑖𝑡 =
1

1 + 𝑒−𝑦𝑖𝑛𝑘
                                           (6) 

 
Step 5. Output errors: Calculate the error terms at the output layer as: 

𝛿𝑘 𝑖𝑡 =  𝑡𝑘 − 𝑦𝑘 𝑖𝑡  . 𝑓
′ 𝑦𝑘 𝑖𝑡                             (7) 

Differentiate the activation function in Equation 6, 

𝑓 ′ 𝑦𝑘 𝑖𝑡  =
𝜕 𝑦𝑘  𝑖𝑡  

𝜕𝑥
  =  𝑦𝑘 𝑖𝑡 ×  1 − 𝑦𝑘 𝑖𝑡        (8)  

Substitute the resultant value of Equation (8) in (7) 

𝛿𝑘 𝑖𝑡 = 𝑦𝑘  𝑖𝑡 .  1 − 𝑦𝑘(𝑖𝑡) .  𝑡𝑘 − 𝑦𝑘 𝑖𝑡                (9) 

Step 6. Backward Phase: Propagate error backward to the input layer through the hidden layer using the error term 
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𝛿𝑗  𝑖𝑡 =   𝛿𝑗  𝑖𝑡 .𝑤𝑗𝑘  𝑖𝑡 

𝑚

𝑘=1

 . 𝑓 ′  𝑧𝑗  𝑖𝑡             (10) 

Differentiate the activation function in Equation 4, 

𝑓 ′  𝑧𝑗  𝑖𝑡  =
𝜕  𝑧𝑗  𝑖𝑡  

𝜕𝑥
  = 𝑧𝑗  𝑖𝑡 ×  1 − 𝑧𝑗  𝑖𝑡              (11) 

Substitute the resultant value of Equation (11) in (10)  

𝛿𝑗  𝑖𝑡 =   𝛿𝑗  𝑖𝑡 .𝑤𝑗𝑘  𝑖𝑡 

𝑚

𝑘=1

 𝑧𝑗  𝑖𝑡 .  1 − 𝑧𝑗 (𝑖𝑡)              (12) 

Step 7. Weight Amendment: Update weights using the Delta-Learning Rule  
a. Weight amendment for Output Unit 

𝑊𝑗𝑘  𝑖𝑡 + 1 = 𝑊𝑗𝑘  𝑖𝑡 +  𝛼 𝑖𝑡 . 𝛿𝑘 𝑖𝑡 . 𝑧𝑗  𝑖𝑡     (13) 

b. Weight amendment for Hidden Unit 

𝑉𝑖𝑗  𝑖𝑡 + 1 = 𝑉𝑖𝑗  𝑖𝑡 + 𝛼 𝑖𝑡  𝛿𝑗  𝑖𝑡  𝑥𝑖 𝑖𝑡        (14) 

Step 8. EAST Algorithm: Incorporating the EAST algorithm  
a. Compare the error value,  𝑡𝑘 − 𝑦𝑘   with threshold value, dmax 

 𝑡𝑘 − 𝑦𝑘(𝑖𝑡) < 𝑑𝑚𝑎𝑥                                       (15) 

If equation 15 generates 0, then the xi is correct 

b. Compute the probability value for all input samples 

𝑝𝑟𝑜𝑏 𝑥𝑖 =  
0, if xi is  correct and epoch number < 𝑛
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   (16) 

c. Calculate the skipping factor, sfi, for all input samples 

i. Initialize the value of sfi to zero (for first epoch) 
ii. Increment the value of sfi exponentially for correctly classified samples alone. 

d. Skip the training samples with prob (=0) for the next sfi epoch 
Step 9. Defuzzification Process:  

The Fuzzy to Crisp conversion for the output variable is done using centroid method 

𝑥∗ =
 𝜇𝐶  𝑥 . 𝑥𝑑𝑥

 𝜇𝐶  𝑥 𝑑𝑥
 

To assign the class label,  
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Where Os,c  is the output of s
th 

 pattern to the c
th

 class 
Step 10. Repeat steps 1-7 until the halting criterion is satisfied, which may be chosen as the Root Mean Square Error 

(RMSE), elapsed epochs and desired accuracy 

  Working Flow of z-FEAST Algorithm 
The block diagram of the proposed strategy is diagrammatically represented in the following figure 
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Figure 2: Flow Diagram of z-FEAST Training Algorithm 

 
4. EXPERIMENTAL SETUP AND RESULT  
4.1 Experimental Layout 

A 3-layer feedforward neural network is adopted for the simulation of all the training algorithms with the selected 
training architecture and training parameters mentioned in the Table 1. The simulation of all the training algorithms is 
repeated for two different learning rates such as 1e-4 (0.0001) and 1e-3(0.001).  

 
Table 1 Selected Training Architectures and Parameters 

Datasets Learning Rate 
MFNN  

Architecure 
Momentum 

Heart 
1e – 4 

13×5×1 0.9 
1e – 3 

Breast Cancer 
1e – 4 

31×15×1 0.9 
1e – 3 

Iris 
1e - 4 

4 × 5 × 1 0.8 
1e – 3 

Waveform 
1e – 4 

21×10×1 0.7 
1e – 3 

  
For training Heart dataset, 13, 5 and 1 neurons in the input, hidden and output layers respectively is used. And, for training 
Breast Cancer dataset, the NN architecture with 31, 15 and 1 neurons in the input, hidden and output layers respectively, 
is used.  The NN architecture with 4, 5 and 1 neurons in the input, hidden and output layers respectively, is used for 
training Iris database. For training waveform dataset, 21, 10 and 1 neurons in the input, hidden and output layers 
respectively, is used.   

 According to the idea of Nguyen-Widrow algorithm (Nguyen and Widrow 1990), the NN weight coefficients 
are initialized with the random values within the specified range -0.5 to +0.5 for faster learning. 
 

4.2 Evaluation Method 
The Fivefold cross validation method (Witten and Frank 2000) is performed on the above datasets to evaluate and 
compare the performance of the proposed training algorithms empirically on unseen data. The input sample in each 
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dataset is randomly split into five equal sized disjoint folds.  Among these five folds, a single fold is retained as the 
validation data for testing the network, and the remaining four folds are used as training data for training the network. The 
validation process is then repeated for five times, with each of the five folds used exactly once as the validation data. The 
results taken from the five training folds can then be averaged to produce a final result.  The advantage of using this validation 
method is that all observations are used for both training and validation, and each observation is used for validation 
exactly once and also to avoid over-fitting (Peterson et al 1995). 

The performance measures that are considered to evaluate the training algorithm are training time and 
classification accuracy. A good training algorithm will cut down the training time, while accomplishing better accuracy 
which is proved in our proposed work. The classification accuracy is calculated using the following formula 

 

Classification accuracy =
Number of samples correctly classified

Total number of samples
 

   The simulations of all the proposed training algorithms are done using MATLAB R2010b on a machine with 
the configuration of Intel

® 
Core  

I5-3210M processor, 4 GB of RAM and CPU speed of 2.50GHz.  
 

4.3 Dataset Description 
The performance of all proposed AST algorithm is assessed for the classification problem on the benchmark two-class 
classification and multi-class classification datasets. The real-world benchmark datasets utilized for two-class classification 
problem are Heart and Breast Cancer Dataset, and multiclass classification problem are Iris and Waveform Dataset. The 
fore-mentioned datasets were fetched from the UCIMLR (University of California at Irvine Machine Learning Repository) 
(Asuncion and Newman 2007). 

The specification of the benchmark datasets utilized for training in the research is summarized in Table 2. 
Table 2. Datasets Description used in the Research 

Datasets 
No. of 

Attributes 
No. of 

Classes 
No. of 

Instances 

Iris 4 3 150 

Waveform 21 3 5000 

Heart 13 2 270 

Breast Cancer 31 2 569 

 
 

4.3.1  Multiclass Problems 
Iris Dataset 
In the IRIS dataset, the number of iris flower samples is 150 which is gathered from three different flower varieties equally. 
The varieties are listed as Iris Setosa, Iris Versicolour and Iris Virginica which is identified using width and length of Iris 
sepal, and width and length of Iris petal. Among these varieties, Iris Setosa is easier to be separated from the other two 
varieties, while the other two varieties, Iris Virgincia and Iris Versicolour, are partially obscured and harder to be 
distinguished. 
 

Waveform Dataset 
 In the Waveform database generator dataset, the total number of wave‟s samples is 5000 with 21 attributes 
which are equally divided into three wave classes (Asuncion and Newman 2007). These samples are collected from the 
generation of 2 of 3 “base” waves.  
 

4.3.2  Two-Class Problems 
Heart Dataset 
 In the Statlog Heart disease database, the samples with 13 attributes are collected from 270 patients. Among 
these samples, the number of samples with heart disease „absent‟ is 150 and with heart disease „present‟ is 120. 
 

Breast Cancer Dataset 
In the Wisconsin Breast Cancer Diagnosis Dataset, the samples are collected from the patient‟s characteristics of 569 

with 32 features. Among these samples, 357 samples are diagnosed as benign and 212 samples are diagnosed as 
malignant class. 

 

4.4 EXPERIMENTAL RESULT  
Table 3 to 10 shows the experimental results of EAST, FEAST and z-FEAST algorithms observed at each step across five 
repeats of fivefold cross validation using two different learning rates such as 1e-4 and 1e-3.  From these table 3 to 10, the 
EAST algorithm yields improved computational training speed in terms of the total number of trained input samples as well 
as total training time over FEAST and z-FEAST. But, when the skipping factor goes higher, the accuracy of EAST system 
is affected highly. But, z-FEAST improves the accuracy rate of the system. 
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Table 3. Comparison Results Trained by the Iris Dataset with 1e-4 Learning Rate 

Testing 
Fold 

Number 
of 

Epochs 

 
 

EAST FEAST z -FEAST 

Total 
Number 

of 
Input 

Sample
s 

Trainin
g Time 
(in Sec) 

 

Accurac
y 

(%) 
 

Total 
Number 

of 
Input 

Sample
s 

Trainin
g Time 
(in Sec) 

 

Accuracy 
(%) 

 

Total 
Number 

of 
Input 

Samples 

Trainin
g Time 
(in Sec) 

 

Accuracy 
(%) 

 

1 5442 208755 8.2995 73.33 227585 11.345 88.8 217585 9.4567 90.4 

2 5902 240293 8.5218 76.67 270392 12.0234 87.03 253009 9.1345 88.8 

3 5332 206029 8.296 80 256029 11.9865 92.5 225920 9.4769 94 

4 5439 223245 8.2565 80 267254 11.2345 92.5 232453 9.3426 94 

5 5161 203116 7.8261 76.67 241613 10.1237 90.4 211361 8.4567 92.5 

AVG 5455 216288 8.24 77.33 252575 11.34 90.25 228066 9.17 91.94 

 
 

Table 4. Comparison Results Trained by the IRIS Dataset with 1e-3 Learning Rate 

Testing 
Fold 

Number 
of 

Epochs 

 
 

EAST FEAST z -FEAST 

Total 
Number 

of 
Input 

Samples 

Training 
Time 

(in Sec) 
 

Accurac
y 

(%) 
 

Total 
Number 

of 
Input 

Sample
s 

Training 
Time 

(in Sec) 
 

Accurac
y 

(%) 
 

Total 
Number 

of 
Input 

Samples 

Trainin
g Time 
(in Sec) 

 

Accuracy 
(%) 

 

1 547 
22339 0.7867 76.67 25339 0.998 88.8 23239 0.8476 90.4 

2 526 
21369 0.7537 80 24369 0.9876 87.03 22096 0.8123 88.8 

3 535 
21735 0.7667 76.67 24735 0.9964 92.5 22145 0.8123 94 

4 545 
22120 0.7756 80 26120 1.0276 92.5 23102 0.8597 94 

5 510 
20735 0.7306 76.67 23735 0.9306 90.4 21342 0.8176 92.5 

AVG 533 21660 0.76 78 24860 0.99 90.25 22385 0.83 91.94 

Table 5. Comparison Results Trained by the Waveform Dataset with 1e-4 Learning Rate 
 

Testin
g Fold 

Numb
er 
of 

Epoch
s 

 
 

EAST FEAST z -FEAST 

Total 
Number 

of 
Input 

Sample
s 

Training 
Time 

(in Sec) 
 

Accurac
y 

(%) 
 

Total 
Number 

of 
Input 

Samples 

Training 
Time 

(in Sec) 
 

Accurac
y 

(%) 
 

Total 
Number 

of 
Input 

Samples 

Training 
Time 

(in Sec) 
 

Accuracy 
(%) 

 

1 8187 16974989 17.28264 79.8 28191603 28.8946 92.50 18048595 20.9867 94.4 

2 8973 17897431 30.3537 80.2 30488836 39.9352 94.50 19081160 33.2345 96.29 

3 8929 17812293 30.22541 81.1 30142334 38.8432 94.50 19008000 32.7654 96.29 

4 8903 17806977 29.0942 80.9 30095407 36.2356 92.50 19059754 31.4357 94.4 

5 8887 17144339 28.6921 79.9 30024085 39.0178 92.50 19557704 30.3569 94.4 

AVG 8776 17527206 27.13 80.38 29788453 36.59 93.30 18951043 29.76 95.16 

 
 

Table 6. Comparison Results Trained by the Waveform Dataset with 1e-3 Learning Rate 
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Testing 
Fold 

Number 
of 

Epochs 

 
 

EAST FEAST z -FEAST 

Total 
Number 

of 
Input 

Sample
s 

Training 
Time 

(in Sec) 
 

Accurac
y 

(%) 
 

Total 
Number 

of 
Input 

Samples 

Training 
Time 

(in Sec) 
 

Accura
cy 
(%) 

 

Total 
Number 

of 
Input 

Samples 

Training 
Time 

(in Sec) 
 

Accuracy 
(%) 

 

1 
823 

161159
4 2.6747 81.1 2795278 5.2589 92.50 1873866 

3.5973 94.4 

2 
894 

178533
6 2.9381 80.6 3164808 6.1254 94.50 1924189 

3.234 96.29 

3 
891 

176121
3 2.8975 79.9 3159738 6.0124 94.50 1903561 

3.6974 96.29 

4 
890 

178488
0 2.8904 80.5 3155227 6.1123 92.50 1931837 

3.1520 94.4 

5 
890 

165932
7 2.8696 80.1 3151527 6.4532 92.50 1921729 

3.5678 94.4 

AVG 
878 

172047
0 2.85 80.44 3085316 5.99 93.30 1911036 3.45 95.16 

 
Table 7. Comparison Results Trained by the Heart Dataset with 1e-4 Learning Rate 

Testing 
Fold 

Number 
of 

Epochs 

 
 

EAST FEAST z -FEAST 

Total 
Number 

of 
Input 

Sample
s 

Training 
Time 

(in Sec) 
 

Accura
cy 
(%) 

 

Total 
Number 

of 
Input 

Sample
s 

Training 
Time 

(in Sec) 
 

Accurac
y 

(%) 
 

Total 
Number 

of 
Input 

Samples 

Training 
Time 

(in Sec) 
 

Accuracy 
(%) 

 

1 
7485 

713559 23.2651 75.93 
137462

4 36.2 92.50 902743 24.56 94.40 

2 
7529 

809372 25.3458 74.07 
141288

9 36.44 92.50 939929 27.81 94.40 

3 
7569 

820114 27.84309 75.93 
142732

6 34.6 88.80 966050 29.23 90.70 

4 
7567 

813699 26.6308 79.63 
142699

2 38.7 96.29 965139 29.33 98.10 

5 
7567 

811180 25.9578 77.78 
142568

9 35.49 92.59 964781 28.01 94.40 

AVG 
7543 793585 25.81 76.67 

141350
4 36.29 92.54 947729 27.79 94.40 

 
 

Table 8. Comparison Results Trained by the Heart Dataset with 1e-3 Learning Rate 

Testing 
Fold 

Numb
er 
of 

Epoch
s 

 
 

EAST FEAST z -FEAST 

Total 
Number 

of 
Input 

Samples 

Training 
Time 

(in Sec) 
 

Accurac
y 

(%) 
 

Total 
Number 

of 
Input 

Samples 

Trainin
g Time 
(in Sec) 

 

Accurac
y 

(%) 
 

Total 
Number 

of 
Input 

Sample
s 

Training 
Time 

(in Sec) 
 

Accuracy 
(%) 

 

1 830 95137 3.3133 74.07 116885 5.14 92.50 99031 3.29 94.40 

2 828 98116 3.382314 75.93 116828 4.1 92.50 103076 2.86 94.40 

3 829 90205 3.533761 75.93 116809 4.8 88.80 95020 3.12 90.70 

4 829 93136 3.554815 74.07 116808 4.19 96.29 97929 3.13 98.10 
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5 829 99092 3.993784 77.78 116799 4.08 92.59 102895 3.49 94.40 

AVG 829 95137 3.56 75.56 116826 4.46 92.54 99590 3.18 94.40 

Table 9. Comparison Results Trained by the Breast Cancer Dataset with 1e-4 Learning Rate 
 

Testing 
Fold 

Number 
of 

Epochs 

 
 

EAST FEAST z -FEAST 

Total 
Number 

of 
Input 

Samples 

Training 
Time 

(in Sec) 
 

Accuracy 
(%) 

 

Total 
Number 

of 
Input 

Samples 

Training 
Time 

(in Sec) 
 

Accurac
y 

(%) 
 

Total 
Number 

of 
Input 

Samples 

Trainin
g Time 
(in Sec) 

 

Accuracy 
(%) 

 

1 6279 
1055844 34.08077 83.33 1840880 40.9876 94.40 1230721 

36.6754 96.9 

2 6460 
966328 30.7942 79.82 1932488 36.9845 92.50 1008750 

32.156 94.4 

3 7976 
1286262 46.8745 84.21 2283816 52.2546 94.40 1301532 

48.3458 96.9 

4 
7691 

1138979 43.9744 80.07 2195447 50.0123 88.80 1260383 
46.4567

6 
90.25 

5 7439 
1097278 31.3622 84.07 2108865 37.1249 90.40 1214473 

33.5678 92.5 

AVG 7169 1108938 37.42 82.3 2072299 43.47 92.10 1203172 39.44 94.19 

 
Table 10. Comparison Results Trained by the Breast Cancer Dataset with 1e-3 Learning Rate 

 

Testing 
Fold 

Number 
of 

Epochs 

 
 

EAST FEAST z -FEAST 

Total 
Number 

of 
Input 

Samples 

Training 
Time 

(in Sec) 
 

Accuracy 
(%) 

 

Total 
Number 

of 
Input 

Samples 

Training 
Time 

(in Sec) 
 

Accurac
y 

(%) 
 

Total 
Number 

of 
Input 

Samples 

Trainin
g Time 
(in Sec) 

 

Accuracy 
(%) 

 

1 609 101916 5.4285 83.33 179370 8.243 94.40 117756 6.2147 96.9 

2 647 107089 5.895 84.21 186480 8.9649 92.50 113460 6.6893 94.4 

3 785 132372 6.4982 84.21 226882 11.0626 94.40 143034 7.2648 96.9 

4 750 128676 5.895 83.33 217547 9.0528 88.80 131007 6.3914 90.25 

5 743 120608 5.7421 84.07 213966 11.9146 90.40 138690 6.7473 92.5 

AVG 707 118132 5.89 83.83 204849 9.85 92.10 128790 6.6615 94.19 

 
4.5 RESULT ANALYSIS 
4.5.1 Training Samples Comparison 

The comparison results of the total number of input samples consumed for training by EAST, FEAST and z-
FEAST with the learning rate of 1e-4 and 1e-3 are shown in Fig.3-6. 

Herewith, it is assured from the Figure 3 that the total number of training samples consumed by EAST algorithm 
for training under the learning rate of 1e-4 is reduced by an average of nearly 17% and 6% of FEAST and z-FEAST 
algorithm for Iris Dataset, 69% and 8% for Waveform Dataset, 78% and 9% for Heart Dataset and 87% and 8% for Breast 
Cancer Dataset respectively. 



                                                                    I S S N  2 3 2 1 - 8 0 7 X  
                             V o l u m e  1 2  N u m b e r 1 0  

J o u r n a l  o f  A d v a n c e s  i n  C h e m i s t r y        

4497 | P a g e                                        
O c t o b e r  2 0 1 6                                             w w w . c i r w o r l d . c o m  

 
Figure 3: Comparison Result of total training samples consumed with 1e-4 learning rate 

Herewith, it is assured from the Figure 4 that the total number of training samples consumed by EAST algorithm 
for training under the learning rate of 1e-3 is reduced by an average of nearly 15% and 3% of FEAST and z-FEAST 
algorithm for Iris Dataset, 79% and 11% for Waveform Dataset, 23% and 5% for Heart Dataset and 73% and 9% for 
Breast Cancer Dataset respectively. 

 
Figure 4: Comparison Result of total training samples consumed with 1e-3 learning rate 

4.5.2 Training Time Comparison 
Herewith, it is concluded from the Figure 5, for training IRIS dataset, the total training time consumed by EAST 

algorithm with the learning rate of 1e-4 is reduced to an average of 37% of FEAST algorithm and 11% of z-FEAST 
algorithm, for Waveform Dataset by 35% of FEAST algorithm and 10% of z-FEAST algorithm, for Heart Dataset by 41% of 
FEAST algorithm and 9% of z-FEAST algorithm and for Breast Cancer Dataset by 16% of FEAST algorithm and 6% of z-
FEAST algorithm respectively. 
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Figure 5: Comparison Result of total training time consumed with 1e-4 learning rate 

Herewith, it is concluded from the Figure 6, for training IRIS dataset, the total training time consumed by EAST algorithm 
with the learning rate of 1e-3 is reduced to an average of 29% of FEAST algorithm and 8% of z-FEAST algorithm, for 
Waveform Dataset by 45% of FEAST algorithm and 10% of z-FEAST algorithm, for Heart Dataset by 25% of FEAST 
algorithm and 10% of z-FEAST algorithm and for Breast Cancer Dataset by 67% of FEAST algorithm and 13% of z-
FEAST algorithm respectively. 

 
Figure 6: Comparison Result of total training time consumed with 1e-3 learning rate 

 
 

5. CONCLUSION 
Thus, the z-Score Fuzzy Exponential Adaptive Skipping Training (Z-Feast) Algorithm is systematically investigated in 
order to improve the accuracy rate of EAST algorithm. And also, It is further concluded that the proposed z-FEAST 
algorithm is much faster than the standard BPN, LAST, CAST, HOT and EAST algorithm and also the accuracy rate is 
highly improved compared to EAST algorithm. The proposed z-FEAST Algorithm can be incorporated in any supervised 
algorithm used for training real-world supervised pattern classification. 
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