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ABSTRACT

Photodegradation of textile dyes in the presence of an aqueous suspension of semiconductor oxides has been of growing
interest. Although this method of destruction of dyes is efficient, the main obstacle of applying this technique in the
industry is the time and cost involving separation of oxides from an aqueous suspension. In this research, an attempted
was made to develop ZnO films on a glass substrate by simple immobilization method for the adsorption and
photodegradation of a typical dye, Remazol Red R (RRR) from aqueous solution. Adsorption and photodegradation of
RRR were performed in the presence of glass supported ZnO film. Photodegradation of the dye was carried out by varying
different parameters such as the catalyst dosage, initial concentrations of RRR, and light sources. The percentage of
adsorption as well as photodegradation increased with the amount of ZnO, reaches a maximum and then decreased.
Maximum degradation has been found under solar light irradiation as compared to UV-light irradiation. Removal efficiency
was also found to be influenced by the pre-sonication of ZnO suspension.
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INTRODUCTION

Dyes have become a part and parcel of human life from the commencement of modern civilization. Dye producers and
users are very much concern about the stability and fastness, especially the quality of the product. As a result, it becomes
harder to degrade the dyes after use [1]. Direct dyes are water soluble for containing ionic groups such as sulfonic or
amino groups. These dyes are not biodegradable and cause allergy, skin irritation, cancer and mutagenic diseases to
living organisms [2]. The release of dyestuffs not only produce toxic amines by reductive cleavage of azo linkages which
may cause severe effects on human beings through damaging their vital organs such as the brain, liver, kidneys, central
nervous and reproductive systems [3,4] in an aquatic environment but damage the ecosystem also. Therefore, their
removal becomes a prime environmental anxiety in industrialized countries and is subjected to many types of scientific
research. The effluent of dyes produced from different industries causes a severe destruction of the environment.
Drainage of dyestuff from industry to canals, rivers, and seas destroy the ecosystem of water as well as the whole
environment. The abundance of non-biodegradable compounds in the wastewater is a new challenge for the future world.
Some methods like biosorption [5], conventional activated sludge treatment process [6], electrochemical technologies
[7,8], and reverse osmosis [9], had been applied for the treatment of industrial wastewater. Photocatalysis using a
semiconductor as a photocatalyst is an alternative to conventional methods [10-12]. Complete mineralization of the
dyestuff takes place by this method without the formation of sludge at atmospheric pressure and near ambient
temperature [13]. When light is illuminated on semiconductor (i.e. ZnO, TiO,, CdO, CdS, etc.) with photon energy greater
or equal to the band gap energy of the semiconductor, valence band electrons are excited to the conduction band creating
a hole behind. ZnO has broad band gap energy of 3.37 eV at room temperature and exciton energy 60 meV [14]. It has no
adverse effect on the environment and also readily available at low cost. Superoxide anion radicals (*O>) and hydroxyl
radicals (*OH) are being generated in the aqueous medium of ZnO, and these species are responsible for accelerating the
oxidation of pollutants [15,16]. ZnO absorbs a significant fraction of the solar spectrum and more light quanta than TiO;
[17]. Some researchers highlighted the better degradation efficiency of ZnO than TiO, [18,19]. Incorporation of other
metals to semiconductor also enhanced the photocatalytic degradation [20,21]. The use of an aqueous suspension of
photocatalyst for the treatment of industrial wastewater is common one [22]. The major obstacle of this procedure is the
filtration, which is time-consuming and cost-intensive too. To overcome these disadvantages, coating of active materials
on the solid support can be used as a photocatalyst or adsorbent instead of suspension, where filtration of the suspension
would not be required. Preparation of films on a solid substrate is very common and efficient in different industries and
laboratories, which depends on the available technology. Spin coating of a solution [23] and direct deposition during
chemical reactions [24] on solid substrates had already been reported. Expensive plant requirements or operational costs
discourage the industrialists to depollute or detoxify wastewater. In this respect, films of ZnO was prepared by simple
immobilization method on the glass substrate without high-cost instrumental set up for the purpose of removing filtration.
The experimental results demonstrated the coating of ZnO on the solid support effectively worked as a photocatalysis as
well as an adsorbent for removing dyes from the aqueous solution under both in UV and sunlight irradiation.

EXPERIMENTAL

RRR (supplied by Dystar, Germany) and ZnO (purchased from Merck, Germany) were used without further purification.
About 4 g of ZnO was taken in a beaker with 50 mL deionized water. Then the aqueous suspension was sonicated for 2
hours and taken on a previously weighed glass plate (Area: 25.4 x 76.2 mm? & 1-1.2 mm thick, China) with a dropper. The
suspension taken on the bare substrate was tried to distribute uniformly with the help of a spatula and kept overnight to
dry. The film was heated for 3 hours at 110°C temperature in an oven to remove water. The amount of ZnO required for
the preparation of film was calculated from the weight of the bare substrate and the weight of ZnO film after heating. About
200 mL of 1 x 10 M RRR solution was taken in a 500 mL beaker and placed into photolysis chamber. A film of ZnO was
immersed into the solution with the help of Aluminium wire. A magnetic stirrer was used for the continuous rotation of the
solution at a speed of 500 rpm. Adsorption study was carried out in the absence of light until equilibrium time for
adsorption was determined. The UV heating light was then switched on and the degradation time was monitored using a
stopwatch. A particular portion of the irradiated solution was taken out after a definite time interval and the absorbance of
the solution were measured using Shimadzu 1800 UV-Visible spectrophotometer.

RESULTS AND DISCUSSION
Effect of Catalyst Dosage

The removal efficiency was monitored by UV-visible analysis. Maximum peaks of RRR were found at 523, 383 and 285
nm. Almost same type of spectra was found for a reactive red dye [25]. Beer-Lambert law (A=¢cl) was used to determine
the value of molar extinction coefficient (€), which were 1.333 x 10 3.646 x 10° and 1.296 x 10* Lmol*cm™ for the
corresponding wavelengths, respectively. A decrease in the absorbance of RRR solution indicates the degradation of the
dye. An overlay spectra of RRR at different time intervals in the presence of ZnO films under UV irradiation is shown in
supporting information (Fig. S1). As the amount of ZnO increases adsorption also increases up to a maximum of about
0.15 g and then decreases for both adsorption (blue line) and photodegradation (red line) (Fig. 1). The degradation
efficiency might be attributed to the high surface areas including an internal surface and an appropriate thickness of the
film that assists more efficient separation of electron-hole pairs [26-28]. It is expected that, after the immobilization of a
certain amount of ZnO, the surface area would remain constant. Accordingly, the percentage removal would show a
steady value after that amount of ZnO but in actual case was found to decrease, which might be due to retarded
separation of the electron-hole pair with higher coating thickness. These results are consistency with literature results,
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where TiO, nanoparticles were deposited on a glass substrate and used as a photocatalyst for removing methylene blue
from aqueous solution [26].
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Fig. 1: Removal efficiency of RRR by adsorption (blue) and photodegradation (red) with the amount of
ZnO.

Effect of Initial Dye Concentration

Adsorption experiments were carried out with varying the concentration of RRR solution from (0.5 - 2.5) x 10* M to find
the intrinsic kinetic parameters. The amount of ZnO, immobilized on glass substrate were 0.15 (+ 5%) g. Under these
conditions, the equilibrium time for the adsorPtion of RRR was found to be 40 minutes. The amount of adsorbate adsorbed
(qe) per unit mass of adsorbent for 1 x 10™ M RRR solution was found 5.26 mg/g. The pseudo-first and second order
kinetic equations [29, 30] were compared to determine the order of adsorption.

log (de-q) = 10g Qe - Kat......cooceeen(2),
t/ge = 1(koGe”) + e cevovrrvreennenn. ).

Sigma plot software was used to determine the value of all parameters, which are given in Table 1. All the correlation
coefficient (Rz) values for the pseudo-first order kinetic model are closer to one than the pseudo-second order model
suggests that the adsorption of RRR on ZnO follows the pseudo-first order kinetics.

Table 1: Data for kinetic parameters of pseudo-first order and pseudo-second order models for RRR.

Co Pseudo-first order model Pseudo-second order model

(M) Ky (min™) R, k, (mg/g.min) R,?
4,90 x 10™ 0.0161 0.9455 0.0775 0.4208
10.03 x 10™ 0.0327 0.9235 0.1010 0.9107
15.06 x 10™ 0.0152 0.9691 0.0530 0.5023
19.96 x 10™ 0.0380 0.8597 0.0530 0.8478
24.93 x 10* 0.0199 0.9956 0.0411 0.9309

To explain adsorption isotherm, two widely used mathematical equations such as Freundlich and Langmuir's equation
were used.

log ge =log Kg + (1/n) log Ce .......... (3),
1/ge = (L/KLCe) + (a/KL) wuvvnvrneennn(4).
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Fig. 2: Adsorption isotherm of RRR on ZnO (a) Freundlich and (b) Langmuir at 30 °C with (0.15 g + 5%)
ZnO /200 mL.

The plot of (log ge vs log Ce) and (1/qe vs 1/Ce) is shown in Fig. 2 (a) and (b) respectively. Freundlich and Langmuir's
parameters are enlisted in Table 2. The value of 1/n (>1) indicated a cooperative adsorption [30]. But the regression value

suggested that the Freundlich equation could explain the adsorption isotherm more precisely.

Table 2: Characteristic parameters for the adsorption isotherm of reactive dye RRR on ZnO.

Temperature Freundlich isotherm Langmuir isotherm
(°C) Ke n R? Om K. R?
(Mg/g)(L/mol)™" (MY (Lymol)
30 11.787 0.935 0.9999 71.47 0.5003 0.9995

The effect of initial dye concentration on photodegradation of RRR on the ZnO-coated glass substrate under UV-light
irradiation is given in Fig.3. The concentration of RRR solution was varied from (0.5 - 2.5) x 10 M and the amount of ZnO
immobilized on glass substrate was 0.15 (= 5%) g. The photodegradation efficiency was found to be inversely affected by
the dye concentration. With the increase of dye concentration, the equilibrium adsorption of dye increases on the catalyst
surface active sites; hence competitive adsorption of OH™ on the same sites decreases, meaning a lower formation rate of
*OH radical, which is the principal oxidant necessary for high degradation efficiency [31]. On the other hand, considering
the Beer-Lambert law, as the initial dye concentration increases, the path length of photons entering the solution
decreases, resulting in lower photon absorption on catalyst particles and consequently a lower photodegradation rate.
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Fig. 3: Effect of initial concentration on photodegradation of RRR.
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Effect of Light Source

The Efficiency of photodegradation on light irradiation is shown in Fig. 4. Three different light sources (UV, Solar, and
Visible light) were applied for photodegradation experiments. The measured intensity of UV and the solar light was 0.14
mwWcm? and 700-750 Wm™ respectively. After 90 min of light irradiation, the photocatalytic activity under sunlight was
found to 24.05 % and 31.41 % higher than the artificial UV light and visible light, respectively. ZnO is a semiconductor
having band gap energy of 3.37 eV corresponds to 368 nm of the radiation. Thus, any light having a wavelength equal or
less than 368 nm would be capable of producing electron-hole pairs and enabled photodegradation of dye. This
mechanism of photodegradation involving semiconductor oxide as a photocatalyst under UV light is now well established

[31,32].
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Fig. 4: Percentage of photodegradation under the illumination of different light sources.

In a photosensitization reaction, the dye molecules become excited by absorbing the photon. These excited molecules
then transfer electrons to the conduction band of ZnO and proceed the photodegradation process. Photosensitization
reaction occurred in the case of artificial visible light and solar light, the mechanism of which is already reported by Gary A.
Epling [31]. However, a higher rate of degradation by the sunlight than the artificial visible light should be related to the
intensity of light.

Effect of Sonication

Pre-sonication of ZnO suspension was carried out by using a Sonicator (Eyela, Tokyo Rikakikai Co.Ltd). Adsorption as
well as photodegradation both was increased with sonication time of ZnO suspension (Fig. 5). The amount of adsorption
was about 4.64 % for the film of ZnO prepared without sonication. A slight increase up to 4.99% had been found with 5
hours sonication of ZnO suspension. Under the same conditions, the photodegradation after 90 min UV irradiation were

8.15 % and 10.33 %, respectively.
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Fig. 5: Effect of sonication of ZnO suspension on (a) adsorption and (b) photodegradation of RRR.
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There might be two possibilities for the enhanced removal efficiency with sonication; one would be the decrease in the
particle size of the ZnO, which would increase the surface area of the ZnO and other would be the increase dispersion
ability of these particles. SEM images of the ZnO suspensions were observed by Hitachi S-4500 to clarify the exact reason
for the enhancement of removal efficiency (shown in Fig. 6). The SEM images clearly predicted that there was almost no
change in the size and the shape of the ZnO particles. Therefore, it could be concluded that the better dispersion of the
ZnO particles made a rather smooth surface for the glass supported film and increased its effectiveness.

Fig. 6: SEM images of ZnO particles (a) without sonication, (b) after 2 hours and (c) 5 hours
sonication.

CONCLUSION

In the present research, we have shown a simple and facile route for immobilization of ZnO on a glass substrate, which
enables to eliminate the problem of filtration during the traditional dye removal process. Since filtration is not required in
this process and photodegradation follows adsorption, the removal efficiency will be significant rather than individual
adsorption and photodegradation process. We used the ZnO-coated glass substrate for the adsorption of textile dye RRR
untill the equilibrium was achieved. The same substrate was then used for photodegradation. Sunlight has been found to
be more effective than the artificial UV & visible light due to the different mechanism of photodegradation and intensity of
light. Adsorption on semiconducting materials containing film enhances the photodegradation under solar light rather than
UV light is a new finding of this study which increases the feasibility of the process. We expect the successive adsorption
and photodegradation process will be cost effective for long term application to depollute and detoxify industrial
wastewater.
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