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Abstract: Spectroscopic (IR, 
1
H-NMR, UV-visible, mass and ESR spectra) and structural studies of the ligand (1E, 

N'Z, N'Z)-N', N'-bis (2-hydroxybenzylidene)-2-(naphthalen-1-yloxy) acetohydrazonohydrazide (H2L) and its metal 
complexes are reported. The magnetic properties and thermal analyses (DTA and TGA) were also carried out. The IR 
spectra of the prepared complexes suggested that, the ligand adopted either a bidentate or a tetradentate fashion, 
bonding to the metal ion through the azomethine nitrogens and the two phenolic oxygen atoms (ONNO). Electronic 
spectra and magnetic susceptibility measurements revealed an octahedral geometry for all complexes except sliver(I) 
complex (6), copper(II) complex (7) and cobalt(II) complex (11). The elemental analyses and mass spectral data have 
justified the ML, ML2 and M3L composition of the complexes. The ESR spectra of copper(II) complexes (5), (7), (12) and 
(16), showed an axial type (dx

2
-y

2
) ground state with a covalent bond character and also support the suggested structures 

of complexes. The cytotoxicity of the ligand and its metal complexes were investigated and discussed. 

Indexing terms/Keywords:-Cytotoxic activity; hydrazine complexes; spectral and magnetic studies. 
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1.  INTRODUCTION 

New synthetic compounds with novel mechanism of action have become an important task to cope with drug resistance 
problems. Schiff bases have largely been recognized as useful building blocks in the synthesis of biologically important 
compounds [1-3]. Considerable studies have been reported regarding their biological activities as anticancer, antibacterial, 
antifungal, and herbicidal activities [4-8]. However, many organic drugs require interaction with metals in order to enhance 
their activity. They interact with metals at their target site or during their metabolism or disturb the balance of metal ion 
uptake and distribution in cells and tissues. Understanding these interactions helps a lot in synthesizing of influential 
metallo-pharmaceuticals and implementation of new co-therapies. Metal complexes have unique properties enhancing 
their bioactivity. An important property is the ability of metals to form positively charged ions in aqueous solutions that can 
bind to negatively charged biological molecules [9-12]. The high electron affinity of metal ions can significantly polarize 
groups that are coordinated to them, leading to the generation of hydrolysis reactions [10]. Furthermore, metal ions also 
has the ability to coordinate ligands in a three dimensional configuration, thus allowing functionalization of groups that can 
be tailored to defined molecular targets [13,14,7]. Much concern has been drawn toward hydrazine and their metal 
complexes due to their biological activities as fungicides [15,16]. bactericides [17], analgesic and anti-inflammatory [18], 
antioxidant [19,20], antitumor [21-23] and insecticidal [24]. Literature survey on structural behavior of hydrazine complexes 
reveals some interesting features of its coordination behavior. As a ligand, hydrazine offers the possibility of different 
modes of coordination towards transition metal ions. It can function as a monodentate and or bridging bidentate ligand 
[2,25]. Reactions of hydrazines with complexes containing multiple bonds can give rise to complexes containing 
coordinated imido-, diazenido- and nitrido-ligands [26-28]. In view of the above facts, this article aimed to synthesize and 
identify new metal complexes derived from a hydrazine Schiff base ligand. The coordination behavior of the ligand towards 
metals ions has been investigated via variety of physicochemical techniques. The cytotoxic activity of the ligand as well as 
its metal complexes was tested against human colon cancer cells (HCT-116 cell line) and hepatocellular carcinoma 
(HEPG-2 cell line) comparing with standard drug Vinblastine. Furthermore, the antimicrobial activity of some metal 
complexes against Aspergillus fumigates,Candida albicans, Streptococcus pneumonia, Bacillis subtilis, Pseudomonas 
aeruginosa and Escherichia coli was also investigated. 

2.  EXPRIMENTAL 

2.1. Materials 

        All reagents employed for the preparation of the ligand and its complexes were of the analytical grade available and 
used without further purification. Metal salts were provided from Sigma-Aldrich Company. 1-naphthol (Assay 99 %) and 
ethylchloroacetate (Assay 99 %), hydrazine hydrate (Assay ≥ 99.99 %), 2-hydroxy benzaldehyde (Assay ≥ 98 %), DMSO 
(Assay 99.7%) and absolute ethanol (Assay ≥ 99.8 %) were also obtained from Sigma-Aldrich Company. 

2.2. Instrumentation and measurements 

C, H, N and Cl were analysed at the Microanalytical center, Cairo University, Egypt. Standard analytical method 
(gravimetric) was used to determine the metal ion content [29-31]. FT-IR spectra of the ligand and its metal complexes 
were measured using KBr discs by a Jasco FT/IR 300E Fourier transform infrared spectrophotometer covering the range 
400-4000 cm

-1
. Electronic spectra in the 200-900 nm regions were recorded on a Perkin-Elmer 550 spectrophotometer. 

The thermal analyses (DTA and TGA) was carried out on a Shimadzu DT-30 thermal analyzer from room temperature to 
800ºC at a heating rate of 10 ºC/min. Magnetic susceptibilities were measured at 25ºC by the Gouy method using 
mercuric tetrathiocyanatocobaltate(II) as the magnetic susceptibility standard. Diamagnetic corrections were estimated 
from Pascal’s constant [32]. The magnetic moments were calculated from the equation:  

. 

The molar conductance of 10
-3

 M solution of the complexes in DMSO was measured at 25ºC with a Bibby conductometer 
type MCl. The resistance measured in ohms and the molar conductivities were calculated according to the equation: 

ɅM=V*K*g/ Mw* 

Where: M = molar conductivity /-
1
cm

2
mol

-1
, V = volume of the complex solution/ml, K = cell constant (0.92/ cm

-1
), Mw = 

molecular weight of the complex, g = weight of the complex/g, =resistance/. 
1
H-NMR spectra were obtained on BRUKER 

400 MHz spectrometers. Mass spectra were recorded using GC/MS Shimadzu 5050 QA mass spectrometer. Chemical 
shifts (ppm) are reported relative to TMS. ESR measurements of solid complexes at room temperature were made using a 
Varian E-109 spectrophotometer with DPPH as a standard material. TLC is used to confirm the purity of the compounds. 

2.3. Synthesis of the ligand 

The ligand [H2L] was prepared by a three-step reactions (Figure 1). The first one involved addition of equimolar amount of 
1-naphthole (10 g, 1.0 mol), to ethylchloroacetate (7.38 ml, 0.1 mol) in the presence of KOH (4.5 g, 0.10 mol) in 50 cm

3
 of 

absolute ethanol. The mixture was refluxed on water bath for 6 hours and the formed precipitate was filtered off, washed 
with water, dried and recrystallized from ethanol to afford ethyl (1-naphthyloxy) acetate (I). The second step includes 
mixing equimolar amount of ethyl (1-naphthyloxy) acetate (I) (6.5 g, 0.01 mol) with hydrazine hydrate (2.7 ml, 0.02 mol) in 
50 cm

3
 of absolute methanol. The solution was refluxed with stirring for 4 hours, and the formed yellow product was 

filtrated off, washed with water, and dried to give pure needle shaped crystals of 2-(naphthalene-1-yloxy) acetohydrazide 



    ISSN 2321-807X 

3890 | P a g e                                                            J u l y  1 6 ,  2 0 1 5  

(II). The final step involved addition of an equimolar amount of 2-(naphthalene-1-yloxy) acetohydrazide (II) (5.0 g, 0.01 
mol) to 2-hydroxy benzaldehyde (5.6 g, 0.01 mol) in 50 cm

3
 of absolute methanol. The mixture was refluxed with 

continuous stirring for 3 hours. After cooling, the solvent was removed under reduced pressure to give the ligand [H2L], 
(1E, N'Z, N'Z)-N', N'-bis (2-hydroxybenzylidene)-2-(naphthalene-1-yloxy) acetohydrazono- hydrazide. 

 

Figure 1: Synthesis of the ligand [H2L]  

2.3.1. Preparation of complexes (2)-(19) 

        To the ligand (1) (1.0 g, 0.002 mol ) in ethanol (50 cm
3
) was added ethanolic solution of (0.568 g, 0.002 mol) of Co(OAc)2.4H2O, 

(1L:1M),  complex (2), (0.898g, 0.003 mol ) of NiSO4.6H2O, (2L:3M), complex (3), to the ligand (1.0 g, 0.002 mol ) in ethanol (50 cm
3
) was 

added  (0.567 g, 0.002 mol) Ni(OAc)2.4H2O , (1L:1M), complex (4), to the ligand (1.0 g, 0.002 mol ) in ethanol (50 cm
3
) was added  (0.414 

g, 0.002 mol ) of Cu(OAc)2, (1L:1M), complex (5), (0.774 g, 0.004 mol ) of Ag(NO3), (1L:2M), complex (6), (0.459g, 0.003   mol ) of CuCl2, 
(2L:3M), complex (7), (0.951g, 0.003 mol ) of  FeSO4.7H2O, (2L:3M), complex (8), (0.432 g, 0.001 mol ) of Pb(OAc)2, (2L:1M), complex 
(9), (0.279 g, 0.001 mol ) of Mn(OAc)2.4H2O, (2L:1M),  complex (10), (0.529g, 0.003 mol ) of CoSO4, (2L:3M), complex (11), (0.551 g , 
0.002) Cu(NO3)2.3H2O, (1L:1M),  complex (12),  (0.284 g, 0.001 mol ) of Co(OAc)2.4H2O, (2L:1M), complex (13), (0.304 g, 0.001 mol ) of 
Cd(OAc)2.2H2O, (2L:1M), complex (14), (0.500 g, 0.002 mol ) of Zn(OAc)2.2H2O  , (1L:1M),  complex (15), (0.853g, 0.003 mol ) of 
CuSO4.5H2O, (2L:3M), complex (16), (0.363 g, 0.001 mol ) of Hg(OAc)2, (2L:1M),  complex (17), (0.304 g, 0.001 mol ) of Sr(Cl)2.6H2O, 
(2L:1M), complex (18), (0.435 gm, 0.001 mol) of Ti(C2H3O2)3, (2L:1M), complex (19), The mixture was refluxed with stirring for 2-3 hrs, 
depending on the nature of the metal ion and the anion. When the precipitate appeared, it was removed by filteration, washed with 
ethanol and dried in vacuo over p4O10.Analytical data are given in Table 1. 

2.4. Biological activity 

2.4.1. Cytotoxic activity 

Evaluation of the cytotoxic activity of the ligand and its metal complexes was carried out in the Pathology Laboratory, 
Pathology Department, Faculty of Medicine, El-Menoufia University, Egypt. The evaluation process was carried out in vitro 
using the Sulfo-Rhodamine-B-stain (SRB) assay published method [33]. Cells were plated in 96-multiwell plate 
(10

4
cells/well) for 24 hrs. before treatment with the complexes to allow attachment of cell to the wall of the plate. Different 

concentrations of the compounds under test in DMSO (0, 5, 12.5, 25 and 50 µg/ml) were added to the cell monolayer, 
triplicate wells being prepared for each individual dose. Monolayer cells were incubated with the complexes for 48 hrs at 
37°C and under 5% CO2. After 48 hrs.cells were fixed, washed and stained with Sulfo-Rhodamine-B-stain. Excess stain 
was wash with acetic acid and attached stain was recovered with Tris EDTA buffer. Color intensity was measured in an 
ELISA reader. The relation between surviving fraction and drug concentration is plotted to get the survival curve for each 
tumor cell line after addition the specified compound. 
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3. Results and discussion 

The complexes are colored, stable in air; they are soluble in polar solvents such as DMF and DMSO whereas they are 
insoluble in H2O, ethanol, CHCl3 and benzene. All the complexes are non-electrolytes. The elemental analyses, spectral 
data [Tables 1-5] and thermal analyses [Table 6] are compatible with the proposed structures [Figure 2]. Many attempts 
were made to grow diffractable crystals, but unfortunately no crystal has been obtained until now. 

O

C

N
H

N

CH

OH

N

N

HC

OH

(1E,N 'Z,N 'Z)-N ',N '-bis(2-hydroxybenzylidene)-2-(naphthalen-1-yloxy)acetohydrazonohydrazide

Ligand  
 

 



    ISSN 2321-807X 

3892 | P a g e                                                            J u l y  1 6 ,  2 0 1 5  

O

N

N

H
O

M

H 2O
O 4S

H 2O

H 2O

H N

N

O

N

O

M

H2O

H2O

HN N

O

N

O
H

M
O 4S

H 2O

H2O
H2O

C omplex (3) M = Ni n=2

C omplex (8) M = Fe n=1

.nH2O

 
 



    ISSN 2321-807X 

3893 | P a g e                                                            J u l y  1 6 ,  2 0 1 5  

O

N

N

HO

Ag

NO3

HN

N

OH

Ag NO3 . H2O

Complex (6)  

O

N

N

H
O

Cu

Cl

HN

N

O

N

O

Cu

HN N

O

N

O
H

Cu

Cl

Complex (7)

.H2O

Cl

Cl

 



    ISSN 2321-807X 

3894 | P a g e                                                            J u l y  1 6 ,  2 0 1 5  

O

N

N

HO

HN

N

HO

N

H
O

Pb

HN N

O

N

HO

Complex (9)

. 4H2O

OAc

OAc

 

O

N

N

HO

HN

N

O

N

O

Mn

HN N

O

N

HO

Complex (10)

. 4H2O

H2O

H2O

 



    ISSN 2321-807X 

3895 | P a g e                                                            J u l y  1 6 ,  2 0 1 5  

O

N

N

H
O

Co

O4S

H2O

HN

N

O

N

O

Co

HN N

O

N

O
H

Co

O4S

H2O

Complex (11)

. 2H2O

 



    ISSN 2321-807X 

3896 | P a g e                                                            J u l y  1 6 ,  2 0 1 5  

O

NHN N

O

N

OH

Cu

Complex (12)

. 2H2O

NO3

OH2

 
 

 



    ISSN 2321-807X 

3897 | P a g e                                                            J u l y  1 6 ,  2 0 1 5  

 

 



    ISSN 2321-807X 

3898 | P a g e                                                            J u l y  1 6 ,  2 0 1 5  

O

N

N

H
O

Cu

H2O

O4S

H2O
H2O

HN

N

O

N

O

Cu

H2O

H2O

HN N

O

N

O
H

Cu

O4S

H2O

H2O

H2O

Complex (16)

. H2O

 
 

 



    ISSN 2321-807X 

3899 | P a g e                                                            J u l y  1 6 ,  2 0 1 5  

O

N

N

HO

HN

N

O

N

O

M

HN N

O

N

HO

.nH2O

H2O

H2O

Complex (17) M=Hg n=1

Complex (18) M=Sr n=4  



    ISSN 2321-807X 

3900 | P a g e                                                            J u l y  1 6 ,  2 0 1 5  

O

N

N

HO

HN

N

O

N

O

Th

HN N

O

N

HO

Complex (19)

H2O

OAc

. 2H2O

 
 

Figure 2. Proposed structures of the ligand [H2L] and its metal complexes (2)-(19) 
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Table 1:-Analytical and Physical Data of the Ligand [H2L] (1) and its Metal Complexes. 

No. Ligands/Complexes Color FW 
M.P 

(OC) 

Yield 

(%) 

Anal. /Found (Calc.) (%)  Molar 

conductance* C H N M  Cl 

(1) 
[H2L] 

C26H22N4O3 
Beige 438.48 195 75 71.87(71.22) 4.71(5.06) 12.23(12.78) _ _ _ 

(2) 
[(L)Co(H2O)2].H2O 

C26H26Co N4O6 
Orange 549.44 >300 80 56.67(56.84) 4.75(4.77) 10.371(10.20) 10.61(10.73) _ 6.5 

(3) 
[(HL)2(Ni)3(SO4)2 (H2O)8].2H2O 

C52H62N8Ni3O24S2 
Beige 1423.30 >300 84 44.18(43.88) 4.0(4.39) 7.9(7.87) 12.23(12.37) _ 14.8 

(4) 
[(L)Ni(H2O)2].2H2O 

C26H28N4 Ni O7 
Olive 567.22 >300 69 55.18(55.05) 4.98(4.98) 9.248(9.88) 10.11(10.35) _ 6.3 

(5) 
[(L)Cu(H2O)2].2H2O 

C26H28Cu N4O7 

Dark 

green 
572.07 >300 71 54.24(54.59) 4.49(4.93) 9.86(9.79) 10.8(11.11) _ 13.2 

(6) 
[(H2L)(Ag)2(NO3)2].H2O 

C26H24Ag 2N6O10 
Beige 796.24 236 80 38.9(39.22) 2.98(3.04) 10.33(10.55) 26.8(27.09) _ 7.85 

(7) 
[(HL)2(Cu)3 (Cl)4].H2O 

C52H44Cl 4Cu3 N8O7 
Beige 1225.41 210 72 50.81(50.97) 3.98(3.62) 9.0(9.14) 15.1(15.56) 11.4(11.57) 17.3 

(8) 
[(HL)2(Fe)3(SO4)2(H2O)8].H2O 

C52H60 Fe3 N8O23S2 
Olive 1396.74 242 68 44.40(44.72) 4.1(4.33) 7.9(8.02) 11.33(11.99) _ 16.4 

(9) 
[(HL)2Pb(OAc)2].4H2O 

C56H58N8O14Pb 
Grey 1274.30 223 65 52.38(52.78) 4.22(4.59) 8.65(8.79) 16.1(16.26) _ 11.3 

(10) 
[(HL)2Mn (H2O)2.4H2O 

C52H54Mn N8O12 
Brown 1037.97 238 65 59.80(60.17) 5.1(5.24) 10.6(10.80) 4.78(5.29) _ 7.5 

(11) 
[(HL)2(Co)3(SO4)2(H2O)2].2H2O 

C52H50Co3 N8O18S2 
Beige 1315.93 234 89 47.20(47.46) 3.5(3.83) 8.3(8.52) 13.0(13.44) _ 13.8 

(12) 
[(HL)Cu(NO3) (H2O)].2H2O 

C26H27Cu N5O9 
Brown 617.07 230 55 50.55(50.61) 4.37(4.41) 11.34(11.35) 10.29(10.30) _ 6.8 

(13) [(HL)2Co(H2O)].2H2O Beige 1005.93 220 82 62.24(62.09) 4.62(5.01) 11.77(11.14) 6.19(5.86) _ 15.6 
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C52H50CoN8O10 

(14) 
[(HL)2Cd (OAc)2].2H2O 

C56H54Cd N8O12 
Yellow 1143.49 >300 70 58.91(58.82) 4.14(4.76) 9.99(9.80) 9.73(9.83) _ 11.2 

(15) 
[(H2L)Zn(OAc)2].2H2O 

C30H32N4O9Zn 
Yellow 657.98 223 74 54.34(54.76) 4.01(4.90) 8.03(8.52) 9.8(9.94) _ 12.1 

(16) 
[(HL)2(Cu)3 (SO4)2(H2O)8].H2O 

C52H60Cu3 N8O23S2 
Silver 1419.84 216 66 43.79(43.99) 4.16(4.26) 7.12(7.89) 12.98(13.43) _ 13.7 

(17) 
[(HL)2Hg(H2O)2].H2O 

C52H48Hg N8O9 
Beige 1129.58 230 73 54.8(55.29) 4.0(4.28) 9.7(9.92) 17.3(17.76) _ 6.8 

(18) 
[(HL)2Sr(H2O)2 ].4H2O 

C52H54N8O12Sr 
Beige 1070.65 240 76 58.1(58.33) 4.8(5.08) 10.2(10.47) 7.89(8.18) _ 7.2 

(19) 
[(HL)2Th(OAc) (H2O)].2H2O 

C54H51N8O11Th 
Beige 1220.07 245 60 52.89(53.16) 4.1(4.21) 8.9(9.18) 18.77(19.02) _ 8.3 

 

* M (
-1

 cm
2
 mol

-1
) 

Table 2:- IR Frequencies of the Bands (cm-1) of Ligand [H2L], (1) and its Metal Complexes  

No. ν(H2O) ν(OH) 
υ(H-

bonding) 
υ(NH) ν(N-N) ν(C=N) ν(COH/CO) ν(Ar) ν(OAc)/SO4/ NO3 υ(M-O) υ(M-N) υ(M-Cl) 

(1) - 3465, 3446 
3650-3310 

3280-2650 
3220 1031 1623, 1618 1316 

1573,784 

1550,752 
- - - 

 

- 

(2) 3550-3480 - 
3620-3280 

3270-2850 
3230 1040 1615, 1605 1301 

1541,791 

1471,757 
- 587 453 

 

- 

(3) 3550-3490 3430 
3610-3330 

3320-2650 

3238, 

3225 
1039 

1623, 1618, 

1610 
1316, 1305 

1571,783 

1535,751 

1157,1147, 

730,682 
618 565  

(4) 3550-3480 - 
3650-3210 

3200-2670 
3220 1037 1619, 1600 1309 

1560,784 

1550,754 
- 587 545 

 

- 

(5) 3530-3485 - 
3620-3280 

3270-2680 
3241 1035 1614, 1605 1305 1536,756 - 590 468 

 

- 

(6) 3650-3540 3466, 3447 3620-3320 3225 1037 1624, 1622 1316 1572-752 1330,1148 565 450  
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3300-2650 890,752 - 

(7) 
3520-3475 

 
3432 

3602-3310 

3300-2720 
3223 1038 1619, 1610 1316, 1308 1572,748 - 575 465 415 

(8) 3510-3470 3446 
3580-3210 

3200-2750 
3231 1037 1623, 1618 1316, 1307 1517,751 

1197,1157, 

1147 

682 

617 565 - 

(9) 3520-3465 3453, 3435 
3570-3280 

3270-2760 
3217 1037 1624, 1616 1316 1572,784 1447,1330 565 459 - 

(10) 
3530-3450 

 
3445 

3610-3330 

3320-2850 
3322 1039 1624,1618 1316, 1307 1572,752 1455,1330 565 459 - 

(11) 
3500-3465 

 
3430 

3580-3280 

3270-2680 
3231 1036 1622 1315, 1309 1572,750 

1195,1156, 

1140 

681,458 

618 564 - 

(12) 
3560-3350 

 
3456 

3600-3210 

3200-2680 
3225 1039 1623, 1618 1316, 1307 1533,752 

1327,1128 

894,785 
592 565 - 

(13) 3565-3470 3445 
3610-3315 

3310-2650 
3222 1037 1624,1618 1308 1572,783 - 546 550 - 

(14) 3500-3480 3451, 3446 
3600-3320 

3310-2750 
3226 1037 1624, 1620 1317 1572,752 1435,1335 565 460 - 

(15) 3560 3455, 3431 
3600-3300 

3290-2650 
3235 1038 1624, 1619 1315 1571,752 1471,1341 605 550 - 

(16) 3550-3470 3437 
3580-3280 

3270-2680 
3232 1037 1625, 1620 1316, 1308 1572,752 

1206,1156, 

1147 

682,458 

618 565 - 

(17) 3520-3465 3435 
3600-3260 

3250-2630 
3220 1037 1624, 1618 1316, 1308 1572,751 - 600 550 - 

(18) 3520 3435 
3580-3300 

3290-2650 
3222 1037 1625, 1620 1316, 1307 1572,751 - 580 520 - 

(19) 3510 3437 
3580-3285 

3275-2700 
3325 1037 1624, 1620 1316, 1307 1571,752 1446,1330 565 465 - 
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3.1. Conductivity measurements 

The molar conductivity of 110
-3

 M solution of the metal complexes (2-19) in DMSO at room temperature are given in 
experimental section. The value of molar conductance of all complexes is in the 6.3-16.4 

-1
cm

2
mol

-1
 range indicating a 

non-electrolytic nature of these complexes confirming the involvement of the acetate, sulfate, nitrate and chloride anions in 
the coordination sphere. 

3.2. Mass spectra 

The mass spectrum of the ligand (1) revealed a molecular ion peak (m/z) at 438 a.m.u which is coincident with the 
formula weight of the ligand and supports the identity of the Structure. Furthermore, the fragments observed at m/z = 30, 
43, 72, 77, 86, 91, 107, 117, 133, 147, 194, 206, 236, 284, 326,398 and 438 corresponding to C2H6, C3H7, C5H12,C6H5, 
C7H2,   C7H7, C8H11, C8H5O, C8H5O2, C9H7O2, C14H12N, C15H12N, C16H14NO, C20H14NO, C22H16NO2, C24H22N4O2 and 
C26H22N4O3 moieties respectively. However, the spectrum of Cu(II) complex (5) spectrum shows a peak (m/z) at 571 a.m.u 
corresponding to the formula weight of the complex. Additionally, the peaks observed at 30, 41, 57, 63, 81, 98, 118, 180, 
198, 228, 250, 279, 322, 337, 365, 393, 412, 438, 517 and 571 are due to C2H6, C3H5, C4H9, C3H11O, C4H17O, C5H8NO, 
C5H8NO, C6H16NO, C9H12N2O2, C10H18N2O2, C11H20N2O3, C14H22N2O2, C16H11N2O3, C19H18N2O3, C20H21N2O3, C20H19N3O4, 
C21H19N3O5, C21H19CuNO4, C22H19CuN2O4, C24H28CuN3O6 and C26H28CuN4O7 moieties respectively. The spectrum of 
Zn(II) complex (15) spectrum shows a peak (m/z) at 657 a.m.u corresponding to the formula weight of the complex. 
Additionally, the peaks observed at 18, 28, 44, 65, 77, 93, 109, 141, 169, 195, 212, 226, 251, 265, 304, 321, 337, 359, 
395, 413, 448, 547, 577, 607,639 and 657 are due to CH6,C2H4, C3H8, C5H5, C6H5, C7H9, C8H13, C9H17O, C10H17O2, 
C12H19O2, C12H20O3, C12H20NO3, C14H21NO3, C14H21N2O3, C17H24N2O3, C17H25N2O4, C17H25N2O5, C25H15N2O, C28H15N2O, 
C28H17N2O2, C28H20N2O4, C28H24N3O5Zn, C29H26N3O6Zn, C30H28N3O7Zn, C30H28N4O8Zn and C30H30N4O9Zn moieties 
respectively. The fragments of the ligand (1), Cu(II) complex (5) and Zn(II) complex (15) are represented in Table 3. 

Table 3: Mass spectra of [H2L] (1), Cu(II) complex (5) and Zn(II) complex (15) i. Mass spectrum of the ligand [H2L] 

m/z Rel. Int. Assignments 

30 49 (C2H6) 

43 14 (C3H7) 

72 37 (C5H12) 

77 6 (C6H5) 

86 8 (C7H2) 

91 13 (C7H7) 

107 25 (C8H11) 

117 100 (C8H5O) 

133 38 (C8H5O2) 

147 55 (C9H7O2) 

194 30 (C14H12N) 

206 38 (C15H12N) 

236 13  (C16H14NO) 

284 5 (C20H14NO) 

326 12 (C22H16NO2) 

398 8 (C24H22N4O2) 

438 5  (C26H22N4O3) 
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  ii. Mass spectrum of Cu(II) complex (5) 

m/z Rel. Int. Fragment 

30 39 (C2H6) 

41 24 (C3H5) 

57 27 (C4H9) 

63 11 (C3H11O) 

81 11 (C4H17O) 

98 12 (C5H8NO) 

118 10 (C6H16NO) 

180 6 (C9H12N2O2) 

198 8 (C10H18N2O2) 

228 12 (C11H20N2O3) 

250 25 (C14H22N2O2) 

279 8 (C16H11N2O3) 

322 100 (C19H18N2O3) 

337 11 (C20H21N2O3) 

365 13 (C20H19N3O4) 

393 26 (C21H19N3O5) 

412 10 (C21H19CuNO4) 

438 9 (C22H19CuN2O4) 

517 5 (C24H28CuN3O6) 

571 12 (C26H28CuN4O7) 

 

ii. Mass spectrum of Zn(II) complex (15) 

m/z Rel. Int. Fragment 

18 37 (CH6) 

28 90 (C2H4) 

44 13 (C3H8) 

65 8 (C5H5) 

77 9 (C6H5) 

93 7 (C7H9) 

109 15 (C8H13) 

141 11 (C9H17O) 

169 10 (C10H17O2) 

195 62 (C12H19O2) 



    ISSN 2321-807X 

3906 | P a g e                                                            J u l y  1 6 ,  2 0 1 5  

212 92 (C12H20O3) 

226 6 (C12H20NO3) 

251 36 (C14H21NO3) 

265 12 (C14H21N2O3) 

304 14 (C17H24N2O3) 

321 15 (C17H25N2O4) 

337 13 (C17H25N2O5) 

359 25 (C25H15N2O) 

395 100 (C28H15N2O) 

413 14 (C28H17N2O2) 

448 15 (C28H20N2O4) 

547 12 (C28H24N3O5Zn) 

577 13 (C29H26N3O6Zn) 

607 40 (C30H28N3O7Zn) 

639 20 (C30H30N4O8Zn) 

657 14 (C30H32N4O9Zn) 
 

3.3.1H–NMR spectra 

       The 
1
H–NMR spectra of the ligand [H2L] (1), Cd(II) complex(14) and Zn(II) complex (15) in deuterated DMSO 

recorded signals consistent with the proposed structures (Figure 2). The ligand showed a three singlet peaks at 11.2 [2H], 
9.0 [H] and 8.35 [2H] ppm corresponding to the two protons of the OH, one proton of NH and two protons of N=CH groups 
respectively [37-39]. The multiplet peaks observed in the 6.94- 7.71 ppm range are assigned to the aromatic protons [11], 
whereas the singlet signal observed at 2.5 ppm, is due to the two protons of the CH2 group [40,41]. However, The 
spectrum of Cd(II) complex (14) showed two singlet peaks at 11.2 and 11.0 ppm assigned to non-coordinated and 
coordinated protons of OH groups respectively. The singlet peak observed at 8.5 ppm was assigned to the two protons of 
NH groups, whereas the multiplet peaks appeared in the 6.94- 7.71 ppm range could be assigned to the aromatic protons. 
The two singlet signals observed at 8.31 and 2.51 ppm were assigned to N=CH and CH2 groups respectively with 
intensities corresponding to four protons, whereas the two singlet signals corresponding to the six protons of the acetate 
groups were observed as singlet peaks at 1.9 ppm and 2.1 ppm [42-44]. Spectrum of Zn(II) complex (15) showed a singlet 
signal at 11.1 ppm due to two protons of the OH groups; another signal was observed at 9.0 ppm corresponding to one 
proton of the NH group. However the aromatic signals was observed in the 6.5-7.71 ppm range. The azomethine (CH=N) 
protons were observed as a singlet peaks at 8.49 and 8.40 ppm whereas the signal observed at 2.49 ppm was assigned 
to protons of CH2 group. The signals observed as two singlet peaks at 1.98 and 2.02 ppm ascribed to the six protons of 
acetate groups [42-44]. 

3.4. Infrared Spectra 

        Important spectral bands of the ligand and its complexes are presented in table 2. The IR spectrum of the ligand showed 
broad, medium intensity bands in the 3650–3310 and 3280-2650 cm

-1 
ranges, which are attributed to intra- and intermolecular 

hydrogen bondings [45,46]. The broad medium bands at 3465 and 3436 cm
-1

 are assigned to the (OH) group, whereas the 

relatively strong bands located at 3220, 1623, 1618 and 1316 cm
-1
, are assigned to the (NH), phenolic (C=N),(C=N) and 

(COH) vibrations respectively [47]. Also, the spectrum showed a band at 1031 cm
-1
 which is assigned to (N-N) vibration 

[48,49]. In order to study the binding mode of the Schiff base to the metal ion in the complexes, the IR spectrum of the free Schiff 
base was compared with the spectra of the metal complexes. The spectral data together with the elemental analyses indicated 
that, the ligand can behave as:Bibasic tetradentate ligand: coordinating through the two O

-
and the two C=N groups as in 

complexes (2), (4), and (5). This mode of coordination is supported by the evidences: (i) the disappearance of the band for the 

phenolic OH, indicating the subsequent deprotonation of the phenolic proton prior to coordination [50]. (ii) The strong bands 
observed for the free Schiff base around 1623 and 1618 cm

-1
, characteristic of the azomethine (C=N) stretching vibrations were 

shifted to lower wave numbers, suggesting coordination of the azomethine nitrogen atoms to the metal ion [51,52] (iii)The red 
shift of the phenolic CO vibration band toward lower wave number indicating that, the coordination also takes place through the 
deprotonated phenolic groups [53,54]. (iii) The appearance of new bands in the 453-565 and 587-590 cm

-1
 regions which are 

assigned to υ(M-N) and υ(M-O) vibrations respectively [55]. Monobasic tetradentate ligand: In complexes (3), (7), (8), (11), (12) 
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and (16), each of the two moieties of the ligand participating in the metal complexes coordinating through one O
-
, two C=N and 

one OH group, this mode of coordination was supported by the evidences:(i) One vibration band of the two C=N was shifted to 
lower wave number with a decreasing in its intensity while the other one band appeared in its original place [51,52]. (ii) One of 
the two OH vibrations bands disappeared in the time that the other one shifted to lower wave number with decreasing its 
intensity [50]. This indicates that, only one atom of each phenolic oxygens and azomethine nitrogens was involved in the metal 
coordination. (iii) One band of the two C-O bands was shifted to a higher wave number, while the other was found almost at its 
original place, indicating that, only one phenolic oxygen was involved in the coordination [53,54,56].(iv) The appearance of new 
bands in the 564-565 and 575-618 cm

-1
 regions are due to the υ(M-N) and υ(M-O) vibrations respectively [55]. Neutral bidentate 

ligand: coordinating through one OH and one C=N group as in complexes (6), (9) and (14).This mode of coordination is 

supported by the following evidences: (i) One band of  each of OH and C=N group was shifted to a lower wave number with a 
decreasing its intensity, while the other ones are found almost at their original place, indicating that, only one of each pair were 
involved in the coordination [50]. (ii) One band of the two C-O bands was shifted to a higher wave number while the other is 
found almost at its original place, indicating that, only one phenolic oxygen was involved in the coordination [56]. (iii) The 
appearance of new bands in the 450-550 and 546-565 cm

-1
 regions are due to the υ(M-N) and υ(M-O) vibrations respectively 

[55]. Monobasic bidentate ligand: coordinating through one O
-
 and one C=N groups as in complexes (10), (13), (17), (18), and 

(19). This mode of coordination is supported by (i) One of two OH vibrations bands disappeared in the time that the other one 

appeared at its original place [50].(ii) One vibration band of the two C=N was shifted to lower wave number with a decreasing its 
intensity while the other one band appeared in its original place. (iii) One band of the two C-O bands was shifted to a higher 
wave number while the other is found almost at its original place, indicating that, only one phenolic oxygen was involved in the 
coordination [53,54].(iv) The appearance of new bands in the 459-550 and 546-600 cm

-1
 regions are due to the υ(M-N) and υ(M-

O) vibrations respectively [55]. Neutral tetradentate ligand: coordinating through two OH and two C=N groups as in complex (15). 

This mode of coordination is supported by (i) The two vibration bands of each of OH and C=N were shifted to lower wave 
number with a decreasing in their intensities [50]. (ii) The two bands C-O vibrations were shifted to a higher wave number, 
indicating participation of the two phenolic oxygen in the metal coordination. (iv) The appearance of new bands in the 420-550 
and 455-605 cm

-1
 regions corresponding to the υ(M-N) and υ(M-O) vibrations respectively [55]. The presence of water molecules 

within the coordination sphere in all complexes except (6), (9), (14) and (15) were supported by the presence of weak bands 

around 3560-3380cm
-1
, 1600-1595 cm

-1
, 895-943 cm

-1
 and 645-665 cm

-1
 due to OH stretching, HOH deformation, H2O rocking 

and H2O wagging, respectively [57,58]. The appearance of two characteristic bands in the 1471-1435 and 1341-1330 cm
-1
 

ranges in the spectra of complexes (9), (14), (15) and (19) were attributed to asym.(COO
-
) and sym.(COO

-
) respectively, indicating 

the participation of the acetate oxygen in the complex formation [59]. The coordination modes of the acetate group in the 
complexes were determined by IR spectra, by comparing the separations between the asym.(COO

-
) and sym.(COO

-
).The 

separation value () between asym(COO
-
) and sym.(COO

-
) for these complexes were in the range 105-130 cm

-1
, suggesting a 

monodentate coordination fashion of  the acetate groups [60,61]. The spectra of complexes (6) and (12) showed bands in the 

1330-1327, 1148-1128, 894-890 and 785-752 cm
−1

 ranges corresponding to coordinating nitrate group in a unidentate mode 
[62-64]. Complexes (11) and (16) spectra demonstrated strong to medium bands at 1206, 1195, 1156, 1147, 1140, 682, 681 and 

458 cm
−1

 belonging to the antisymmetric and symmetric stretching modes of the sulfate group. These values are consistent with 
that reported for the sulfate species coordinating to the M(II) in an unidentate fashion [64,38]. Complexes (7) showed additional 

band at 415 cm
−1

 assigned to a coordinated chloride atom.   

3.5. Electronic spectra and magnetic moments. 

          DMF electronic absorption spectral bands as well as, room temperature effective magnetic moment values of the ligand 
and its metal complexes are reported in table 3. The ligand showed three transition bands in the high energy region.  The first 
band appeared at 290 nm is assigned to * transition within the aromatic rings and this band is nearly unchanged upon 
complexation. The second and third bands appearing at 315 and 350 nm may be assigned to n* of the azomethine groups and 
CT transitions [65,66].The bands were found to be shifted upon complexation indicating involvement of theses transition in the 
coordination with the metal ions. The electronic spectra of the Co(II) complex (2) and (13) exhibit three d–d transition bands at 

720, 715; 610, 620, and 560, 550. These bands are assigned to
4
T1g(F)→

4
T2g(F)(1), 

4
T1g(F) →

4
T1g(p)(2), 

4
T1g(F) →

4
A1(F)(3) 

transitions respectively, corresponding to high spin cobalt(II) octahedral complexes [66,67]. The magnetic moment of complex 
(2) is 4.98, and 4.74 B.M B.M., which is well within the reported range of high spin octahedral Co(II) complexes. Electronic 
spectra of Co(II) complex (11) show bands at 570 and 610 nm. These bands are assigned to 

4
A2g (F)→

4
T2g(P)(3) and 

4
A2g(F)→

4
T1(F)(2) transitions respectively corresponding to cobalt(II) tetrahedral complexes. The value of the room temperature 

magnetic moments of complexes (11) is 3.88 B.M., the decrease in the observed magnetic moment (3.88 B.M.) is assigned to 
spin-spin interactions taking place between Co(II) ions. The electronic absorption spectra of Ni(II) complexes (3) and  (4) 

displayed three bands at 725-740 and 608-615 nm, these bands are corresponding to
3
A2g (F) → 

3
T2g (F)(1), 

3
A2g (F) → 

3
T1g(F)(2) 

and 
3
A2g (F) → 

3
T1g(P)(3) transitions respectively, indicating octahedral nickel(II) complexes [68,69]. The lower value of 2/1 ratio for 

the complexes (1.20-1.21) range which are less than the usual range of 1.5-1.75, indicating distorted octahedral nickel(II) 
complexes [68,69]. The magnetic moment values of for nickel(II) complexes (3) and (4) are 2.15 and 3.05 BM respectively, 

which are consistent with two unpaired electrons state and confirming octahedral geometry for around the nickel(II) ion [68]. The 
electronic spectra of copper(II) complexes (5), (7), (12) and (16) exhibited bands in the 605-620 and 575-590 nm  ranges which 

are assigned to 
2
B1g

2
A1g (dx

2
−y

2
→dz

2
), and 

2
B1g

2
Eg(dx

2
−y

2
→dxy, dyz) transitions respectively. These transitions indicate that, the 

copper(II) ion has a tetragonally distorted octahedral geometry. This could be due to the Jahn-Teller effect that operates on the 
d

9
 electronic ground state of six coordinate system, elongating one trans pair of coordinate bonds and shortening the remaining 

four ones [40, 43]. The electronic spectrum of complex (7) showed peaks at 575 and 620 nm. These bands are assigned to 
2
B1g

2
B2g and 

2
B1g

2
A1g transitions, indicating a square planar copper(II) complexes [55,70].The magnetic moments for all 

copper(II) complexes at room temperature are in the 1.66-1.74 B.M. range, indicating that, the complexes have octahedral or 
square planar geometry [71]. The apparent lower values of complexes (12) and (16) may be assigned to spin-spin interactions 
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take place between copper(II) ions through molecular interactions[71]. The absorption spectrum of manganese(II) complex (10) 

showed bands at 585 and 610 nm. These two bands can be assigned to 
5
B1g

5
Egand 

6
B1g

6
A2g transitions respectively, suggesting 

an distorted octahedral arrangement around the manganese(II) ion [72,73]. The magnetic moment value for the complex (10) is 

5.08 B.M., which is consistent with a high spin octahedral geometry around the  manganese(II) ion [74,72]. Diamagnetic 
cadmium(II), zinc(II), mercury(II), strontium(II), thallium(II) and silver(I) complexes showed only intraligand transitions and (LMCT) 
(Table 4). 

Table 4:- Electronic Spectra (nm) and Magnetic Moments (B.M) for the Ligand,(1) and its metal Complexes. 

Comp. No.  λmax (nm) eff(BM) 2/1 

(1) 290,315,350 - - 

(2) 290,310,330,450,560,610,720 4.98 1.18 

(3) 285,307,328,465,575,608,735 2.15 1.21 

(4) 285,305,325,495,550,615,740 3.05 1.2 

(5) 285,310,336,465,585,615 1.74 - 

(6) 285,295,325,365 Diamagnetic - 

(7) 290,315,327,435,575,620 1.63 - 

(8) 285,305,325,406,590,625 Diamagnetic - 

(9) 285 ,300,326 Diamagnetic - 

(10) 285,310,325,490,585,610 5.08 - 

(11) 285,300,335 ,480,570,610 3.88 - 

(12) 290,310,330,465,590,605 1.65 - 

(13) 290,310,335,490 ,550,620,715 4.74 - 

(14) 285,305 ,335 Diamagnetic - 

(15) 285,305,330 Diamagnetic - 

(16) 285,310,325 ,465,590,610 1.66 - 

(17) 285,305 ,340 Diamagnetic - 

(18) 285 ,305,335 Diamagnetic - 

(19) 285 ,305,335,410 2.03 - 
 

3.6. Electron spin resonance (ESR)  

        The ESR spectral data for metal complexes (2), (3), (5), (7), (8), (10), (11), (12), (13) and (16) are presented in table 5. 
Complex (3) showed broad signal in the low and high field regions Indicating spin-exchange interactions take place between 
Ni(II) ions which is confirmed by the magnetic moment value. The spectra of copper(II) metal complexes (5), (7), (12) and (16) 

are characteristic of species, d
9
 configuration and having axial type of a d(x

2
-y

2
) ground state which is the most common for 

copper(II) complexes [75,76]. The metal complexes showed g|| >> 2.0023, indicating octahedral geometry around the copper(II) 
ion [77].The expression G is related to g-values, G = (g||-2)/(g┴-2). If G > 4.0, then local tetragonal axes are misaligned parallel or 
only slightly misaligned and if G < 4.0, significant exchange coupling is present [78]. Metal complexes (12) and (16) showed 

values indicating spin–exchange interactions take place between the copper(II) ions, which is consistent with the of  magnetic 
moments values (Table 4). Also, the g||/A|| values are considered as a diagnostic of stereochemistry. The g||/A|| values lie just 
within the range expected for the octahedral metal complexes [79]. The orbital reduction factors (K||, K , K), which are a measure 
of covalencywere also calculated [80]. K values, for the copper(II) complexes (5), (7), (12) and (16), indicating covalent bond 

character [80]. Also, the g-values show considerable a covalent bond character. The in-plane σ- covalency parameter, α
2 

(Cu) 

suggests a covalent bonding. The complexes show 
 values indicating a covalency character in the in-plane - bonding. While 

2 for the complexes  indicating a covalent bonding character in the out of plane -  bonding except complexes (12) and (16) 

which indicate ionic bond character [81,78].The calculated orbital populations (a
2
d) for the copper(II) complexes indicate a d(x

2
-

y
2
) ground state [82]. Cobalt(II) complexes (2), (11) and (13) , Iron(II) complex (8) and manganese(II) complex (10), show 

isotropic spectra.  
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3.7. Thermal analyses (DTA and TGA) 

          The thermal data of metal complexes (3), (4), (8), (12), (13), (15) and (16) were presented in table 6. The thermal 

curves in the 27-800°C temperature range indicated that the metal complexes are thermally stable up to 40 °C. The weight 
losses recorded in the 70-90°C range is due to elimination of hydrated water molecules. Ni(II) complex (3) showed an 

endothermic peak at 50°C due to broken of the hydrogen bondings. Another endothermic peak was observed at 80°C, 
with 2.38% weight loss (Calc. 2.53%) corresponding to loss of two hydrated water molecules. The loss of coordinated 
water molecules was accompanied by three endothermic peaks at 120, 135, and 155 °C with weight losses 2.72%(Calc. 
2.59%), 4.1% (Calc. 3.99%) and 4.33% (Calc. 4.16%) which were assigned to removal of two, three and three coordinated 
water molecules respectively. The endothermic peak observed at 230°C, with 8.16%weight loss (Calc. 8.36%) is due to 
loss of one terminal coordinated SO4 group, whereas, the loss of the other terminal coordinated SO4 group was  
accompanied by an endothermic peak at 250°Cwith 8.84%weight loss (Calc. 9.13%). The endothermic peak observed at 
315°C, is corresponding to the melting point of the complex. Finally, the complex shows  multiple exothermic peaks at 370, 
390, 420, 450 and 500°C, with total 23.13%weight loss (Calc. 23.56%) corresponding to the thermal decomposition of the 
complexes with the eventually formation of three NiO molecules. Ni(II) complex (4) thermogram showed an endothermic 

peak at 45°C due to broken of the hydrogen bondings. An endothermic peak was observed at 80°C, with 6.33%weight 
loss (Calc. 6.35%) corresponding to loss of two hydrated water molecules. The endothermic peak observed at 150°C, with 
6.69%weight loss (Calc. 6.78%) is due to loss of two coordinated water molecules. The endothermic peak observed at 
360°C, is corresponding to melting point of the complex. Finally, the complex showed multiple exothermic peaks at 405, 
450, 485, 510 and 530°C, with total 14.72%weight loss (Calc. 15.0%) corresponding to thermal decomposition with 
eventually formation of one NiO molecule. The thermogram of Fe(II) complex (8) showed an endothermic peak at 50°C, 

due to broken of the hydrogen bondings. An endothermic peak was observed at 85°C, with 1.41% weight losses (Calc. 
1.29%) corresponding to loss of hydrated water molecule. The loss of coordinated water molecules was  accompanied by 
three endothermic peaks at 115, 125, and 155 °C with weight losses 2.81% (Calc. 2.61%),4.78% (Calc. 4.02%) and 
4.57% (Calc. 4.19%) which were assigned to removal of two middle, three terminal and three terminal coordinated  water 
molecules respectively. The endothermic peak observed at 250°C with 7.74%weight loss (Calc. 7.77%), was assigned to 
loss of one terminal coordinated SO4 group. The loss of other terminal coordinated SO4 group was accompanied with an 
endothermic peak at 300°C with 8.45%weight loss (Calc. 8.43%). An endothermic peak was observed at 325°C which 
could be assigned to the melting point. Finally, the complex shows multiple exothermic peaks at 350, 380, 450, 500 and 
610°C, with total 21.83% weight loss (Calc. 21.95%) corresponding to thermal decomposition with the formation of Fe3O4 

molecule. The thermogram of Cu(II) complex (12) showed an endothermic peak at 45°Cdue to broken of hydrogen 

bondings. The endothermic peak observed at 78°C, with 5.63%weight loss (Calc. 5.83%) was assigned to loss of two 
hydrated water molecules. Whereas the endothermic peak observed at 165°C, with 3.52% weight loss (Calc. 3.10%) was 
ascribed to loss of a coordinated water molecule. Another endothermic peak was observed at 235°C, with 11.27%weight 
loss (Calc. 11.01%), which is assigned to loss of coordinated NO3 group. The endothermic peak observed at 330°C, is 
corresponding to the melting point of the complex. The complex showed multiple exothermic peaks at 370, 410, 435 and 
500°C, with total 13.73%weight loss (Calc. 14.03%) corresponding to thermal decomposition with the final formation of 
one CuO molecule. The thermogram of Co(II) complex (13) showed endothermic peak at 45°C, due to broken of hydrogen 

bondings. Two endothermic peaks observed at 80°C and 90°C with 3.52%weight loss (Calc. 3.38%), corresponding to 
loss of two hydrated water molecules. The loss of two coordinated water molecules was accompanied by an endothermic 
peak observed at 130°C, with 3.24% weight loss (Calc. 3.49%). The melting point of the complex appears at 325°C as an 
endothermic peak. Multiple exothermic peaks were observed at 365, 450, 550 and 600°C with total 7.74% weight loss 
(Calc. 7.54%) due to thermal decomposition of the complex with the final formation of one CoO molecule. The thermogram 
of Zn(II) complex (15) showed an endothermic peak at 45°C, corresponding to broken of hydrogen bondings, whereas, the 

endothermic peak observed at 70°C, with 2.46% weight loss (Calc. 2.73%) was assigned to loss of two hydrated water 
molecules. The loss of two acetate groups was accompanied by two endothermic peaks at 210 and 225 °C with 
18.33%weight loss (Calc. 18.97%). An endothermic peak was observed at 345°C, corresponding to the melting point of 
the complex. Finally, multiple exothermic peaks was observed at 370, 390, 410, 450 and 510°C, with total 16.67%weight 
loss (Calc. 16.1%), assigned to thermal decomposition process with the formation of one ZnO molecule. The thermogram 
of Cu(II) complex (16) showed an endothermic peak at 50°Cdue to broken of hydrogen bondings, whereas the loss of one 

hydrated water molecule was accompanied with endothermic peak at 90°C with 1.41% weight loss (Calc. 1.27%).The loss 
of coordinated water molecules was  accompanied by three endothermic peaks at 130, 150, and 170 °C with weight 
losses 2.13% (Calc. 2.57%), 4.25% (Calc. 3.95%) and 3.83% (Calc. 4.11%) which were assigned to removal of two 
middle, three terminal and three terminal coordinated  water molecules respectively. An endothermic peak was observed 
at 215°C with 7.80% weight loss (Calc. 7.63%) which could be assigned to loss of a coordinated SO4 group, whereas, the 
loss the other sulfate group was accompanied with an endothermic peak at 230°C with 8.51% weight loss (Calc. 8.26%). 
The endothermic peak observed at 360°C was assigned to the melting point of the complex. Thermal decomposition of the 
complex was accompanied by multiple exothermic peaks at 390, 430, 510, 530 and 630°C with total 21.98% weight loss 
(Calc. 22.23%) with final formation of three CuO molecules. 
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Table 5:- ESR data for metal (II) complexes 

Complex g g giso
a 

A 

(G) 

A 

(G) 

Ais
b

o 

(G) 
Gc 

Exy 

(cm-1) 

Exz
 

(cm-1) 
K2 K2 K2 K 

g/A 

(cm-1) 
  

 -2 a2d(%) 

(2) - - 2.13 - - - - - - - - - - - - - - - - 

(5) 2.26 2.04 2.11 130 10 50 6.5 17094 21505 0.49 0.66 0.54 0.73 165 0.68 0.72 0.97 190.5 81 

(7) 2.22 2.07 2.12 180 15 70 3.14 17391 22988 0.71 0.75 0.74 0.86 123.3 0.88 0.80 0.85 126.6 54 

(8) - - 2.09 - - - - - - - - - - - - - - - - 

(10) - - 2.01 - - - - - - - - - - - - - - - - 

(11) - - 2.11 - - - - - - - - - - - - - - - - 

(12) 2.71 2.06 2.09 150 15 60 2.83 16949 21505 0.75 0.43 0.64 0.8 144.7 0.65 1.15 0.66 162.8 69.3 

(13) - - 2.09 - - - - - - - - - - - - - - - - 

(16) 2.18 2.05 2.09 125 12.5 50 3.6 16949 21505 0.62 0.45 0.56 0.75 171.6 0.59 1.05 0.76 127.1 54 
 

a) 3giso= g + 2g┴ b) 3Aiso =A + 2A┴        c) G = g -2 /g┴-2 
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Table 6:- Thermal analyses for metal (II) complexes 

No. 

 

Temp. 

(oC) 

DTA (peak)          TGA (Wt.loss 
%) Assignments 

Endo       Exo     Calc.  Found 

(3) 

 

50 Endo - - - Broken of H-bondings 

80 Endo - 2.53 2.38 Loss of (2H2O) hydrated water molecules 

120 Endo - 2.59 2.72 Loss of (2H2O) middle coordinated water molecules 

135 Endo - 3.99 4.1 Loss of (3H2O) Terminal coordinated water molecules 

155 Endo - 4.16 4.33 Loss of (3H2O) Terminal coordinated water molecules 

230 Endo - 8.36 8.16 Loss of coordinated SO4 group 

250 Endo - 9.13 8.84 Loss of coordinated SO4 group 

315 Endo - - - Melting point 

370,390,420,450,500 - Exo 23.56 23.13 Decomposition process with the formation of 3NiO 

 (4) 

 

45 Endo - - - Broken of H-bondings 

80 Endo - 6.35 6.33 Loss of (2H2O) hydrated water molecules 

150 Endo - 6.78 6.69 Loss of (2H2O) coordinated water molecules 

360 Endo - - - Melting point 

405,450,485,510,530 - Exo 15.0 14.72 Decomposition process with the formation of NiO 

 (8) 

 

50 Endo - - - Broken of H-bondings 

85 Endo - 1.29 1.41 Loss of (H2O) hydrated water molecule 

115 Endo - 2.61 2.81 Loss of(2H2O) middle coordinated water molecules 

125 Endo - 4.02 4.78 Loss of (3H2O) terminal coordinated water molecules 

150 Endo - 4.19 4.57 Loss of (3H2O) terminal coordinated water molecules 

250 Endo - 7.77 7.74 Loss of coordinated terminal SO4 group 

300 Endo - 8.43 8.45 Loss of coordinated terminal SO4 group  

325 Endo - - - Melting point 

350,380,450,500,610 - Exo 21.95 21.83 Decomposition process with the formation of Fe3o4 

(12) 

 

 

45 Endo - - - Broken of H-bondings 

78 Endo - 5.83 5.63 Loss of (2H2O) hydrated water molecules 

165 Endo - 3.10 3.52 Loss of coordinated H2O molecule 

235 Endo - 11.01 11.27 Loss of coordinated NO3 group 

330 Endo - - - Melting point 

370,410,435,500  Exo 14.03 13.73 Decomposition process with the formation of CuO 

         
(13) 

 

45 Endo - - - Broken of H-bondings 

80,90 Endo - 3.38 3.52 Loss of (2H2O) hydrated water molecules 

130 Endo - 3.49 3.24 Loss of (2H2O) coordinated water molecules 

325 Endo - - - Melting point 

365,450,550,600 - Exo 7.54 7.74 Decomposition process with the formation of CoO 

         
(15) 

 

45 Endo - - - Broken of H-bondings 

70 Endo - 5.51 5.35 Loss of 2(H2O) hydrated water molecules 

210,225 Endo - 18.97 18.33 Loss of coordinated 2(OAc) group 

345 Endo - - - Melting Point 
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370,390,410,450,510 - Exo 16.1 16.67 Decomposition process with the formation of ZnO 

45 Endo - - - Broken of H-bondings 

(16) 

 

50 Endo - - - Broken of H-bondings 

90 Endo - 1.27 1.41 Loss of hydrated H2O 

130 Endo - 2.57 2.13 Loss of (2H2O) middle coordinated water molecules 

150 Endo - 3.95 4.25 Loss of (3H2O) terminal coordinated water molecules 

170 Endo - 4.11 3.83 Loss of (3H2O) terminal coordinated water molecules 

215 Endo - 7.63 7.80 Loss of coordinated SO4 group 

230 Endo - 8.26 8.51 Loss of coordinated SO4 group 

360 Endo - - - Melting Point 

390,430,510,530, 
630 

- - 22.23 21.98 Decomposition process with the formation of 3CuO 

 

3.8. Biological studies 

3.8.1. Cytotoxic activity 

      The ligand and some metal complexes were evaluated for their cytotoxicity against two different tumor cell lines (HEP-
G2 and HCT-116) by MTT assay using Vinblastine as a standard drug. It is interesting to note that, the selected 
compounds showed cytotoxicity potential in the range of cancerous cell lines tested (Figure 3). The IC50 values derived 
from the experimental data were summarized in table 7. It was reported that, compounds exhibiting IC50 values more than 
10–25 µg/ml are treated as weak cytotoxic activities while compounds with IC50 values less than 5 µg/ml are considered to 
be very active. Those having intermediate values ranging from 5 to 10 µg/ml are classified as moderately active [83]. The 
invitro cytotoxicity values demonstrated that, the tested complexes have higher activity in comparison with that of the 
ligand against (HCT-116) tumor cell lines. Cu(II) complex (5) demonstrated very active cytotoxicity with IC50 values 2.76 
µg/ml, whereas Ni(II) complex (4) showed moderate cytotoxicity with IC50 values 12.2µg/ml, in the time that the ligand (1) 

recorded weak cytotoxicity with (IC50 values 20.1 µg/ml) comparing with the control. The enhancement of cytotoxic activity 
may be assigned to that the positive charge of the metal increases the acidity of coordinated ligand that bears protons, 
leading to stronger hydrogen bonds and enhancement of the biological activity [84,85]. It was shown also that, there is a 
positive correlation between the surviving fraction ratio of tumor cell lines and the metal complexesconcentrations . The 
biological assays of the metal complexes against (HEP-G2) tumor cell lines revealed that, Zn(II) complex (15) exhibits the 
highest inhibitory ability with  IC50 value equals 5.26 µg/ml. This value is slightly higher when compared with complex (14) 
(IC50 6.13 µg/ml). On the other hand Co(II) complex (2) recorded a weak cytotoxicity with (IC50 values 24.6 µg/ml) in 
comparison with the control drug. These findings suggest that both cupper(II) complex (5) and Zn(II) complex(15) exhibit 

promising potentials as an anticancer compounds against (HEP-G2andHCT-116) tumor cell respectively. (Figure 4, 5) 

Table 7. Cytotoxic activity (IC50) of selected metal complexes against human colon carcinoma cells (HCT-116 cell line) and 

hepatocellular carcinoma cells (HEPG-2 cell line). 

IC50 (µg/ml) 
Compound No. 

HCT-116 HEPG-2 

20.1 - [H2L] (1) 

- 24.6 [(L)Co(H2O)2].H2O (2) 

12.2 - [(L)Ni (H2O)2].2H2O (4) 

2.76  - [(L)Cu(H2O)2].2H2O (5) 

- 6.13 [(HL)2Cd(OAc)2].2H2O (14) 

- 5.26 [(H2L)Zn(OAc)2].2H2O (15) 

2.38 4.6  Standard 
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Figure 3: IC50 values of the ligand [H2L] and some metal complexes against human hepatocarcinoma (HEPG-2) 

and human colon cancer cell lines (HCT-116.) 
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Figure 4: Antiproliferative activity against human hepatocarcinoma (HEPG-2.) at different metal complexes 

concentrations. 
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4. Conclusion.   

        The newly synthesized Schiff base ligand derived from (1E, N'Z, N'Z)-N', N'-bis (2-hydroxybenzylidene)-2-
(naphthalen-1-yloxy) acetohydrazonohydrazide [H2L] act as bidentate or a tetradentatetridentate ligands, and in all 
complexes was coordinated through the azomethine nitrogen and phenolic oxygen groups to the metal ion. All the 
synthesized metal(II) complexes possessed an octahedral geometry except the sliver complex (6), copper complex (7) 
and cobalt complexes (11). The reasonable agreement between the theoretical and experimental data reflects to the great 
extent the suitability of the suggested structures. The invitro cytotoxicity values demonstrated that the tested complexes 
have higher activity than the ligand against (HCT-116). Cupper(II) complex (5) and Zn(II) complex (15) exhibit promising 
potentials as an anticancer compounds against (HCT-116 and HEP-G2) tumor cell respectively.  
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