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ABSTRACT 

In this work an extremal principle driving the far from equilibrium evolution of a system of structureless particles is derived 
by using the stochastic quantum hydrodynamic analogy. For a classical phase (i.e., the quantum correlations decay on a 
distance smaller than the mean inter-molecular distance) the far from equilibrium kinetic equation can be cast in the form 
of a Fokker-Plank equation whose phase space velocity vector maximizes the dissipation of the energy-type function, 
named here, stochastic free energy.  

Near equilibrium the maximum stochastic free energy dissipation (SFED) is shown to be compatible with the Prigogine’s 
principle of minimum entropy production. Moreover, in quasi-isothermal far from equilibrium states, the theory shows that, 
in the case of elastic molecular collisions and in absence of chemical reactions, the maximum SFED reduces to the 
maximum free energy dissipation.  

When chemical reactions or relevant thermal gradients are present, the theory highlights that the Sawada enunciation of 
maximum free energy dissipation can be violated.  

The proposed model depicts the Prigogine’s principle of minimum entropy production near-equilibrium and the far from 
equilibrium Sawada’s principle of maximum energy dissipation as two complementary principia of a unique theory where 
the latter one is a particular case of the more general one of maximum stochastic free energy dissipation. 

Following the tendency to reach the highest rate of SFED, a system relaxing to equilibrium goes through states with higher 
order so that the matter self-organization becomes possible. 
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INTRODUCTION  

The research in the field of order generation and matter self-assembling dates back to the thirties [1-8]. Various extremal 
principles have been proposed for the self-organized régimes governed by classical linear and non-linear non-equilibrium 
thermodynamic laws, with stable stationary configurations being particularly investigated.  

Nevertheless an organic understanding is still not available. In 1945 Prigogine [1,2] proposed the “Theorem of Minimum 
Entropy Production” which applies only to near-equilibrium stationary state. The proof offered by Prigogine is open to 
serious criticism [3]. Šilhavý [4] offers the opinion that the extremal principle of [near-equilibrium] thermodynamics does not 
have any counterpart for far from-equilibrium steady states despite many claims in the literature. 

 Sawada [5], in relation to the earth's atmospheric energy transport process, postulated the principle of largest amount of 
entropy increment per unit time. He cited the work in fluid mechanics by Malkus and Veronis [6] as having proven a 
principle of maximum heat current, which in turn is a maximum entropy production for a given boundary condition, but this 
inference is not logically ever valid. 

The rate of dissipation of energy appeared for the first time in Onsager's work [7] on this subject. An extensive discussion 
of the possible principles of extrema of entropy production and/or of dissipation of energy is given by Grandy [8]. He finds 
difficulty in defining the rate of internal entropy production in the general case, showing that sometimes, for the prediction 
of the course of a process, the extremum of the rate of dissipation of energy may be more useful than that of the rate of 
entropy production. 

Sawada and Suzuky [9] confirmed, both by numerical simulations and by experiments, the maximum rate of energy 
dissipation in electro-convective instabilities.  

Nowadays, the debate about the principle of maximum free energy dissipation (MFED) and the Prigogine one’s is still 
going on. 

An alternative approach to the far from equilibrium evolution can be obtained in term of Langevin equations that in some 
cases describe the underlying dynamics at a continuous coarse-grained scale. The Langevin equation can be derived by 
using different techniques, such as the Poisson transformation [10] and the Fock space formalism [11]. Occasionally, exact 
formulations exist for non-linear reaction kinetics and others few problems. Alternatively, a Langevin equation can be 
assumed on a phenomenological point of view where it is decided a priori what is pertinent to the approximated dynamics. 
In this context it is really difficult to have a rigorous Langevin description.  

The way out is to derive satisfactory Langevin equations from a microscopic model.  

In the present work, by using the stochastic quantum hydrodynamic analogy (SQHA) [12-15] as the microscopic model, the 
classical non-equilibrium kinetics has been derived for the macro-scale limit.  

The SQHA, where the structureless molecules are described by a pseudo-Gaussian wave function, allows deriving the far-
from-equilibrium phase-space evolutionary criterion for classical gas and fluid phases in term of maximum dissipation of 
an energy-based function.   

THE SQHA EQUATION OF MOTION 

The quantum hydrodynamic analogy (QHA) equations are based on the fact that the Schrödinger equation, 
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For the purpose of this paper, it is useful to observe that equations (1-3) can be derived by the following phase-space 
equations [15]  
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The Madelung approach, as well as the Schrödinger one, are non-local and are not able to give rise to local  limit.  

When fluctuations are added to the QHA equation of motion, the resulting stochastic-QHA (SQHA) dynamics shows that is 
possible to obtain a local dynamics on large scale, preserving the quantum behavior on a microscopic one. In a preceding 
paper [15] the author has shown that in presence of vanishing small stochastic Gaussian noise, the QHA motion equation 

(at first order of approximation in the noise amplitude   ) reads 
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where   is a measure of the vacuum noise amplitude (VNA) and  
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is the VNA variance, where the quantum correlation length c reads[15]  
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where 0n is obtained from the zero order of approximation equation (1).  

The phase space distribution form (9) imposing the condition Spqm q


 warrants the wave particle equivalence in 

the quantum limit.[15]. 

QUANTUM NON-LOCALITY LENGTH q  

In addition to the noise correlation function (12), to obtain the local form of equations (11-18) we need to evaluate the 
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For the interaction of particle pairs (e.g., mono-dimensional case, real gas or a chain of neighbors interacting atoms) 
expression (22) is quite manageable and leads to very good experimental confirmations [16].  

Macroscopic local limiting dynamics  

Given  L the physical length of the system, the macroscopic local dynamics is achieved for those problems that satisfy 
the condition 

     c  q  << L . 
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From the condition q  << L  it follows that [15]  
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where p is a small fluctuation of momentum and  
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Being also c << L , I* represents a small energy fluctuation due to the quantum potential [15]. 

 

THE KINETIC EQUATION FOR CLASSICAL GAS AND FLUID PHASES 

In appendix A the properties of the large-scale coarse-grained quantum mechanical distribution (9) are analyzed and 
shown to acquire the statistical character.  

As derived in appendix B, for a gas or mean-field fluid phases, we can describe our system by a single particle SQHA 

distribution )(1  from which we can extract the statistical single particle distribution s that obeys to the equation.  
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Equation (30) is basically the Fokker-Plank form of the Maxwell equation. The difference with the Boltzmann kinetic 

equation is that (30) does not give any information about the form of the (phase space) diffusion coefficient D .  

In order to obtain from (30) a closed kinetic equation, the standard approach is to introduce additional information about 
the diffusion coefficient.  The local equilibrium approximation is usually achieved by the semi-empirical assumption of 
linear relation between flows and fluxes.  

Here we use (30) since it holds even far from equilibrium and is more general than the Boltzmann kinetic equation (able to 
give the explicit form of the linear coefficients between flows and fluxes but just near local equilibrium). 
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The mean phase space molecular volume of WFM   

In order to grasp additional information from (30) we observe that (for gasses and meanfield fluids) the SQHA approach 
shows two competitive dynamics: (a) the enlargements of the molecular DF (given by (B.2- A.?)) between two consecutive 
collisions, (b) The diffusion of the molecules, in term of their mean position, as a consequence of the molecular coll isions 
(that cause the WFM collapse [16]). 

As consequence of free expansions and collapses, the pseudo-Gaussian molecular DF in the phase space cell   will occupy 

the mean volume  mV  that we pose 
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where N is the number of molecules in  .  

In the case of stationary states, of classical phases (i.e., c  and q << mean inter-particle distance) we can assume that 

  is proportional to the diffusive enlargement (a) of the WFM with (SQHA) diffusion coefficient  k2D )( , and 

proportional to the time between two consecutive collisions (that generates the collapse of the molecular wave function 
[?]).  Since the time between two consecutive collisions is inversely proportional to the phase space (molecular) diffusion 

coefficient D , we can formally write 
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where for brevity it has been posed )(
* D  'D  . As shown in appendix C, the absolute value of the constant '  leads 

to the re-definition (by a constant) of the free energy at thermodynamic equilibrium. Therefore, defining the constant of the 

free energy at thermodynamic equilibrium determines ' .  

Moreover, by using the definition of 
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Given that at thermodynamic equilibrium (in absence of external fields) there is the transnational invariance in the phase 

space, it follows that 0 , as well as *D = constant and hence 0 *]Dln[ .  

The same result holds if the vacuum fluctuations and the thermal ones are decoupled. In this case, we could assume 

 =constant independently by the thermodynamic conditions and hence 0 *]Dln[ even out of equilibrium.  

In the general case we have a system out of the thermodynamic equilibrium where the vacuum fluctuations and the 
thermal ones are coupled each other.   

The fact that the coupling between matter and vacuum exists is proven by the fact that if we try to reach the zero 
temperature T, by step of equilibrium, the asymptotical ending state with the T=0 is a non-fluctuating (quantum) state of the 

system that in the SQHA model can be achieved if and only if 0  in absence of vacuum fluctuations: if we diminish 

the thermal energy fluctuation (by step of equilibrium) we will also lower the vacuum ones. It is matter of fact that the open 
quantum phenomena are elicited by the temperature lowering. 

In the case of sufficiently weak radiative coupling we can write 
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FAR FROM EQUILIBRIUM RELAXATION AND MAXIMUM STOCHASTIC FREE 
ENERGY DISSIPATION IN STATIONARY STATES 

Even if the  -function is well defined far from equilibrium, the kinetic equations (43,C.1) without the initial and boundary 

condition of an assigned problem is just a symbolic equation. Nevertheless, the existence of the  -function allows the 

definition of a formal criterion of evolution.  

By writing the irreversible phase space velocity field as follows 
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an evolutionary principle along the relaxation pathway can be formulated in terms of dissipation of the  -function (named 

here normalized hydrodynamic free energy (NHFE) since at equilibrium it converges to the free energy 

normalized to kT (see appendix C).  

Given that, the total differential of the normalized hydrodynamic free-energy   can be written as a sum of two terms, such 
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as "dynamic differential" and 
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as "stochastic differential".  

Under the range of validity of equation (46) (i.e., structureless punt-like particles, interacting by L-J central symmetric 
potential that do not undergo to chemical reactions) the stochastic velocity vector evolves through a pathway that follows 

the  -function negative gradient so that  
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Sometime, some authors speak in term of energy dissipation,  so that in this case the criterion (50) reads 
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STABILITY AND MAXIMUM STOCHASTIC FREE ENERGY DISSIPATION IN QUASI-
ISOTHERMAL STATIONARY STATES 

 In order to elucidate the significance of the criterion given by (51), we analyze the spatial kinetics far and near equilibrium.  

5.1 Spatial kinetic equations  

By using a well known method [21] we transform the motion equation (43) into a spatial one over a finite volume V. 
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Given a quantity per particle 
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  












 pdn s 3        (53) 

and its first moment  

  















pdqqn s 3       (54) 

by using the motion equation (43) it is possible to obtain the spatial differential equation: 

  

  






































pd))}(OA(D{

pd}x{qnn

s

t
s

t H

32

3

1                            



   55) 

That by choosing  

kT ,         (56) 

where T is the “mechanical” temperature defined as  

 

)
k

V
m

pp

(
k

EE
T

i
ii

potcin







 2 ,   (57) 

where   is defined at thermodynamic equilibrium.  

 

 

After some manipulations (see appendix D) for a system at thermal equilibrium (i.e., small thermal gradients) but far from 
equilibrium in terms of concentrations and mechanical variables, at constant volume, we obtain 

10
33

  

  
1

                              

 















   












qdpd)
dt

d
(

)(
kT

dt

dTS

dt

)EE(d

dt

d

dt

d

V

ss

vol
s

intcinsup







(58) 

where 0  represents the “source” term 
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  












  }pd))(OA)(({ 322
0 1  ,   (59) 

and 1  the out of equilibrium contribution 

  

  
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




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
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
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H
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t
s

3

3
1

         

  





.    60) 

(where SSS s  and 
eqs   , where S  and 

eq  are the (local) equilibrium entropy and free energy, 

respectively) 

dqn
dt

d sup




 


        (61) 

where d  is a vector perpendicular to the infinitesimal element of the boundary surface, and where  

 






V

qd
t

)n(

dt

d 3
        (62) 

   

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
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s

V

ssvol
s
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k

qdpdqFS
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dTS 333    





  (63) 

where 

ss lnkS  .         64)   

  















pdqSqS sss 3 ,      
 
(65) 

where for potentials that are not function of momenta, the term )q(pF 


 can be brought out of the integral in (63) 

and where intE t and cinE  are the internal energy and the macroscopic kinetic energy of the system, respectively.  

Maximum free energy dissipation in far from equilibrium quasi-isothermal systems at 
constant-volume  

The importance of stationary quasi-isothermal states far from equilibrium comes from the fact that living systems operate in 
such a condition. 

If we consider the overall system (environment plus system) sometime the energetic reservoir is able to maintain the 
system (even for a long laboratory time scale) in a stationary state even the global system (system plus reservoirs) is 
relaxing toward the global equilibrium.  

 

Moreover, assuming that the system is at constant volume and the energetic reservoir is both at constant volume and 
thermally isolated (without loss of generality, we can assume the energetic reservoirs are much bigger than the system 
and that they work on it in a reversible manner) the decrease of reservoirs free energy is equal to the free energy 
transferred to the system by means of volume forces.  

Given that for stationary states in quasi-isothermal condition at constant volume (fixed wall) it holds  that 
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
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dTS vol
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    66) 

and  that 

0
dt

dEsup
         (67) 

dt

dTS

dt

dE

dt

d sup
s

supsup



=

dt

dTS sup
s

 ,      (68) 

where the suffix “sup” and “vol” refer to contributions coming from the boundary surface and volume of the system , 
respectively, from (58) it follows that 

qdpd)
dt

d
(

)(
kT

dt

SdT
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dTS

V

sssupsup 33
10   

1
   
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



















 (69) 

Moreover, by the quasi-isothermal condition we can infer that the local thermal equilibrium exists even if the local domains 

s
q are far from mechanical chemical equilibrium and hence and that   

00  ,         (70) 

0 SSS s
,        (71) 

0 eqs
 (71)        (72) 

and hence that 01  . So that (72) reads 

qd}pd)
dt

d
(

)(
kT{

dt

dTS

V

sssup 33  
1

    





















   (73) 

Moreover, assuming that the reservoir (free) energy resE  transferred to the system, 
dt

dEres , is then dissipated by the 

system in heat 
dt

dTSsources
 (reversibly transferred to the environment (defined positive outgoing) through the surface at 

constant temperature so that 

dt

dQ

dt

dTS supsup
 and 0



dt

SdT sup
) (74) 

 for the energy conservation it follows that 

dt

dQ

dt

dTS

dt

dTS

dt

dE supsupsourcesres      (75) 

and, finally, that 

qd}pd)
dt

d
(

)(
kT{

dt
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dt

dE

V

sssupres 33  
1

    













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





 (76) 

that for a stationary state far from equilibrium is maximum with respect the variations of 


sx .   
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Therefore, for a classical phase of molecules undergoing elastic collisions and without chemical reactions at quasi-
isothermal condition, the system finds the stationary condition by maximizing its free energy dissipation.   

Under the same conditions of validity of equation (76), Sawada [9] has shown and experimentally measured in the electro-
convective instability that when the steady state configuration is achieved the system reaches the maximum of free energy.  

Moreover, for stationary states far from equilibrium where the energy dissipation 
dt

dEres
cannot be controlled or known  

(76) simply reads  

qd}pd)
dt

d
(

)(
kT{

dt

TdS

dt

dTS

V

sssupsup 33  
1

    





















  (77) 

that represents the principle of “maximum heat  transfer” (i.e., 
dt

TdSsup
) given by of Malkus and Veronis [6] for fluid 

dynamics and showed holding in describing the atmosphere turbulence. 

Finally, it is worth mentioning that a basic difference exists between the present enunciation and the Sawada and the 
Malkus and Veronis ones. Here, the analytical calculations show that (76) is not of general validity but it holds only in the 
case of quasi-isothermal conditions for an ordinary real gas (with its fluid phase) made of structureless molecules (e.g., 
classical rigid-spheres) sustaining elastic collisions and not undergoing to chemical reactions.  

Actually, from the general form (69)  
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











 (78) 

 

maximum with respect the variation of 


sx , we can see that the condition of maximum heat transfer 
dt

dTSsup
 is not 

as general as the right side of (78) since both the terms 0 , 1  and 
dt

SdT sup
  are not every time null. As far as it 

concerns for the free energy dissipation we even have 
dt

dTS

dt

dE supres  . 

Minimum entropy production in stationary states at local-equilibrium 

By introducing (101) in (73) we obtain 
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that, since T is not function of time (in stationary states) leads to  
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qd}pd)
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





        (80) 

if we displace the system from equilibrium in a stationary condition by imposing an external constraint, we have 0 . 

Moreover, given that in a near-equilibrium state the variation of   happens on a distance much larger than the local 

statistical system, hence, we can consider   a locally constant field.  

Making reference to the locally constant field   , we can design //  as the component along this direction and 

  the component perpendicular to it.  
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If we are in a stationary condition at local equilibrium, the fixed external constraint maintains 0 //  constant, while 

  can fluctuate around zero such as fluct   0 , where fluct  represents the statistical fluctuations.  

Thence, being D
 
definite positive, and being //  fix, from the SFED it follows that  

0  



D|

t

d
| s

       (81) 

is minimum with respect the fluctuations of the system around 0  . Thence, for states at local equilibrium (80) 

represents the Prigogine’s principle of minimum entropy production.  

DISCUSSION AND CONCLUSIONS 

One important objection to the present work can come by asserting that equation (41) is equivalent to the introduction of 
the local equilibrium condition.   

If the local equilibrium exists, then  is small and (41) holds, but vice versa if the radiative coupling is null (i.e., 

 =constant and independent by  ), then the condition 0 *]Dln[  would apply whatever large is   and the 

system far from equilibrium. Therefore, the hypothesis of weak radiative coupling allows that the approximation (41) can be 
retained even if the local equilibrium condition is not achieved.  

The hydrodynamic free energy   and the hydrodynamic distribution function
s are well-defined in the far from 

equilibrium states. On this condition is hence possible to define a criterion that holds far from equilibrium. Once the 
evolution dynamics is defined by equations (37,41) then the principle of maximal dissipation (of the stochastic part of the 
hydrodynamic free energy) in far from equilibrium stationary states comes.  

This principle is not in contradiction with the preceding principles due to: 1) Prigogine, 2) Sawada and 3) Malkus and 
Veronis, but agrees with them clarifying their controversial relationships. The present model shows that in the case of a 
real gas or Marcovian fluids, with no chemical reactions at quasi-isothermal conditions, the principle disembogues into the 
maximum free energy dissipation one, given by Sawada, or into the principle of maximum heat transfer given by Malkus 
and Veronis. Contemporarily, for stationary states near-equilibrium, the theory shows that the principle leads to the 
Prigogine’s principle of minimum entropy production.  

The SQHA theory shows that the minimum entropy production and the maximum statistical free energy dissipation are two 
different principia (two extremal criteria defined respect two different variations) but both descend by a unique coherent 
approach.  

The proposed principle clearly shows that the energy (through dissipation) is the physical tool that can lead to the 
appearance of order. Far from equilibrium, any system, in order to dissipate as faster as possible its statistical free energy, 
follows a pathway where ordered configurations may exist as demonstrated by Sawada in the electro-convective 
experiments. 
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APPENDIX A 

From dynamics to statistics: the classic-stochastic and the quantum-deterministic aspects of 
the SQHA probability distribution  

The existence of the quantum non-locality length q and hence of a scale-transition between the quantum and the classic 

dynamics confers to the PTF of  (namely )(P  ) both the quantum and the statistical character.  

Once the )(P  of the SPDE (13) is defined, both the quantum wave equation on “microscopic” scale and the statistical 

distribution on huge-scale are defined.  

When the quantum coherence length c goes to infinity (with respect the scale of our system or description) )(P  tends 

to the Dirac function ( - (quantum)) so that  tends to (quantum) and the SQHA converges to the quantum mechanics. 

In this case, the PDF  has the full quantum meaning given by (4-5) and actually is a “quantum mechanical ” distribution. 

On the other hand, when q is very small compared to the physical length L of the problem (e.g., mean particle 

distance or free molecular path), the classical stochastic dynamics (24-29) arises.  

When we deal with a system of a huge number of (non-linearly interacting) particles with a finite interaction distance [41] 

(i.e, 0r for L-J potentials), each coarse-graining cell with a side 0r,L q
s

q   (containing a large number of 

molecules) can constitute a local system. This because in the thermodynamic limit (infinite system volume) the quantum 

correlations involve a small fraction of molecules in a thin layer at the 
s

q -boundary.  

Therefore, when superficial effects can be disregarded with respect to those of the bulk (i.e., thermodynamic limit) the 

overall system can be ideally subdivided into a large number of quantum uncorrelated randomly distributed 
s

q -

subsystems.  

In this case it is possible to write the statistical distribution of those 
s

q -copies in terms of operators applied to the 

“mother distribution” )(P  . This is warranted by the fact that once the evolution of the SQHA probability )(P  is 

defined, it also defines the evolution of the corresponding (statistical) distribution on large-scale (regardless the 
establishment of the local thermodynamic equilibrium).  

The coarse-grained SQHA statistical distribution  

Here, we derive the statistical distribution from the SHQA dynamics distribution by subdividing the system in cells of side 

s
q .  

In order to have independent 
s

q subsystems, in addition to the conditions: ( L
s

q   (where L is the 

physical length on molecular scale (e.g., the mean molecular distance)) and (2)
s

qq  , we need that the 

http://arxiv.org/abs/1107.4198
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molecules in 
s

q interact with the particles out of it, just through the border of 
s

q for a layer whose characteristic 

length is much smaller than 
s

q radius. This condition is satisfied for L-J intermolecular potentials where its range of 

interaction 0r results Lr 02 or even in gas Lr 02 . 

Thence, assuming both 
s

qq  and 
s

qL  , the particles on 
s

q border are an infinitesimal fraction 

of those ones contained in its volume. Hence, in the limit of infinite (sufficiently large) 
s

q  volume, the superficial 

effects (quantum ones included) can be disregarded so that the 
s

q domains tend to be de-coupled and quantum 

uncorrelated each other. 

Under these conditions, since the 
s

q -systems are constituted by a sufficiently large number of non-linearly interacting 

particles and, hence, classically chaotic, they can be assumed to evolve with random initial conditions because the 
correlation with their initial state decays quickly.  

Therefore, when the local equilibrium is set, the
 s

q -domains are random copies of each other and build up the grand 

canonical ensemble. 

For sake of completeness, it must be said that the condition q needed for obtaining the classical description allows 

the domains 
s

q to own a finite side.  

On the contrary, in the case of perfectly harmonic solids, the quantum potential range of interaction q is infinite and the 

local means cannot be defined. Since we require the 
s

q -cell length much larger than q , in this case it would 

comprehend the entire system and we cannot speak in term of local stochastic means but only in term of the quantum 
means of the entire system.  

Actually, for a real solid the intermolecular potential is of L-J type. In this case, the harmonic interaction extends itself to the 

nearest molecules but not to infinity and q is in the reality finite [16].  

We can warrant the above prescriptions by restraining ourselves to the sufficiently general case, to be of interest, of finite-
range potentials that have a rapid decreasing Mayers functions [18] as for gas and van der Waals fluids or, more generally 

for L-J potentials for which we have 
s

q Lr,  0230 [16]. 

If kN is the number of the groups of k-molecules in 
s

q  and kjhn the number of the groups of k-molecules in the 

domains )phpp)h(,qjqq)j((jh  1   1  contained in 
s

q , we obtain 
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where V is the system volume, i(k) is the index of the i-th group of k-molecules in the entire system and Pi(k) is the projector 
operator  for the i(k)-th group that reads  
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where 
!k)!kn(

!n
t


 3 . 

It must be said that being  the quantum probability (18), it implicitly accounts for the indistinguishability of particles.  

The density of states of groups of k molecules on phase space domain jh reads 
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It is worth noting that the distribution (A.4) is not generally a statistical distribution. It acquires the statistical character when 

the 
s

q -systems is constituted by a sufficiently large number of sub-systems 





h

h

jhj
s

q not–correlated 

each other evolving with random initial conditions (this can happen in a system of non-linear classically chaotic particles 

where 
s

qqandc q    ). 

Given the energy function for a group of k molecules  

 

)i(k

i

))k(i(n))k(i(n

i

)k(ik U
m

pp
EE  

2
 (A.5) 

 

where ))k(i(np is the momentum of the n-th molecule of the i-th group of k molecules and )i(kU is the potential energy 

of the i-th group of k molecules. Therefore, the mean value in jh follows    
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where  
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Moreover, defining the operator 
)k(ip

s such as    
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we can formally link the coarse-grained quantities to the “mother probability distribution”  in a synthetic manner as follows 
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and, finally,  
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The summation over all the configurations  with probability )',(P  leads to the re-defined quantity 
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In many macroscopic problems we can approximate the PTF )(P  as a -peaked function such as )(P   (’   ) so 

that (A.12-13) leads to (A.9,A.11). 

 

The local equilibrium limit  

As far as it concerns the above distribution (A.12) as well as the mean energy (A21), it is worth noticing that no hypothesis 
on thermodynamic equilibrium has been introduced to obtain them so far.    

If the characteristic length over which the thermodynamic gradients generate appreciable variations is much bigger than 

the system dimension, so that the equilibrium can be assumed, the 
s -domains in absence of external fields 

(otherwise appropriate thermodynamic potentials can be defined) become (random) copies of each others giving rise to the 
canonical ensemble. In force of this “equalization process” (when it happens), the coarse-grained quantity (A20-A21) can 

refer to those of the canonical ensemble of the 
s –random–copies, converging to the classical expressions of the 

statistics of equilibrium. By utilizing the definition of the partition function kZ  
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we obtain that 
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where 
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kk NN  and hence that
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Ideal gas  

For ideal gas (i.e., punctual particles with 0r   0) the only relevant distribution is for k = 1 so that (A.16) reads 
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Real gas 

 

For a real gas the relevant values of k are k = 1, 2, while for condensed phases k > 1 (practically, for L-J potentials with 
strong repulsive core, it can be taken values of k about those of the coordination number of the elemental cell).  

Given that the interaction distance for the Hamiltonian L-J potential is of order of 0r  as well as for the quantum pseudo-

potential (of order of qr 0 ) [16], in a sufficiently rarefied gas phase (i.e., qrL  0 ), particles can be assumed 

independent and the SQHA-WFM distribution can be factorized as 
i

i  and the one-particle group 

projector )(iP 1 reads 
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leading to 
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Using the definition of the projector operator )(iP 1 , the number of particles jhn1 in jh can be expressed as  
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with the normalization condition 1
33   ipdqd    i.  

The summation over all the configurations  with probability )',(P  leads to the re-defined quantities 
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APPENDIX B 

The SQHA single-particle distribution  

 

In the independent molecule description (that in the case of Lennard Jones potentials is possible when the range of 

quantum potential interaction (of order of 0r [16]) is smaller than the mean intermolecular distance) between two 

consecutive molecular collisions, we consider the SQHA equation (1,5) for the single molecule with the noise )t,q( 
  
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that can be re-cast in the form 
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where [17] 
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Discretizing the spatial coordinates by a cell of side L , with cL   , for the Markov process (B.3) we can write [17]    
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where )q(D  is defined positive as well as t),(qn . By comparing (B.7) with (B.8) we obtain 
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that after standard calculations [17] leads to 
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where  k2D )( .  

Moreover, given that the single molecule is submitted to the field of other ones collmfmol ppp


  

where mfp


  concerns the mean field of the far away molecules and collp


  concerns the field of the colliding 

molecule that comes out of the cloud and arrives at the interaction distance (for van der Waals fluids it is enough to 
consider just the interaction between couples of molecules [18] being three molecular collisions unlikely) we can write the 
SDE for the velocity as 
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where V is the mean-field potential of the cloud of molecules leading to the “mean field Hamiltonian”  

VHH           (B.14) 

Moreover, given that ),t,q(    and collp


  are independent (de-coupled) owing very a different time scale (the zero 

correlation time for the  –fluctuations and the molecular collision time   for collp


 ) the SDE (B.11) mediated over 

the zero mean  –fluctuations reads  
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owing the -driven noise ),t,q(    a zero-mean.  

Moreover, since the molecular dynamics in a L-J gas phase is highly chaotic, it is possible to assume that molecular 

collisions are not correlated and hence 


collx can be approximated as a white noise  
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leading to the Fokker-Plank equation that written in a phase space conservation equation that reads 
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Here, we derive the statistical probability density distribution *  in term of the single-particle SQHA equation of motion 

instead that by the particle point density distribution (derived by the classical motion of molecules). 

Given a non-linear classic system (no quantum correlations on the scale of molecular mean distance) [16] and hence 

ergodic, the phase space means 



 N

* , where N is the number of molecules in the phase space domain 

)p,q( , coincides with the time-means. 

In Appendix A is detailed how the SQHA “dynamical distribution”   leads to the statistical distribution 
s . 

By using the definition 
s  (see Appendix A) for the single molecule statistical distribution, we have 
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where the operator )(iP 1  reads 
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Equation (B.22) for real gas (and Markovian van der Waals fluids), using the independent particle description with 
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Thence, (B.18-B.19) read 
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The equality 
s*   follows by the absence of quantum correlation between particles and by the ergodicity, that for 

systems of a huge number of particle in the SQHA model is warranted by the non-linearity that is necessary to the 
establishing of the classical behavior [15-16]  

For a (classical) gas phase made up of structureless point-like particles interacting by central symmetric potential that do 
not undergo to chemical reactions (particles do not have bounded states (e.g., Lennard-Jones potential with small well, 
compared do the mean energy of particles) so that molecules with internal structure are not created) (B.25) can be further 
simplified by excluding the cross-correlations concerning different co-ordinates components, namely 
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Disregarding the out of diagonal terms of the diffusion matrix ijD , (B.25) reads 

s
)i(

s

,L
Dxlim

s
qc








      (B.27) 

 

APPENDIX C 

Thermodynamic equilibrium 

Let’ find now the equilibrium quantities 
s and TE

TE

DDlim 
      

. 

In order to obtain that, we firstly observe that for structureless particles undergoing elastic collisions (e.g., no chemical 

reactions) in absence of external field H is conserved quantity and hence it holds 0



H

x (the average “< >” is 

done on the -fluctuation of each single molecule). By introducing this information in equation (43) for stationary states we 
obtain  

dt

d
))(OA(D)xx(

s
sss

t sH


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
21   (C.1) 

From (C.1) it immediately follows that the thermodynamic equilibrium (i.e., 0
dt

d s
) is obtained for 0 . 

Being the thermodynamic equilibrium the stationary state with null dissipation (i.e., 0




t

s
, 0

dt

d s
and 

0 ) by (53-54)  it follows that  

limTE 01 2 


))(OA(Dx
s

       (C.2) 

 

and, being 0D , therefore, in absence of external field (for isotropic condition) that 
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TE

 
      

        (C.3) 
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where lim TE indicates the establishing of local thermodynamic equilibrium.  

Moreover, given from (38)  that 
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it follows that 

]
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and hence 
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where  

eqs SSlim
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
      

         (C.7) 
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that by posing  

 

0
*3  ]Dhln[          (C.9) 

 

reads 
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S
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leading to 

 

]
k

S
exp[D

eq

TETE  0          (C.11) 

 

Finally, as well known [ ], to derive the Maxwell-Boltzmann equilibrium distribution from the Fokker –Plank one additional 
information has necessarily to be introduced (i.e., the linear empirical relations between gradients and fluxes (i.e., null 
fluxes for null gradients).  

In the present approach, we deduce the equilibrium condition by using a similar but less stringent condition (i.e., a sort of  

“equalization condition ” on the phase space WFM volume  ) assuming that at equilibrium there is translation invariance 

of   and zero fluxes of it. 
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Given the thermodynamic equilibrium is the stationary state with null dissipation (constant free energy) and null net fluxes 

of free energy at the boundary (i.e., 0


dt

d sup
), by  

 (58) it follows that 
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and that 

)  

            dt

dTS

dt

dE
(lim

dt

dT
klim

vol
s

TETE




.    (C.13) 

 

That, integrating   (C.13) and by using (C.10), finally leads to 
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and, hence, to  
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and to  
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where TE represents the thermodynamic free energy.  

Moreover, by using (C.1) the above relations  lead to  
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that is the Maxwell-Boltzmann equilibrium distribution.  

Finally, it is interesting to see that the variation of the proportionality constant  in (34) brings to the change of the 
equilibrium free energy by a constant. In fact, given that 

]'exp['h]exp[h TETE
eq  33         (C.18) 

it follows that 
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Out of local thermodynamic equilibrium 
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with 
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APPENDIX D 

Spatial kinetic equations  

By posing  
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From which we obtain that 
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Where the force on unit volume F  reads )q(pF 


and for Hamiltonian potentials that are not function of momenta 
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Moreover, given that for elastic molecular collisions (e.g., no chemical reactions) H  (41) is conserved so that  
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with the help of (48,52),  it follows that 
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we obtain that the first term of the right side reads 
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where it has been used the relation 

SSS s   

and hence that 
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and that 
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providing that 
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Moreover, by using (57) it follows that 
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that ordered gives  
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where 
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that finally reads 
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Given that  for independence of molecular velocity and acceleration we can set the variance  
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Integrating (D.19) over a volume V and using the Gauss theorem, we find: 
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If the integration is done on the volume of the system the first term is the total time derivative of the SQHA- free energy 

 such as: 

 

dt

d
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the second term represents that one that leaves the system due to the molecular flow through the boundary (positive 
outgoing)  that, it results 
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The third term represents the  -variation due to the volume force of the external reservoirs due to the flux of particles 
and entropy that respectively read 
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Hence, at constant volume we obtain 
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