
ISSN 2321-807X 

719 | P a g e                                                 N o v e m b e r  2 6 ,  2 0 1 3  

X-ray Structure Refinement and Vibrational Spectroscopy 
of Ca8Gd2 (PO4)6 O2 

R. Ayadi, M. Boujelbene* and T. Mhiri 

Laboratory of the Physico-Chemistry of Solid States. LR11 ES51. of Sfax. Road of Soukra km 4. Sfax3071. 
Tunisia. 

Email: rayda_ayadi @yahoo.fr 

M. Boujelbene 

Laboratory of the Physico-Chemistry of Solid States. LR11 ES51. of Sfax. Road of Soukra km 4. Sfax3071. 
Tunisia. 

* Corresponding author: m_boujelbene2010 @yahoo.fr 

T. Mhiri 

Laboratory of the Physico-Chemistry of Solid States. LR11 ES51. of Sfax. Road of Soukra km 4. Sfax3071. 
Tunisia. 

Email: tahermhiri@yahoo.fr 

Abstract 

The present paper is interested in the study of compounds from the apatite family with the general formula Ca10 (PO4)6A2. 
It particularly brings to light the exploitation of the distinctive stereochemistries of two Ca positions in apatite. In fact, Gd-
Bearing oxyapatite Ca8 Gd2 (PO4)6O2 has been synthesized by solid state reaction and characterized by X-ray powder 
diffraction. The site occupancies of substituents is 0.3333 in Gd and 0.3333 for Ca in the Ca(1) position and 0. 5 for Gd in 
the Ca (2) position.  Besides, the observed frequencies in the Raman and infrared spectra were explained and discussed 
on the basis of unit-cell group analyses. 
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1. Introduction  

The structure of apatite Ca10 (PO4)6A2, A= F, OH, O, Cl, … apatite in the space group P63/m allows a wide range of cation 
substitution [1-16].  

A compact arrangement of  PO4 tetrahedrons constitutes the skeleton of this structure which exhibits two kinds of tunnels 
parallel to the c-axis. 

The first is occupied by four M (1) cations at 4f sites, along a three –fold axis. These cations are coordinated by nine 
oxygen atoms. The second tunnel which is the larger is occupied, on its periphery, by the six other M (2) cations at 6h 
sites, along a six-fold axis. These M (2) cations which are surrounded by six oxygen atoms and one Y atom two alternated 
equilateral triangles at level ¼ and ¾ centred on a six – fold axis where the Y atoms are located. 

 The formula assigned to the compound had to be [Ca4]
4f

 [Ca4.4Bi1.6]
6h

 (PO4)6[O1.8]
2a

 with space group P63/m. Thus the 
lower oxygen content (1.8) compared to stoichiometric expected(2) (see the procedure), confirmed the volatilized of 
bismuth. Therefore, 16% de bismuth was volatilized. The refined results indicated that the Bi

3+
 ions were mainly located in 

Ca (2) site on 6h position and formed two triangles that rotated 60° from the c-axis. The oxygen atom O4 was located in 
the center of these Bi-triangles [17]. 

The compounds Bi Ca4 (PO4)3 O and La Ca4 (PO4)3O have been reported recently [18]. They are isostructural with Bi Ca4 
(VO4)3 O [19].Which is closely related to the apatite structure except for the number of cationic sites available. Bi Ca4 
(VO4)3 O crystallizes in hexagonal symmetry with space group P63/m have only two types of cationic sites [20,21] where 
as Bi Ca4 (VO4)3 O is reporter to have three types of cationic sites viz; Ca(1), Ca(2) and Ca (3). The formula can be written 
as Ca (1)0.9 Bi (1)0.1 Ca (2)2.1 Bi (2)0.9 Ca (3) (VO4)3O. The Ca (1) and Ca (3) atoms occupy 2b and Ca (2) occupies 6c 
crystallographic sites. Both Ca (1) and Ca (2) atoms have 6- fold coordination and Ca (3) atom has 9-fold coordination with 

respect to oxygen. Ca (2) has an irregular hexa- coordinated polyhedron and the O (3) atom in the coordination sphere 
does not belong to any of the PO4 groups Bi atom occupies both  Ca(1) and Ca (2) sites with more occupancy in the low 
symmetry Ca (2) site. 

In the present work, we propose to investigate the structure of the phosphate apatite and the vibrational spectroscopy of 
the Ca8Gd2 (PO4)6O2 compound. 

2. Experiment 

The Ca8Gd2 (PO4)6O2 compound was obtained by the solid-state reaction of Gd2O3(Merck. 98. 9%), P2O5 (Merck. 98. 9%) 
and CaCO3 (Cerac. 99.95%), as shown in the following formula: 

 Gd2O3+ 3 P2O5 +8 CaCO3 → Ca8 Gd2 (PO4)6 O2 + 8 CO2 (gaz) 

The resultant powder was subsequently heated at 740°C during 12 h, in slow cooling conditions. 

X-ray powder diffraction (XRD) pattern was determined by means of a Panalytical XPERT PRO MPD diffractometer 
equipped with a detector X'cellerator operating with a secondary monochromator and using a CuKα radiation source (Kα1 
= 0.15439 nm and Kα2 = 0.15440 nm). The diffraction pattern was recorded under ambient atmosphere over an angular 
range of 5-80° (2θ) with a step length of 0.033° (2θ). 

The Fourier transform infrared (FT-IR) measurements were performed at room temperature. On a JASCO FT-IR 420 
spectrometer over the 4000 - 400 cm

-1
 region, in a KBr pellet. Furthermore, Raman spectra were measured with a 

LABRAMHR 800 triple monochromatic at room temperature under a 50 × LF objective microscope, a  He-Ne ion laser 
operating at about 300 mW was used (on the triple) as an excitation source (514.532 nm), with a spectral steps of 3 cm

-1
. 

3. Results and discussion 

3.1 Refinement of the structure 

The structure of the compounds in the solid are closely related to those of the common phosphate apatite. They have 
been frequently described in the literature [22]. They have been commonly determined by X-Ray powder diffraction using 
the Rietveld method refinement stating from the isostructural phase Ca10 (PO4)6F2. 

The analysis of the final adjustments carried out for the observed and calculated diagrams indicated that there were non-
indexed lines. The latter could be identified as minor impurities. The latter could be identified as Ca3 (PO4)2.  

The final results of this refinement are presented in Table. 1, Table. 2 (for the structure parameters), Table. 3 (for the 
atomic positions) and Table. 4 (the bond length distances and angles). Besides Fig. 1 shows the observed, calculated and 

different X-ray profiles of the powder diffraction of these apatite phosphates. 
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Table. 1. Details of powder X- ray data collection and structure refinement of Ca8Gd2 (PO4)6O2. 

Formula  Ca8 Gd2 (PO4)6 O2 

Halfwidth parametres U = 0.019711 

V = -0.052960 

W = 0.035341 

Parametres asymetry  Asy1 : - 0.02951 

Asy 2 : -0.01187 

 Reliability Factors  RF : 0.055 

RB : 0.1152 

 RP : 0.132 

 RWP : 0.133  

 

Table. 2. Analytical data and lattice parameters of Ca8Gd2 (PO4)6O2. 

System Hexagonal 

 Cell  parameters (Å) a=b=9.418(7)Å                                                                                                 
c=7.65(5) Å  

α = ß = 90°  et     γ = 120° 

Volume (Å), Z V=587.73(8) Å
3 

Z = 2 

Zéro point 0.023 

Count time [sec / step] 35 s 

 

 

Table. 3. Atomic coordinates, occupancy factors after Riveted refinement of Ca8Gd2 (PO4)6O2 

  
 

 

 

 

Atom  X Y z  Ueq B exp 

Ca (1) 1/3 2/3 -0.00096  (4)   0.01426 (19) 1/3 

Gd (1) 1/3 2/3 -0.00096 (4)    0.01426 (19) 1/3 

Ca (2) 0.01231 (9) ¼ ¼ 0.0401 (2) 0.5 

Gd (2) 0.01231 (9) ¼ ¼ 0.0401 (2) 0.5 

P 0.39224(4)      0.36716(5)     ¼    0 .0350 (13) 0.5 

O (1) 0.3499 (9) 0.4975(9)  ¼ 0.0075 (11) 0.5 

O (2) 0.5969 (9) 0.4688 (7) ¼ 0.0075 (11) 0.5 

O (3) 0.34489(5)      0.26913 (5)     0.07354(8)      0.0075 (11) 0.5 

O (4) 0.00000           0.00000 0.32595(10) 0.0075 (11) 1/3 
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Table. 4. Selected bond lengths (A°) and bond angles (°) in Ca8Gd2 (PO4)6O2. 

Atom  Bond lengths (Å) 

Ca(1)-O2 2.556(4) 

Ca(1)-O3 2.836(5) 

Ca(1)-O1 2.550(4) 

Ca(1) -O1 2.547(6) 

Ca(1)-O3 2.836(5) 

Ca(1)-O2 2.556(5) 

Ca(1)-O2 2.553(5) 

Ca(1)-O3 2.832(5) 

Ca(2)-O3 2.600(5) 

Ca(2) -O2 2.403(4) 

Ca(2)-O3 2.600(8) 

Ca(2)-O3 2.687(8) 

Ca(2)-O3 2.687(8) 

Ca(2)-O4 2.372(8)  

 

Atoms  Bond lengths (Å) Angles(°) 

P-O1 1.451(4) O3-P-O2               104.12 (8)           

P-O2 1.583(6)  O3-P-O3              118.85(9)             

P-O3 1.557(3) O3-P-O1               109.71(5)              

P-O3 1.557(3) O2-P-O1                109.81 (8)              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 1. The final Rietveld refinement plot of the Ca8Gd2 (PO4)6O2. 
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3.2. Discussion 

 Fig. 2.  as shows the analysis of the tetrahedra revealed that the average P-O distance (1.537 (5) Å) is nearly the same 
than the average values observed in oxyapatite (1.535(4) Å). The angles O-P-O were, on the other hand varied between 
104.12° and 118.85°, with an average value (109. 71°). This is very close to the one of a uniform tetrahedron (109.47°).  

The cations M (1) (Ca1/Gd1) were coordinated to nine oxygen anions belonging to six distinct tetrahedral. Each 
polyhedron was linked to three PO4 tetrahedra via corners and to three other tetrahedra via edges (Fig. 3.). The M (2) 
(Ca2/Gd2) cations are inserted into six -fold sites that constituted the walls of the tunnels. Each polyhedron was linked to 
four PO4 tetrahedra via corners and to one PO4 via edge and two of the free oxygen O4 (Fig. 4.). 

In the case of the M (1)-O distances, the nine distances have an average value of 2.658(5) Å. which is slightly larger than 
the one observed in calcium-Fluorapatite (2.414(13) Å). In the case of the M (2)-O distances, the average value is 
2.558(4) Å, which is similar than in calcium Fluorapatite 2.535(12) Å [23]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 2.  Perspective view of Ca8Gd2 (PO4)6O2. 

 

 

 

 

 

 

 

 

 

 

 

Figure.3. Coordination of the metal M (1). 
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Figure.4. Coordination of the metal M (2). 

 

4. Spectroscopy analysis 

The IR and Raman spectra are shown in Fig. 5 and Fig. 6 respectively. The spectral data and proposed vibration 
assignment is listed in Table. 5. As shown in the Raman spectrum. One strong band at 963 cm

-1
, was observed, which 

can be attributed to ν1 (PO4). The position of these bands were similar to those (933 and 963 cm
-1

) previously reported by 
Toumi [24]. The weaker peaks observed at 1040, 1058 and 1082 cm

-1
 and those recorded at 539, 607 and 642 cm

-1
 which 

can be accredited to the asymmetric stretching ν3 and the asymmetric bending modes ν4 of PO4 groups, respectively. They 
were observed at 575/600 cm

-1
 and at 545/575 cm

-1
 in Pb10 (PO4)6F2 and Ca10 (PO4)6F2 [25], respectively. Regarding the 

weak lines observed at 432 and 445 cm
-1

. They could be assigned to the symmetric bending ν2 mode.  
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Figure. 5. Infrared spectrum of Ca8Gd2 (PO4)6O2. 
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Figure. 6. Raman spectrum of Ca8Gd2 (PO4)6O2. 

 
 

Table. 5. The External modes Raman and IR of Ca8Gd2 (PO4)6O2. 
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5. Conclusion 

The results from X-ray refinement has shown that the formula assigned to the new Gd substituted Ca-apatite was Ca8Gd2 

(PO4)6O2. The analysis of data from vibrational spectroscopy has also provided support for the high symmetry P63/m 

space group.  
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