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ABSTRACT 

The nanoreactor effect consisting in sufficiently high rate increase of a cation diffusion flux in bifunctional cation 
exchangers based on cis-metacyclophanoctol  has been found. The solutions of the fundamental differential equation of 
cation diffusion in bifunctional cation exchangers containing sulfonic acid and phenol ionogenic groups by means of the 
spherical layer and plane sheet models are presented for a variety of initial and boundary conditions with constant diffu-
sion coefficient. 
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1. INTRODUCTION  

A nanoreactor is a nanosized container used for accommodating chemical reactions [1]. Nanoreactor  increases the rate 
of diffusion with respect to bulk reaction  due to the short pathway that reagent molecules need  to follow to meet each 
other [1]. Cis-metacyclophanoctol molecule consisting of great hydrophobic cavity and the upper hydrophilic rim including 
eight hydroxylic groups [2] is a typical nanoreactor.  Especially it is true for reactions associated with the self-assembly 
mechanism of proton transfer within the molecule [3].  

New network functional polymers were synthesized   by connection of  cyclophanoctols to cross-linked polysterene matrix 
[4], by catalytic resol polycondensation  of cis-tetramethylmetacyclophanoctol or cis-tetraphenylmetacyclophanoctol with 
formaldehyde [5-8]. Immobilized cis-metacyclophanoctol derivatives were proposed as nanoreactors for catalytic hy-
drogenation processes [9] and cation exchangers [5,10,11]. The structure of an elementary unit (Figure 1) of network 
polymers received by  polycondensation of cis-metacyclophanoctol derivatives with formaldehyde is given in  [7]. 
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Fig 1: An elementary unit of network polymers based on cis-metacyclophanoctol derivatives 

 

As was previously reported in [7], bifunctional polymers 1 and 2 contain strongly acidic SO3H groups which dissociate with 
the formation of free protons over a wide pH range (0-14), and weakly acidic phenol OH groups. Monofunctional polymers 
3 and 4, include only weakly acidic phenol OH groups. The thermodynamics and kinetics of ion exchange in polymers       
1 - 4 based on cis-metacyclophanoctol were investigated in [12-16]. It was shown [14-16] that the limiting stage of ion 
exchange kinetics is diffusion of ions in the polymers. 

The purpose of the present work is  mathematical description of cation flux in bifunctional polymers containing strongly 
and weakly acidic groups, particularly  in bifunctional sulfonated polymers 1 and 2 based on cis–metacyclophanoctol. 

2. MATERIAL AND METHODS 

2.1. Synthesis 

Polymer 1 and 2 were produced by sulfonatation of monofunctional polymers 3 and 4 on according to the procedure [8].  
The total dynamic ion-exchange capacities (in equiv. per 1 kg of the polymer in the H form dried at 105°С of the polymers) 
were 6.0 and 5.65 for polymers 1 and 2 respectively. The contents of acidic SO3H groups in polymers 1 and 2 were 1.86 
and 2.45 equiv. per 1 kg of the dry H form of polymer. 

2.2. Kinetic studies  

For kinetic studies the selection of spherical granules and the determination of their sizes were performed using the IMTs 

10050, A microscope. Polymer granule size distribution corresponded to a normal (Gaussian) distribution. The particle 
radius calculated as an arithmetic average of the size of 1000 spherical granules was (1.02 ± 0.53) ·10

–4
 m. 

The kinetics of ion exchange was studied by the dynamic thin-layer method [17] at 298 K by sorption from an infinite 
volume of electrolyte solutions with concentrations of 0.01, 0.03, 0.05 and 0.1 mol/dm

3
. 

2.3. Calculation details 

Molecular structure of the repeating unit of polymers was optimized in terms of enthalpy of formation by the semiempirical 
PM6 method within the MOPAC 2009 program, ion exchange kinetics and diffusion coefficients were calculated by  
iteration method within the MathCad 7 program.  All calculations are fulfilled on Intel (R) Core(TM)2 Duo T7300 processor. 
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3. THEORY   

3.1. Ion exchange processes 

The following ion exchange processes take place in bifunctional polymers 1 and 2:  
with participation of  sulfonic acid groups 

             HCatSOLHOCatHSOLHO
33

 (I) 

with participation both  sulfonic acid and phenol OH groups 

O.HCatSOLOCatOHCatСatSOLHO
233

   (II) 

Here L - fragment  of  elementary unit of polymer based on cis-metacyclophanoctol. 

In bifunctional polymers 1 and 2 it is possible to obtain phenolate LO
-
Cat

+
 as a sum of processes (I) and (II). In 

monofunctional polymers 3 and 4 ion exchange process (III) take place only with phenol OH groups.  

O.HLOCatOHCatLHO
2

   (III) 

To choose the optimal technique of obtaining of phenolate of  Cat
+
O

-
-L it is necessary to compare the rates and 

mechanisms of processes (I) - (III).  

3.2. Fundamental diffusion equation 

The fundamental diffusion equation (1) in the case of constant diffusion coefficient and spherical symmetry  is applied [18] 
if diffusion of ions in polymers is rate limiting stage of  ion exchange 
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Where D – diffusion coefficient of the species; С – current concentration of the species in a polymer; r – radius-vector; t –
time. Let us consider the solution of equation (1) for processes (I) - (III). 

3.3. Solution of the diffusion equation  for сation exchange process (I) in polymers 1 
and 2 with participation of sulfonic acid groups  

Early we investigated [15] the kinetics of cation exchange process (I) with participation of sulfonic acid groups of polymers 
1 and 2. The  expression   
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for the transformation degree (F) of ion exchanger [17] describes experimental data for exchange of protons by metal 

cations  from SO3H  groups  of  polymers  [15]. Here, Mt - the amount  of  cations sorbed  at  time t;  M - equilibrium ion 
exchange capacity; Dw - effective diffusion coefficient in polymer, r0- average radius of spherical particle of polymer. The 
values of effective diffusion coefficient of cations in sulfonated polymer 2 based on cis-tetraphenylmetacyclophanoctol,  

calculated with  probability 0.9 by equation (2), are in the (1.9 ÷ 2.1)10
-11

 m
2
/s interval. 

3.4. Solution of  the diffusion equation for сation exchange process (II) in polymers 1 
and 2 with participation both  sulfonic acid and phenol OH groups 

Before the beginning of process (II) bifunctional polymers 1 and 2 already contain Cat
+ 

whose concentration is equal to 

that of 

3
SO  groups.   In process (II) the ion exchange of protons of phenol OH groups by Cat

+
 takes place. The rate of 

process (II) with participation of polymers 1 and 2 is controlled by H
+ 

and Cat
+
 interdiffusion in a spherical particle of a 

polymer.  

3.4.1. Effective diffusion coefficient  

According to diffusion mechanism of process (II) for constant diffusion coefficient DH  of free  protons,  the flux equation  

СatwСat
CgradDJ   (3) 

is obtained [19].  Here,                     ,
H

ar

a

w
D

KC

K
D


  at rСat CC  ,                                                             (4) 

Сat
J - diffusion flux  of cations, Ка - dissociation constant of  phenol OH groups in  a polymer, Cr - general concentration of 

fixed ionogens  (ionized and not ionized hydroxyl  groups) in a polymer. 

Since swelling and hydration values of studied polymer 2 upon conversion (II) remain constant (30 mol H2O per 1 equiv. of 
total capacity of polymer), it can be to assumed that the effective diffusion coefficient in polymer Dw in equation (3) is 
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constant. Let us calculate its value.  We take DH = 10
-9

 m
2
/c [19,20]; Сr= 110

3
 mol/m

3
.  The value of Ka 10

-6
 mol/m

3
 is 

obtained by the data [7] of potentiometric titration  of sulfonated polymers 1 and 2.  Thus  Dw which was calculated using 
equation (4) is equal to 10

-18
 m

2
/s. 

3.4.2. Spherical layer model for particle of polymer 1 or 2  

We assume that the spherical particle of polymer 1 or 2 should consist of a set of spherical layers.  CatSO
3

 groups are 

located on the outer surface of each spherical layer while phenol OH groups nearest to them are on its inner surface 

(Figure 2). The diffusion flux of Cat
+
 through a spherical layer passes the distance between CatSO

3
and phenol ОН  

groups (Figure 2). 

Fig 2: The diffusion flux of Cat
+
 through a spherical layer in bifunctional polymer  2 

For non-steady state the solution of diffusion equation (1) can be obtained by Laplace transforms or a method of 
separation of variables [21] in case diffusion coefficient is constant. If  the surface r = a is maintained at C1, and and r = b 
at C2, and the region a ≤ r ≤ b is initially at C0, the solution [21] of equation (1) is the expression  
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*
t
M  denotes the total amount of Cat

+
, which accumulates in the layer after time t. *

t
M  was obtained [21] by integrating of 

expression (5). When  С0 = 0,  С1 = 0  
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If '


M  denotes the quantity of Cat

+
, which has entered the layer after infinite time, then 
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Based on the proposed model, the transformation degree in the spherical particle consisting of a set of spherical layers 
and  the transformation degree in the spherical layer are the same. The transformation degree in time t is   
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(8) 

Equation (8) is transformed into equation (2) if а = 0; b = r0. 

The dependences of the transformation degree from   2/12)/( abtD
w

  are shown in Figure 3 for different values of b/a.  

The top curve corresponds to solid sphere (a = 0), bottom - to plane sheet (b/a=1, r >> (b - a)). As can be seen from the 
Figure 3, the bottom curve describes the behavior of our system, it covers the whole range of experimental data of cation 
sorption  from alkaline solutions with the participation of the hydroxyl groups of sulfonated polymer 2. Consider the data of 
ion exchange kinetics  at  polymer 2 based on  cis-tetraphenylmetacyclophanoctol according to the theory of diffusion in a 
plane sheet. 
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Fig 3: F  vs    2/12)/( abtD
w

 .  Curves – calculations by equation (8); dots – experimental data: 1 - cation sorption 

from  0.1 mol/dm
3
  NaOH solutions; 2 - cation sorption from 0.03 mol/dm

3
  NaOH solutions; 3 - cation sorption 

from 0.05 mol/dm
3
  LiOH solutions by bifunctional polymer 2 (process (II)) 

 

3.4.3. Diffusion in a plane sheet for polymer particle  

If  r >> (b – a), the spherical layer of polymer  2 can be regarded as a plane sheet  or membrane, in which CatSO
3

groups 

are located on the outer surface of a plane sheet  while phenol OH groups nearest to them are on its inner surface. 
Consider the case of diffusion through a plane sheet or membrane of thickness l  with constant  diffusion coefficient Dw, 
whose surfaces, x = 0, x = l, are maintained at constant concentrations C1, C2  respectively,   a plane sheet is set initially at 
a uniform concentration C0.  

It was shown [21] for non-steady state that the concentration of the species in a plane sheet   is given by  
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According to [21] the transformation degree in time t is 
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Note that equation (8) is transformed into equation (10)  if  r >> (b – a). The experimental data F(t) are well approximated 
by the equations (8) or (10), if  Dw is equal to 10

-18
 m

2
/s. 

3.5. Process (III). Cation - exchange on phenol hydroxyl groups of polymer 4  

As was shown [19] the rates of ion exchange processes with participation of weakly acid ion exchangers are controlled 
either by interdiffusion of  H

+
 ions and sorbed Cat

+
 cations or by diffusion of ОН

–
 anions in polymer. In this case the rate of 

the process (III) is controlled by diffusion of ОН
–
 anions in a polymer 4. The known [19] equation (11)  
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describes experimental data  [14] of ion-exchange rates in polymer 4 in all researched range of concentrations. Here DOH - 

diffusion coefficient  of ОН
– 

anions in polymer, 0

OH
C  - concentration  of  ОН

–
 anions on the surface of  a spherical particle 

of a polymer.  

4. RESULTS AND DISCUSSION 

According to equation (3), at constant diffusion coefficient, the diffusion flux depends only on concentration gradient. In 
monofunctional cation exchangers the value of the concentration gradient is determined by the change in the 
concentration of a diffusing component at a macroscopic distance from the outer surface of the ion exchange particle to its 
center. In bifunctional cation exchangers (polymer 1 and polymer 2) the cation diffusion flux passes the distance between 

CatSO
3

 and phenol ОН groups. It is considerably less than the dimension of the ion exchange particle. In the repeating 

unit of polymer 2 the calculated distance is several nanometers (Figure 4). Based on the proposed model the length of 
diffusion path, i.e. (b – a) in equation (8), or l in equation (10) equal to 30 nm. Large concentration gradient will increase 
the rate of the process (II). 

Half-transformation periods of time (t at F = 0.5) calculated from the experimental  data  [14-16] are given in the Table 1. 
As we seen from the table the process (I) of  ion exchange H

+
– Cat

+
 
 
with participation of sulfonic acid groups of polymer 2 

has the highest rate, the  process (III) of sorption of cations  Cat
+
 from alkaline solutions with participation phenol           

OH groups of polymer 4 has the lowest rate. 

Table1. Half-transformation periods of ion exchange in cation exchangers based on cis-metacyclophanoctol 

Polymers Process Ionogenic groups 
t, s 

at F = 0.5 

Bifunctional polymer 2 I strongly acidic SO3H groups 16 

Bifunctional polymer 2 II strongly acidic SO3H groups, weakly acidic phenol OH groups 50 

Monofunctional polymer 4 III weakly acidic phenol OH groups 9500 

 

Comparing the rates of ion exchange processes  (II) and (III) with participation of weakly dissociating ionogenic groups at  
bifunctional and monofunctional cation exchangers, we find out the nanoreactor effect that consists in hundredfold 
increase in ion exchange rate on bifunctional cation exchangers. The cup of bifunctional cis-

tetraphenylmetacyclophanoctol, which contains as strongly acidic SO3H groups and weakly acidic phenol OH groups 
(Figure 4) immobilized in the network polymer phase, acts as nanoreactor.  

Fig 4: The repeating unit of polymer 2 molecular structure minimized by the semiempirical PM6 method within the 
MOPAC 2009 program 

 

5. CONCLUSION 

The solutions of the fundamental differential equation of cation diffusion were used for investigation of ion exchange 
kinetics in sulfonated polymers based on cis-metacyclophanoctol. The mathematical model explaining the nanoreactor 

effect in bifunctional cation exchangers was proposed. It predicts considerable improvement of the kinetic characteristics 

S    C     O    H 
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of cation exchangers containing weakly dissociating ionogenic groups when strong acidic functional groups are introduced 
into these cation exchangers. This effect holds good for both bifunctional polymers based on derivatives of cis-

metacyclophanoctol and other bifunctional cation exchangers (for example Amberlite IRA-100 type) for producing  ion-
exchange membranes and selective sorbents. 
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