

An Efficient Isocyanide-Based Three-Component Synthesis of Novel Ketenimines

Hamideh Emtiazi and Mohammad Ali Amrollahi*

Department of Chemistry, College of Science, Yazd University, Yazd. Iran, P.O.Box 89195-741 *Corresponding author: mamrollahi@yazd.ac.ir

ABSTRACT

This study provides a description of an efficient and simple procedure for the synthesis of dimethyl 2-(9-aryl)-3,3,6,6-tetramethyl-1,8-diox-1,2,3,4,5,6,7,8-octahydroacridin-10(9H)-yl)-3-((cyclohexylimino)methylene)succinate via a one-pot three-component reaction of cyclohexyl isocyanide, dimethyl acetylenedicarboxylate and hexahydroacridine-1,8(2H,5H)-diones in CH_2CI_2 at room temperature. Short reaction times, good to high yields and the novelty are the remarkable advantages of this work.

Keywords: Hexahydroacridine; acetylenedicarboxylate; isocyanide; one-pot

Council for Innovative Research

Peer Review Research Publishing System

Journal: Journal of Advances in Chemistry

Vol. 10, No. 3 editorjaconline@gmail.com www.cirjac.com

1. INTRODUCTION

Multicomponent reactions (MCRs) are special type of synthetically useful organic reactions in which three or more different starting materials react to give a final product in a one-pot procedure [1-3]. MCRs have drawn high efforts in recent years, because they increase the efficiency by combining several operational steps without isolating the intermediates or changing the reaction conditions. This reduces the reaction time and saves both energy and raw materials, promoting the green chemistry [4-6]. Isocyanide-based multicomonent reactions (IMCRs) are especially important in this area due to the adventages that they offer to the field of combinatorial chemistry [7, 8]. Ketenimine derivatives are reactive synthetic intermediates, which react readily with a wide range of nucleophiles, electrophiles or radicals to afford the corresponding nitrogen-containing heterocycles [9, 10]. They also undergo many pericyclic reactions such as electrocyclic ring closures, [2+2] and [4+2] cycloaddition reactions [11-13]. Ketenimine derivatives have been prepared *via* various procedures such as imidation of ketene precursors [14], dehydrohalogenation of imidoyl halides under basic conditions [15], treatment of nitriles with a Brønsted base followed by substitution reaction [16], and the reaction of isocyanides, acetylenic esters, and various compounds as proton source [17-21]. Herein, we report synthesis of novel ketenimines *via* a one-pot three-component reaction of cyclohexyl isocyanide, dimethyl acethylendicarboxylate and hexahydroacridine-1,8(2H,5H)-dione in CH₂Cl₂ at room temperature.

2. EXPERIMENTAL

Products were characterized by FT-IR, ¹H-, and ¹³C-NMR spectra. FT-IR spectra were run on a Bruker, Eqinox 55 spectrometer. ¹H-, and ¹³C-NMR spectra were obtained using Bruker Avance 400 MHz spectrometers (DRX). Melting points were determined by a Büchi melting point B-540 B.V.CHI apparatus. Elemental analyses were performed using a Costech ECS 4010 CHN analyzer. Column chromatography was performed on silica gel (230–400) mesh. Analytical TLC was performed on pre-coated plastic sheets of silica gel G/UV-254 of 0.2 mm thickness.

General procedure for the synthesis of hexahydroacridinedione derivatives (3a-j, Table 2).

A mixture of an aldehyde (1 mmol), dimedone (2 mmol, 0.280 g), ammonium acetate (1.2 mmol, 0.092 g) and Mg(ClO₄)₂ 8H₂O (0.025 g) was stirred under solvent-free condition at 80 °C for 30 min. After completion of the reaction, for isolation of catalyst, the mixture was dissolved in hot CHCl₃ and filtered. The solvent of the resulted filtrate was evaporated and the pure product was obtained by recrystalization from ethanol.

Typical procedure for the synthesis of ketenimine derivatives (4a-j, Table 2).

To a magnetically stirred solution of 3,3,6,6-tetramethyl-9-phenyl-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione (1 mmol) and dimethyl acetylenedicarboxylate (1 mmol) in dry CH_2Cl_2 (3 mL) was added a solution of cyclohexyl isocyanide (1 mmol) in dry CH_2Cl_2 (2 mL) dropwise at room temperature over 10 min and the mixture was stirred at room temperature for 4 h. After completion of the reaction as indicated by TLC, the solvent was removed under reduced pressure, and dimethyl 2-((cyclohexylimino)methylene)-3-(3,3,6,6-tetramethyl-1,8-dioxo-9-phenyl-1,2,3,4,5,6,7,8-octahydroacridin-10(9H)-yl)succinate (4a, Table 2) was separated by silica gel column chromatography using a hexane/ethyl acetate (70:30) as eluent.

Dimethyl-2-((cyclohexylimino)methylene)-3-(3,3,6,6-tetramethyl-9-(3-nitrophenyl)-1,8-dioxo-1,2,3,4,5,6,7,8-octahydroacridin-10(9H)-yl)succinate (4b; Table 2, Entry 2):

Yellow solid; mp 189-190 °C. IR: $v_{max} = 2934$, 2858, 2056, 1744, 1694, 1635, 1577, 1528, 1436, 1349, 1220, 732 cm⁻¹. ¹H-NMR (400 MHz, DMSO-d₆): $\delta = 0.95$ (s, 3H), 0.97 (s, 3H), 1.00 (s, 3H), 1.03 (s, 3H), 1.07-1.76 (m, 10H), 2.14-2.25 (2d, J = 16.0 Hz, 4H), 2.31 (d, J = 16.4 Hz, 2H), 2.43 (d, J = 16.0 Hz, 2H), 3.60 (s, 3H), 3.76 (m, 1H), 3.81 (s, 3H), 5.28 (s, 1H), 5.74 (s, 1H), 7.22 (t, J = 7.6 Hz, 1H), 7.65 (d, J = 8.0 Hz, 1H), 7.83 (d, J = 8.4 Hz, 1H), 7.90 (s, 1H). ¹³C-NMR (100 MHz, DMSO-d₆) $\delta = 24.0$, 25.1, 26.4, 27.3, 29.2, 32.3, 33.5, 40.1, 40.9, 49.7, 50.4, 52.1, 53.5, 57.1, 61.1, 114.9, 116.1, 121.1, 122.5, 128.5, 135.2, 147.2, 151.7, 152.6, 169.1, 172.0, 196.0. Anal. calc. for C₃₆H₄₃N₃O₈ (643.31): C 66.96, H 6.71, N 6.51; found: C 66.6, H 6.5, N 6.8.

Dimethyl-2-((cyclohexylimino)methylene)-3-(9-(4-fluorophenyl)-3,3,6,6-tetramethyl-1,8-dioxo-1,2,3,4,5,6,7,8-octahydroacridin-10(9H)-yl)succinate (4c; Table 2, Entry 3):

Yellow solid; mp 161-162 °C. IR: $v_{max} = 2932$, 2079, 1742, 1692, 1649, 1435, 1219 cm⁻¹. ¹H-NMR (400 MHz, DMSO-d₆): $\delta = 1.00$ (s, 3H), 1.04 (s, 3H), 1.08 (s, 3H), 1.13 (s, 3H), 1.18-1.82 (m, 10H), 2.38 (d, J = 16.0 Hz, 2H), 2.44 (d, J = 16.0 Hz, 2H), 2.56-2.62 (2d, J = 16.0 Hz, 4H), 3.72 (s, 3H), 3.85 (m, 1H), 3.89 (s, 3H), 5.25 (s, 1H), 5.81 (s, 1H), 6.79-6.83(m, 2H), 7.18-7.21 (m, 2H). ¹³C-NMR (100 MHz, DMSO-d₆) $\delta = 23.0$, 24.6, 25.1, 26.3, 29.2, 30.9, 33.1, 40.0, 40.8, 49.9, 50.56, 52.1, 53.5, 56.9, 63.9, 114.5, 116.5, 129.3, 130.9, 145.8, 152.2, 156.7, 163.5, 165.3, 196.0. Anal. calc. for C₃₆H₄₃FN₂O₆ (618.31): C 69.88, H 7.00, N 4.53; found: C 71.2, H 7.1, N 4.4.

Dimethyl-2-(9-(4-chlorophenyl)-3,3,6,6-tetramethyl-1,8-dioxo-1,2,3,4,5,6,7,8-octahydroacridin-10(9H)-yl)-3-((cyclohexylimino)methylene)succinate (4d; Table 2, Entry 4):

Yellow solid; mp 171-173 °C. IR: $v_{max} = 2930$, 2074, 1737, 1693, 1629, 1574, 1435, 1362, 1217, 1014, 851 cm⁻¹. ¹H-NMR (400 MHz, DMSO-d₆): $\bar{\delta} = 1.00$ (s, 3H), 1.04 (s, 3H), 1.08(s, 3H), 1.13 (s, 3H), 1.17-1.84 (m, 10H), 2.22-2.34 (2d, J = 17.2 Hz, 4H), 2.36-2.45 (d, J = 16.0 Hz, 4H), 3.72 (s, 3H), 3.85 (m, 1H), 3.89 (s, 3H), 5.24 (s, 1H), 5.80 (s, 1H), 7.16 (d, J = 8.8 Hz, 2H), 7.83 (d, J = 8.4 Hz, 2H). ¹³C-NMR (100 MHz, DMSO-d₆) $\bar{\delta} = 24.0$, 25.1, 26.3, 27.2, 29.3, 31.2, 33.1, 40.0, 40.9, 49.8, 50.5, 52.1, 53.5, 56.9, 64.4, 115.5, 117.1, 127.9, 131.3, 143.5, 151.1, 152.3, 164.1, 169.8, 195.9. Anal. calc. for

C₃₆H₄₃ClN₂O₆ (634.28): C 68.07, H 6.82, N 4.41; found: C 67.7, H 7.1, N 4.5.

Dimethyl-2-(9-(3-bromophenyl)-3,3,6,6-tetramethyl-1,8-dioxo-1,2,3,4,5,6,7,8-octahydroacridin-10(9H)yl)-3-((cyclohexylimino)methylene)succinate (4e; Table 2, Entry 5):

Yellow solid; mp 185-187 °C. IR: $v_{max} = 2932$, 2856, 2076, 1742, 1681, 1632, 1470, 1363, 1220 cm⁻¹. ¹H-NMR (400 MHz, DMSO-d₆): $\bar{\delta} = 0.90$ (s, 3H), 0.95 (s, 3H), 0.99 (s, 3H), 1.04 (s, 3H), 1.08-1.98 (m, 10H), 2.24 (d, J = 16.0 Hz, 2H), 2.30 (d, J = 16.0 Hz, 2H), 2.39 (d, J = 16.4 Hz, 2H), 2.51 (d, J = 16.0 Hz, 2H), 3.65 (s, 3H), 3.75 (m, 1H), 3.80 (s, 3H), 5.23 (s, 1H), 5.72 (s, 1H), 6.90 (t, J = 8.0 Hz, 1H), 7.60 (d, J = 7.6 Hz, 2H), 7.28 (br, 1H). ¹³C-NMR (100 MHz, DMSO-d₆) $\bar{\delta} = 22.7$, 25.2, 26.6, 27.3, 29.0, 29.7, 30.2, 31.4, 33.2, 40.9, 49.8, 50.5, 53.6, 57.0, 61.1, 116.6, 119.1, 122.1, 126.8, 129.3, 130.9, 147.3, 151.3, 152.3, 165.8, 168.8, 196.0. Anal. calc. for C₃₆H₄₃BrN₂O₆ (678.23): C 63.62, H 6.38, N 4.12; found: C 63.8, H 6.5, N 3.9.

Dimethyl-2-((cyclohexylimino)methylene)-3-(3,3,6,6-tetramethyl-1,8-dioxo-9-(p-tolyl)-1,2,3,4,5,6,7,8-octahydroacridin-10(9H)-yl)succinate (4f; Table 2, Entry 6):

Yellow solid; mp 165-167 °C. IR: $v_{max} = 2927$, 2854, 2077, 1741, 1696, 1634, 1588, 1509, 1437, 1363, 1221, 762 cm⁻¹. ¹H-NMR (400 MHz, DMSO-d₆): $\bar{o} = 0.93$ (s, 3H), 0.94 (s, 3H), 0.98 (s, 3H), 1.03 (s, 3H), 1.12-1.76 (m, 10H), 2.12 (s, 3H), 2.12-2.24 (2d, J = 16.0 Hz, 4H), 2.28 (d, J = 16.0 Hz, 2H), 2.32 (d, J = 16.4 Hz, 2H), 3.63 (s, 3H), 3.80 (s, 3H), 3.89(m, 1H), 5.14(s, 1H), 5.72(s, 1H), 6.83 (d, J = 8.0 Hz, 2H), 7.03 (d, J = 8.0 Hz, 2H). ¹³C-NMR (100 MHz, DMSO-d₆) $\bar{o} = 21.0$, 24.0, 25.1, 26.5, 27.3, 29.7, 31.2, 33.2, 40.8, 42.3, 49.9, 50.6, 52.1, 53.5, 56.8, 63.8, 117.5, 127.7, 128.5, 134.9, 142.0, 150.8, 151.8, 167.8, 170.0, 196.2. Anal. calc. for C₃₇H₄₆N₂O₆ (614.34): C 72.29, H 7.54, N 4.56; found: C 71.9, H 7.5, N 4.9.

Dimethyl-2-((cyclohexylimino)methylene)-3-(9-(4-hydroxy-3-methoxyphenyl)-3,3,6,6-tetramethyl-1,8-dioxo-1,2,3,4,5,6,7,8-octahydro acridin-10(9H)-yl)succinate (4g; Table 2, Entry 7):

Yellow solid; mp 160-162 °C. IR: $v_{max} = 3411$, 2926, 2075, 1742, 1630, 1451, 1364, 1220 cm⁻¹. ¹H-NMR (400 MHz, DMSO-d₆): $\delta = 0.87$ (s, 3H), 0.95 (s, 3H), 0.99 (s, 3H), 1.04 (s, 3H), 1.09-1.75 (m, 10H), 2.10-2.14 (m, 4H), 2.29 (d, J = 16.0 Hz, 2H), 2.36 (d, J = 16.4 Hz, 2H), 3.60 (s, 3H), 3.75 (m, 1H), 3.88(s, 3H), 3.95(s, 3H), 5.11(s, 1H), 5.72(s, 1H), 6.38 (dd, J = 8.0 Hz, J = 1.6 Hz, 1H), 6.53 (d, J = 8.0 Hz, 1H), 6.96 (d, J = 2.0 Hz, 1H). ¹³C-NMR (100 MHz, DMSO-d₆) $\delta = 22.7$, 24.0, 25.1, 26.4, 27.4, 29.7, 30.9, 31.5, 33.1, 40.8, 49.9, 52.2, 53.5, 55.9, 56.9, 64.1, 113.5, 115.9, 119.3, 130.9, 137.2, 143.56, 145.7, 150.9, 152.0, 163.7, 169.9, 196.2. Anal. calc. for C₃₇H₄₆N₂O₈ (646.33): C 68.71, H 7.71, N 4.33; found: C 68.6, H 7.5, N 4.6.

Dimethyl-2-((cyclohexylimino)methylene)-3-(9-(4-methoxyphenyl)-3,3,6,6-tetramethyl-1,8-dioxo-1,2,3,4,5,6,7,8-octahydroacridin-10(9H)-yl)succinate (4h; Table 2, Entry 8):

Yellow solid; mp 159-160 °C. IR: $v_{max} = 2930$, 2855, 2075, 1742, 1696, 1633, 1577, 1508, 1437, 1363, 1263, 1220, 874 cm⁻¹. ¹H-NMR (400 MHz, DMSO-d₆): $\delta = 0.82$ (s, 3H), 0.95 (s, 3H), 0.99 (s, 3H), 1.04 (s, 3H), 1.12-1.78 (m, 10H), 2.07 (d, J = 16.8 Hz, 2H), 2.15 (d, J = 16.4 Hz, 2H), 2.20-2.28 (2d, J = 17.2 Hz, 4H), 3.67 (s, 3H), 3.75 (s, 3H), 3.80 (m, 3H), 3.88 (s, 1H), 5.08 (s, 1H), 5.98 (s, 1H), 6.68 (d, J = 8.4 Hz, 2H), 7.21 (d, J = 8.4 Hz, 2H). ¹³C-NMR (100 MHz, DMSO-d₆) $\delta = 23.7$, 25.3, 26.6, 29.4, 29.7, 31.4, 32.0, 32.4, 33.0, 39.4, 50.5, 52.8, 52.9, 53.6, 55.2, 63.7, 115.1, 123.9, 129.9, 138.0, 145.9, 147.6, 157.9, 164.2, 165.0, 195.5. Anal. calc. for C₃₇H₄₆N₂O₇ (630.33): C 70.45, H 7.35, N 4.44; found: C 70.7, H 7.2, N 4.7.

Dimethyl-2-((cyclohexylimino)methylene)-3-(9-(3,4-dimethoxyphenyl)-3,3,6,6-tetramethyl-1,8-dioxo-1,2,3,4,5,6,7,8-octahydroacridin-10(9H)-yl)succinate (4i; Table 2, Entry 9):

Yellow solid; mp 177-179 °C. IR: $v_{max} = 2934$, 2070, 1744, 1701, 1632, 1439, 1221 cm⁻¹. ¹H-NMR (400 MHz, DMSO-d₆): $\delta = 1.04$ (s, 3H), 1.06 (s, 3H), 1.08 (s, 3H), 1.13 (s, 3H), 1.27-1.83 (m, 10H), 2.24-2.47 (m, 8H), 3.66 (s, 3H), 3.77 (s, 3H), 3.84 (s, 3H), 3.88 (s, 3H), 3.97 (m, 1H), 5.22(s, 1H), 5.81 (s, 1H), 6.61 (s, 2H), 6.98 (s, 1H). ¹³C-NMR (100 MHz, DMSO-d₆) $\delta = 24.0$, 25.1, 26.4, 27.5, 29.4, 29.7, 30.7, 33.2, 40.1, 40.8, 49.9, 50.6, 52.0, 53.5, 55.9, 56.8, 64.1, 112.2, 115.8, 117.3, 119.0, 137.9, 147.0, 148.3, 150.9, 152.0 166.7, 169.9, 196.2. Anal. calc. for C₃₈H₄₈N₂O₈ (660.34): C 69.07, H 7.32, N 4.24; found: C 68.9, H 7.0, N 4.5.

Dimethyl-2-((cyclohexylimino)methylene)-3-(9-(4-(dimethylamino)phenyl)-3,3,6,6-tetramethyl-1,8-dioxo-1,2,3,4,5,6,7,8-octahydroacridin-10 (9H)-yl)succinate (4j; Table 2, Entry 10):

Yellow solid; mp 156-157 °C. IR: $v_{max} = 3400, 2983, 1697, 1665, 1607, 1488, 1364, 1175, 1137, 1058, 897, 767 cm⁻¹. ¹H-NMR (400 MHz, DMSO-d₆): <math>\delta = 0.84$ (s, 6H), 0.96 (s, 6H), 1.00-1.77 (m, 10H), 2.04-2.27 (m, 8H), 2.79 (s, 6H), 3.66 (m, 1H), 3.75 (s, 3H), 3.88 (s, 3H), 5.05 (s, 1H), 5.98 (s, 1H), 6.52 (d, J = 8.8 Hz, 2H), 7.14 (d, J = 8.4 Hz, 2H). ¹³C-NMR (100 MHz, DMSO-d₆) $\delta = 23.7, 25.3, 26.8, 29.0, 29.8, 32.0, 37.1, 38.5, 40.8, 49.6, 52.8, 52.9, 54.9, 56.1, 59.2, 63.5, 115.3, 123.9, 128.9, 134.2, 145.5, 147.8, 149.1, 164.3, 165.1, 195.5. Anal. calc. for C₃₈H₄₉N₃O₆ (643.36): C 70.89, H 7.67, N 6.53; found: C 71.2, H 7.5, N 6.9.$

3. RESULTS AND DISUSSTION

The hexahydroacridindione derivatives were synthesized from the reaction of dimedone, aldehyde and ammonium acetate in the presence of $Mg(CIO_4)_2 8H_2O$ (Scheme 1).

R: C6H5, 3-NO2C6H4, 4-FC6H4, 4-CIC6H4, 3-BrC6H4, 4-MeC6H4, 4-OH-3-MeOC6H3 4-MeOC6H4, 3,4-(MeO)2C6H3, 4-N(Me)2C6H4

Scheme 1

Cyclohexyl isocyanide and dimethyl acetylenedicarboxylate in the presence of hexahydroacridinediones as NH-acids undergo a smooth 1:1:1 addition reaction in CH₂Cl₂ at room temperature to produce ketenimine derivatives. The structures of the products were assigned on the basis of IR, ¹H-, and ¹³C-NMR. The IR spectra of **4a** exhibited a strong absorption band for the ketenimine moiety at about 2083 cm⁻¹ and for the carbonyl groups at 1745 and 1692 cm⁻¹. The ¹H-NMR spectrum of **4a** exhibited four single sharp lines for four methyl groups of dimedone ($\delta = 1.01, 1.03, 1.08, 1.12$), three multiplet for the five CH₂ of cyclohexyl ring ($\delta = 1.27$ -1.84), a multiplet for four CH₂ of dimedone ($\delta = 2.26$ -2.47), two singlet for two methyl groups in methoxy groups ($\delta = 3.71, 3.89$), a multiplet for N-CH cyclohexyl proton ($\delta = 3.97$), a singlet for Ph-CH proton ($\delta = 5.28$), and a singlet for N-CH proton ($\delta = 5.82$) and two triplet and one doublet for five protons of phenyl ring ($\delta = 7.03, 7.11, 7.22$). The ¹³C-NMR spectrum of that ketenimine exhibited 25 sharp signals. ¹H- and ¹³C-NMR spectra of the crude mixture clearly indicate that the formation of the product leads to one diastereoisomer. Our attempts to detect the second diastereoisomer in the reaction mixture were not successful.

For optimizing the experimental conditions, the reaction between cyclohexyl isocyanide, dimethyl acethylendicarboxylate and 3,3,6,6-tetramethyl-9-phenyl-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione was considered as a model reaction. To find the best solvent, several classic solvents were employed as media. The best solvent in terms of reaction yield and rate was found to be CH_2Cl_2 (**Table 1**).

Entry	Solvent	Yield(%)
1	THF	70
2	Acetone	60
3	CH ₂ Cl ₂	80
4	MeCN	40
5	EtOH	30

Table 1. Optimizations of the reaction conditions for one-pot synthesis of ketenimines

Using these optimized reaction conditions, we extended our study to different hexahydroacridinediones to prepare a series of ketenimine derivatives (**Table 2**). For different substrates, the reaction could be completed in 4 h with high yields, with the substrates having either electron-donating groups or electron-withdrawing groups.

ISSN 2321-807X

Table 2. One-pot three-component synthesis of various ketenimines at room temperature

Although the mechanism of the reaction has not yet been established experimentally, the formation of the product can be rationalized as outlined in the **Scheme 2**.

CO₂Me CO₂Me CO₂Me MeO₂C MeO₂(MeO₂C CO₂Me MeO₂C

Scheme 2

ACKNOWLEDGMENTS

The authors thank the Research Council of Yazd University for the financial support.

REFERENCES

- [1] Shanthi, G., Perumal, P. T. 2009. InCl3-catalyzed efficient one-pot synthesis of 2-pyrrolo-3 '- yloxindoles. Tetrahydron Lett. 50, 3959-3962.
- [2] Shirakawa, S., Kobayashi, S. 2006. Carboxylic acid catalyzed three-component aza-Friedel-Crafts reactions in water for the synthesis of 3-substituted indoles. Org. Lett. 8, 4939-4942.
- [3] Zhang, H., Zhou, Z., Yao, Z., Xu, F., Shen, Q. 2009. Efficient synthesis of pyrimidinone derivatives by ytterbium chloride catalyzed Biginelli-type reaction under solvent-free conditions. Tetrahydron Lett. 50, 1622-1624.
- [4] Heravi, M. M., Baghernejad, B., Oskooie, H. A. 2009. A novel three-component reaction for the synthesis of Ncyclohexyl-3-aryl-quinoxaline-2-amines. Tetrahydron Lett. 50, 767-769.
- [5] Huang, X., Zhang, T. 2009. Multicomponent reactions of pyridines, α-bromo carbonyl compounds and silylaryl triflates as aryne precursors: a facile one-pot synthesis of pyrido[2,1-a]isoindoles. Tetrahydron Lett. 50, 208-211.
- [6] Cui, S., Wang, J., Wang, Y. 2008. Copper-catalyzed multicomponent reaction: Facile access to novel phosphorus amidines. Org. Lett. 10, 1267-1269.
- [7] Ugi I., Werner, B., Domling, A. 2003. The chemistry of isocyanides, their multiComponent reactions and their libraries. Molecules, 8, 53-56
- [8] Esmaeili, A. A., Zangouei, M., Fakhari, A. R., Habibi, A. 2012. An efficient regioselective synthesis of highly functionalized 3-oxo-2,3-dihydro-5*H*-thiazolo[3,2-*a*]pyrimidines via an isocyanide-based three-component reaction. Tetrahydron Lett. 53, 1351-1353.
- [9] Arrieta, A., Cossio, F. P., Lecea, B. 1999. Competitive mechanisms and origins of stereocontrol in the [2 + 2] thermal cycloaddition between imines and keteniminium cations. A complementary entry to 2-azetidinones (β-lactams) and related compounds. J. Org. Chem. 64, 1831-1842.
- [10] Fromont, C., Masson, S. 1999. Reactivity of N-phenyl silylated ketenimines with electrophilic reagents. Tetrahedron 55, 5405-5418.
- [11] Coffinier, D., Kaim, LE., Grimaud, L., Ruijter, E., Orru, RVA. 2011. A new multicomponent reaction for the synthesis of pyridines via cycloaddition of azadienes and ketenimines. Tetrahedron Lett. 52, 3023-325.
- [12] Alajarin, M., Vidal, A., Tovar, F. 2005. The consecutive [2+2] cycloaddition-ring expansion route to diastereomeric 1,4diazepin-5-ones from imino-ketenimines. Alternative intramolecular transamidation of β-lactams. Tetrahedron 61, 1531-1537.
- [13] Molina, P., Vidal, A., Tovar, F. 1997. Electrocyclization of β-arylvinyl ketenimines: Formal syntheses of the alkaloid from marine origin, 5,8-dihydro7-methoxy-1,6-dimethylisoquinoline-5,8-dione, and 3-ethoxycarbonylrenierol synthesis. 8, 963-966.
- [14] Staudinger, H., Hauuser, E. 1921. Über ketene, XXXVII. mitteilung. Keteniminderivate. Helv. Chim. Acta. 4, 887-896.
- [15] Bestmann, H. J., Lienert, J., Mott, L. 1968. Reaktionen von triphenylphosphin sowie dessen hydrobromid und dibromid, IV1) reaktionen zwischen triphenylphosphin-dibromid und substituierten säureamiden. Ann. Chem. 718, 24-32.
- [16] Newman, M. S., Fukunaga, T., Miwa, T. 1960. Alkylation of nitriles: ketenimine formation. J. Am. Chem. Soc. 82, 873-875.
- [17] Yavari, I., Sanaeishoar, T., Azad, L., Ghazvini, M. 2011. Ketenimine N-functionalization of thiazolidine-2,4-diones with acetylenes and isocyanides. Mendeleev Commun. 21, 108-109.
- [18] Baharfar, R., Jaafari, L., Azimi, R. 2011. Three-component reaction of alkyl isocyanides with acetylenic esters and pyridine-2-carboxaldoxime or α-furildioxime: Synthesis and dynamic NMR study of ketenimines and bis(ketenimines). Chin. Chem. Lett 22, 943-946.
- [19] Yavari, I., Nasiri, F., Djahaniani, H. 2004. Synthesis and dynamic NMR study of ketenimines derived from tert-butyl isocyanide, alkyl 2-arylamino-2-oxo-acetates, and dialkyl acetylenedicarboxylates. Mol. Divers. 8, 431-435.
- [20] Anary-Abbasinejad, M., Moslemine, M. H., Anarak -Ardakani, H. 2009. One-pot synthesis of highly functionalized stable ketenimines of 2,2,2-trifluoro-*N*-aryl-acetamides. J. Fluorine Chem 130, 368-371.
- [21] Adib, M., Sayahi, M. H., Behnam, B., Sheibani, E. 2006. Reaction between isocyanides and dialkyl acetylenedicarboxylates in the presence of hydantoins – A One-pot synthesis of stable ketenimines. Monatsh Chem. 137, 191-196.