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ABSTRACT 

Modifications of rice straws surfaces by sodium hydroxide (NaOH) were carried out in order to study the effects of this on 
the surface functional groups properties. Comparison was made between untreated and alkali-treated rice straws on the 
removal of Fe(III) from aqueous solution. In this study, four characterizations of raw rice straw have been conducted. The 
morphological characteristics by Scanning Electron Microscope (SEM), Energy Dispersive X-ray Analysis (EDXA)the 
functional group present in the rice straw by Fourier Transform Infrared (FTIR) spectroscopy and the X-ray Diffraction 
(XRD). The result of Scanning Electron Microscopy (SEM) also shows that rice straw is a porous material. Rice straw 
contains on –OH functional group that can bind with metal ions. To be able to enhance the sorption capacity of rice straw 
in metals, removing from waste water, alkali treatment should be done. This shows that rice straw can be used as 
adsorbent for ferric ions removing from wastewater.The effect of pH, sorption kinetics and isotherms were studied in batch 
experiments. The good correlation coefficient was obtained from pseudo second-order kinetic model, which agreed with 
conception as the rate-limiting mechanism. Sorption isotherm test showed that equilibrium sorption data were better 
represented by Temkin model. The highly efficient, low cost and the rapid uptake of Fe(III) by untreated (RS) in 
comparison with alkali-treated (MRS) rice straws, indicated that it could be an excellent alternative for the removal of ferric 
ions by sorption process. 
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1. INTRODUCTION 

Water pollution due to toxic heavy metals has been a major cause of concern. The industrial and domestic wastewater is 
responsible for causing several damages to the environment and adversely affecting the health of the people. Metals can 
be distinguished from other toxic pollutants, since they are non-biodegradable and can accumulate in living tissues, thus 
becoming concentrated throughout the food chain.  

The main techniques, which have been utilized to reduce the heavy metal ion content of effluents, include lime 
precipitation, ion exchange, adsorption into activated carbon, membrane process, and electrolytic methods. All these 
methods are generally expensive. Therefore, numerous approaches have been studied for the development of low-cost 
adsorbents. Recently,[1,2] reviewed the technical feasibility of various low-cost adsorbents for heavy metal removal and 
concluded that the use of low-cost adsorbents may contribute to the sustainability of the surrounding environment and 
offer promising benefits for commercial purpose in the future. 

Rice straw is an important agricultural crop residue generated as a by-product during dehusking at rice mills. For every ton 
of rice processed, rice straw production is estimated to be about 0.23 tons. A large amount of rice straw is burnt in situ, 
generating CO2 and other forms of pollution. Thus the use of rice straw not only would provide a less costly sorbent to 
activated carbon or synthetic ion-exchanger as it is cheap and easily available, but will also save the environment from the 
above-mentioned pollution. Rice straw contains lots of silica. The organic compounds are mainly cellulose, hemicellulose 
and lignin. It was reported to be good sorbent for a variety of metals cation [3,4].  

Alkali treatment of cellulosic fibers with sodium hydroxide (NaOH) is one of the chemical treatments methods that have 
been employed in order to improve the fiber–matrix interface bonding [5,6]. NaOH removes natural fats and waxes from 
the cellulose fiber surfaces thus, revealing chemically reactive functional groups like –OH. The removal of the surface 
impurities from the cellulose fibres also improves the surface roughness of the fibres or particles, thus opening more 
hydroxyl groups and other reactive functional groups on the surface [7]. NaOH may also react with accessible –OH groups 
according to the chemical reaction proposed as follow; 

NaOH+OH–rice straws–OH→HO–rice straws–O
-
Na

+
+H2O 

The reaction equations suggest reduction of –OH groups on the fiber surfaces, which is demonstrated as a decrease in –
OH peak intensity in Fourier transform infrared (FTIR) spectra[8] . 

Rice straw was selected due to its local availability in abundance, chemical stability and insolubility in water. In the present 
study, the biosorption efficacy of rice straw for the abatement of Fe(III) ions from aqueous solutions has been investigated. 
The changes in the surface and adsorption properties of rice straw modified by NaOH were monitored by scanning 
electron microscopy (SEM) and attenuated total reflection (ATR) FTIR spectroscopy. 

2. MATERIAL AND METHODS 

2.1. Preparation of adsorbents: 

2.1.a. Rice straw  

The natural rice straw (RS) used in the present experiments was obtained from a market in El-Menoufia Governorate, 
Egypt. Its chemical compositions are shown in Table 1. The (RS) was thoroughly washed with a stream of distilled water 
to remove all dirt and then were dried at 110ºC for 24 h to constant weight. The dried rice straws were stored in 
desiccators until used. 

2.1.b. Modified rice straw 

The modified rice straw (MRS) sample was prepared by alkali treatment. Alkali treatment was carried out by placing the 
RS sample in contact with NaOH (0.1 M), with constant stirring for 24 h. The liquid/solid ratio was 10 mL/g. The slurry was 
allowed to settle for 24 h. It was then filtered, washed OH

-
 free with distilled water, and dried at 110 °C for 24 h to constant 

weight. And it was ground and sieved. The particles 0.63 mm was selected  

and preserved at room temperature in a sealed bottle. 

2.2. Preparation of metal-solutions 

The Fe(III) stock solution containing 1000 mg/L was prepared by dissolving ferric chloride (FeCl3) (analytical reagent 
grade) in distilled water. Ferric working solutions in different concentrations was prepared by diluting the Fe(III) stock 
solution with distilled water.  

2.3.Analytical technique: 

The concentrations of the Fe(III) metal ions were performed using  Flame Atomic Absorption Spectrophotometer (FAAS) 
Vario 6. Elements were determined using an air– acetylene flame. 

http://www.sciencedirect.com.search.sti.sci.eg:2048/science/article/pii/S1359835X06002272?np=y#bib10
http://www.sciencedirect.com.search.sti.sci.eg:2048/science/article/pii/S1359835X06002272?np=y#bib18
http://www.sciencedirect.com.search.sti.sci.eg:2048/science/article/pii/S1359835X06002272?np=y#bib9
http://www.sciencedirect.com.search.sti.sci.eg:2048/science/article/pii/S1359835X06002272?np=y#bib18
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3. RESULTS AND DISCUSSION 

3.1. Characterization of adsorbents 

3.1.1. Chemical composition 

The chemical composition of the rice straw was determined at each stage of treatment and the data are summarized in 
Table 1. 

Table 1 : Chemical Characterization of RS and MRS 

No. Chemical Characterization 
Samples 

RS MRS 

1 Moisture Content % 7 6.65 

2 Ash Content % 6 13.3 

3 Lignin Content % 12.5 13 

4 Holocellulose % 75.5 72.8 

5 Alpha Cellulose 56 61 

 

3.1.2. FTIR spectra 

The rice straw is constituted basically by cellulose, hemicellulose, lignin, extractives, water and mineral ash which is in large amount 

SiO2. The lignin is promptly available to interact with cations, by firstly exchanging with protons and subsequently by chelating with 

the metallic ion. 

The results of ATR-FTIR of the outer surfaces of NaOH treated and untreated rice straws are shown in Fig. 1(a,b). The term outer 

surface of rice straw means the outer part of the paddy grain before hulling and inner surface is that part of the paddy that houses the 

edible rice grain. A medium broad absorption band was found around the region of ∼3300 cm−1 for untreated rice straws. This band is 

due to stretching vibration of intermolecular hydrogen bonded –OH groups in cellulose fibers [9].  

After modification with NaOH the absorption band shifts to higher frequencies by ∼26 cm−1. This is an indication of the presence of 

free –OH groups which do not take part in hydrogen bonding [9]. However, there was no evidence of a decrease in the intensities of 

these peaks possibly due to reaction of accessible –OH groups and NaOH as proposed by earlier researchers [10].    

A similar trend occurred to the other –OH groups absorption peaks around 1626 ± 4 cm−1, which shifted slightly to higher frequencies 

after treatment with NaOH suggesting an increase of free OH. Absorption represented by weak bands in the absorption region around 

∼2925 ± 1 cm−1 corresponds to the vibration of the carbon-hydrogen bonds superimposed onto –OH broad band around ∼3300 cm−1. 

Absorption vibration at ∼1738 cm−1 appearing on the outer surfaces of the untreated rice straws is due to the vibration of carbonyl 

from carboxylic groups in ester linkage as proposed by Trejo-O’Reil and Cavaille [11] or due to wax and natural fats. After treating 

rice straws with NaOH, this peak disappeared, which indicate that it might have been removed by this modification. Another carbonyl 

vibration occurred at ∼1539 cm−1 which could be a spurious band due to carboxylic group vibration or cell windows interaction. This 

peak disappeared also after increasing the concentration of NaOH. 

A medium sharp peak around ∼1217 cm−1 due to vibration of silica bonds was observed on the outer surface of untreated rice straws. 

This peak disappeared on NaOH treated rice straws. Absence of this peak in NaOH treated rice straws is an indication of the 

possibility of sodium hydroxide to react with silica. A decrease in the silica vibration band at 786 ± 5 cm−1 was observed as the 

concentration of NaOH increased. This is another evidence of the possibility of NaOH to react with silica on the outer surface of rice 

straws. It is therefore possible that part of the cellulose embedded with silica in the formation of silicon–cellulose membrane on the 

outer surface of rice straws [12] also degraded during disintegration of this membrane and silica. This may have contributed to lack of 

increase of the OH group bands on this surface after alkali treatment. 

Fig. 1(a,b) shows the FTIR spectra of the inner surfaces of untreated and NaOH treated rice straws. A broad peak in the region of 

∼3273.5 ± 57 cm−1 in untreated rice straws is due to hydrogen bonded –OH in cellulose fibers. There is also a slight shift of the –OH 

peak to high frequencies in NaOH treated rice straws. The shift of this peak by about 49 cm−1 to high frequencies suggests presence of 

free OH. The intensity of this peak is relatively weak for untreated rice straws, but increases progressively with the increase in the 

concentration of NaOH. The reason behind this could probably be due to the removal of surface impurities from the surface of rice 

straws thus exposing more reactive –OH groups on these surfaces, which were detected by ATR-FTIR.   

Weak absorption bands around ∼2919.5 ± 0.5 cm−1 due to C–H vibration appears immediately after treatment of rice straws with 

NaOH. This is another evidence of the removal of impurities from the inner surface of rice straws by NaOH. The absorption band 

around ∼1614 ± 19 cm−1 by a medium, stretching bond may be due to –OH vibration whose intensity increased after treatment. The 

absorption peak around 1201–1156 cm−1 occurs in the vibration range of silica bonds.   

 

http://www.sciencedirect.com.search.sti.sci.eg:2048/science/article/pii/S0926669011004791#tbl0005
http://www.sciencedirect.com.search.sti.sci.eg:2048/science/article/pii/S1359835X06002272?np=y#fig1
http://www.sciencedirect.com.search.sti.sci.eg:2048/science/article/pii/S1359835X06002272?np=y#bib15
http://www.sciencedirect.com.search.sti.sci.eg:2048/science/article/pii/S1359835X06002272?np=y#bib15
http://www.sciencedirect.com.search.sti.sci.eg:2048/science/article/pii/S1359835X06002272?np=y#bib19
http://www.sciencedirect.com.search.sti.sci.eg:2048/science/article/pii/S1359835X06002272?np=y#bib21
http://www.sciencedirect.com.search.sti.sci.eg:2048/science/article/pii/S1359835X06002272?np=y#bib8
http://www.sciencedirect.com.search.sti.sci.eg:2048/science/article/pii/S1359835X06002272?np=y#fig2
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This band is common to all the spectra with no evidence of significant change in intensity after treatment. Another absorption 

corresponding to the absorption frequency of silica bonds appearing around 790 cm−1 for untreated rice straws disappeared in NaOH 

treated rice straws except for the one treated with 0.1M NaOH. However, no evidence of silica composition on the inner surface of rice 

straws has been reported in previous studies [12]. 

 

 

3.1.3. Scanning electron 

Scanning electron (SEM) micrographs of untreated and treated rice straws are shown in Fig. 2(a,b). As shown in Fig. 
2(a,b) the surface roughness of the outer and inner surfaces of rice straws change significantly after alkali treated with 
NaOH. Changes started to be substantial when the rice straws were treated with NaOH. These include wearing of 
asperities on the outer surfaces and particle cracking which suggests the weakening of the rice straws due to increase in 
brittleness.The result of Scanning Electron Microscopy (SEM) also shows that rice straw is a porous material [13]. 

 

 

 

 

 

 

 

 

 

 

 
 

3.1.4. EDXA Spectra 

Fig. 3(a,b) shows the EDXA spectra of RS and MRS adsorbents before and after loading with Fe(III) respectively. Fig. 
3(a,b), indicates the presence of major constituents – carbon and oxygen in the two samples adsorbents. Comparing the 
spectra of the MRS loaded with Fe(III) with that of unloaded one, the cobalt peak could be observed. It was suggested that 
heavy metals including Fe(III) had been adsorbed on the surface of MRSsuccessfully. Moreover, after loading with heavy 
metal, a distinct increase of silica peak intensity could be found. This phenomenon might be derived from the alkali  

treatment [14].  
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Figure 2  SEM image for (a) RS and (b) MRS before adsorption. 

 

 

(a) 

Figure 1  FTIR spectra for  (a) RS  and (b) MRS before adsorption. 

http://www.sciencedirect.com.search.sti.sci.eg:2048/science/article/pii/S1359835X06002272?np=y#bib8
http://www.sciencedirect.com.search.sti.sci.eg:2048/science/article/pii/S1359835X06002272?np=y#fig7
http://www.sciencedirect.com.search.sti.sci.eg:2048/science/article/pii/S1359835X06002272?np=y#fig7
http://www.sciencedirect.com.search.sti.sci.eg:2048/science/article/pii/S1359835X06002272?np=y#fig7
http://www.sciencedirect.com.search.sti.sci.eg:2048/science/article/pii/S1359835X06002272?np=y#fig7
http://www.sciencedirect.com.search.sti.sci.eg:2048/science/article/pii/S1385894710005048#fig2
http://www.sciencedirect.com.search.sti.sci.eg:2048/science/article/pii/S1385894710005048#fig2
http://www.sciencedirect.com.search.sti.sci.eg:2048/science/article/pii/S1385894710005048#fig2
http://www.sciencedirect.com.search.sti.sci.eg:2048/science/article/pii/S1385894710005048#fig2
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3.1.5. X-ray diffraction 

Fig. 4(a,b) shows the X-ray diffraction patterns of RS and MRS biosorbents powder. Diffraction peaks corresponding to 
crystallinity were not observed, whereas, amorphous form is identified in the biosorbent. The amorphous nature of the 
biosorbents suggested that the metal ion could more easily penetrate into the surface of the two biosorbents on the 
amorphous. Optimization of Fe(III) biosorption by chemically modified rice straw [15]. 

 
 

 

 

 

 

 

 

 

 

(b) 

Figure 4 XRD for (a) RS and (b) MRS befor adsorption. 

Figure 3 EDXA for (a) RS  and (b) MRS before adsorption. 
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3.2. Effect of adsorbent dosage on adsorption 

Fig. 5(a,b) shows the removal of ferric as a function of adsorbent dosage using RS and MRS in aqueous solution. The 
adsorbent dosage varied from 0.1 to 1.0 g and equilibrated for ≈ 5 h. It is clear from fig.5(a,b) that for the maximum 
removal percentage of 85.9 and 53.3% of ferric requires a maximum RS and MRS dosage of 1.0 g for, respectively. The 
data clearly shows that all the adsorbents have a high level of performance in terms of the removal of ferric. The observed 
differences may be due to the high adsorption capacity of RS. It may be concluded that by increasing the adsorbent dose 
the removal efficiency increases but adsorption density decreases. The decrease in adsorption density can be attributed to 
the fact that some of the adsorption sites remain unsaturated during the adsorption process; whereas the number of 
available adsorption sites increases by an increase in adsorbent and these results in an increase in removal efficiency. 

As expected, the equilibrium concentration decreases with increasing adsorbent doses for a given initial ferric 
concentration, because for a fixed initial solute concentration, increasing the adsorbent doses provides a greater  

surface area or adsorption sites [16]. 

 

 

 

 

 

 

 

 

 

 

3.3. Effect of initial ferric concentration 

The Fe(III) adsorption capacity increased with the Fe(III) equilibrium concentration increasing from 111.7to 781.9mg/L. This capacity 

of the RS was ranged from23.1 to 40 mg/g and from 13 to 22.6mg/g, of MRS, respectively. On the other hand, we can observe that, 

with an increase of the Fe(III) equilibrium concentration, the removal percentage of ferric, show an opposite trend where, the removal 

percentage was decreased from 78.8 – to 40.9% and from 93.1 to 23.1%. The results of the Fe(III) adsorption experiments are shown 

in Fig. 6.Actually, as the initial concentrations of Fe(III) increased, the driving force became higher as well, the accessibility of the 

heavy metal ions to the binding sites of the MRS is relatively high with increased initial  concentration, the ions exchange frequently 

and the uptake of heavy metals becomes more and more [17]. 
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Figure 6 The effect of different concentration of Fe(III) on the adsorption.
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Figure 5  The effect of  amount of (a) RS  and (b) MRS on the removal of Fe(III) at 28 
0
C. 

http://www.sciencedirect.com.search.sti.sci.eg:2048/science/article/pii/S0304389403002097#FIG2
http://www.sciencedirect.com.search.sti.sci.eg:2048/science/article/pii/S0960852410002981#fig2
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3.4. Effect of pH on Fe(III) adsorption 

The effect of pH on the Fe(III) adsorption on the two adsorbents for a pH between 1.0 and 2.9 is presented in fig.7. It can be found that 

the removal efficiency, increased with increase pH for both adsorbents. The uptake of Fe(III) by RS and MRS increased as the pH 

increased from 1.0 to 2.5. At higher pH value, 2.9 the removal efficiency decreased for both adsorbents. Although a maximum uptake 

was noted at a pH of 2.5, as the pH of the solution increased to >2.5Fe(III) started to precipitate out from the solution. Therefore, the 

increased capacity of adsorption at pH = 2.5 may be a combination of both adsorption and precipitation on the surface of the 

adsorbents. It is considered that adsorbents had a maximum adsorption capacity at a pH=2.5, if the precipitated amount is not 

considered in the calculation. Therefore, the optimum pH for Fe(III) adsorption is 2.5. 

The pH of the aqueous solution is an important variable that influences the adsorption of anions and cations at the solid–liquid 

interfaces. As can be seen from Fig. 7, the pH value of the ferric solution plays an important role in the whole adsorption process and 

particularly on the adsorption capacity. The Fe(III) adsorption on the two adsorbents tends to increase with the increase of pH. This is 

likely attributed to the fact that a lower pH value causes the surface to carry more positively charges and thus would more significantly 

repulse the positively charged species in solution. Therefore, the lower adsorption of Fe(III) at lower pH values resulted from an 

increased repulsion between the more positively charged Fe(III) species and positively charged surface sites. Furthermore, at lower 

pH, H+ ions compete with Fe(III) ions to the surface binding-sites of the adsorbent [18-20]. 

 

 

 

 

 

 

 

 

 

 

3.5. The distribution ratio (D) 

Distribution ratio D for ferric ions was determined by the batch method at different temperature systems (301, 313 and 
323K). The distribution ratio, D, is defined as the ratio of metal ion concentration on the adsorbent to that in the aqueous 
solution and can be used as a valuable tool to study Fe(III) ion mobility. The distribution ratio D is defined by the following 

relationship [21,22]:  

Kd = 
(𝐼−𝐹)

500 𝑚𝑔
 x 

50 𝑚𝑙

𝐹
 

Where I is the volume of EDTA used before treatment of metal ion-exchanger. F is the volume of EDTA consumed by 

metal ion left in solution phase. 

Various portions of (0.4g each) the adsorbent were taken in Erlenmeyer flasks and mixed with 50 ml of metal ion solution 
in the aqueous medium and subsequently shaken for 24 h in temperatures controlled shaker at 301, 313 and 323K to 
attain the equilibrium. Fig. 8 shows that the distribution ratio(D) values increase with the increase in temperatures of ferric 
solutions from 301 to 313K then decrease at higher temperature (323K). However, the distribution ratio of Fe(III) between 
ferric solution and MRS show a gradual increases at increase of temperature. High values of the distribution ratio (as in 
aqueous-RS systems at low temperature), indicate that the metal has been retained by the solid phase through sorption 
reactions, while lower values of D (as in aqueous-MRS systems at low temperature), indicate that a large fraction of the 
metal remains in solution. The rapid metal sorption has significant practical importance, as this will facilitate with the small 
amount of resin to ensure efficiency and economy. 
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Figure 7 The effect of pH on the removal of Fe(III) at 28 
0

C.
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http://www.sciencedirect.com.search.sti.sci.eg:2048/science/article/pii/S0960852410002981#fig3
http://www.sciencedirect.com.search.sti.sci.eg:2048/science/article/pii/S0960852410002981#fig3
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According to the above results of the Fe(III) adsorption experiments, the RS had higher adsorption capacities than the 
MRS. It was believed that the surface structural changes of the material play the most important role in the adsorption 
capacities of the Fe(III). When the RS sample was treated with 0.1M NaOH, the surface structure of the RS was changed, 
which can be seen from the FTIR spectra of the MRS. 

 

 

 

 

 

 

 

 

 

 

 

 

3.6. Adsorption isotherms 

The equilibrium adsorption isotherms of ferric ions were determined at three different temperatures (301, 313 and 323 K). 
The experimental data were fitted to linear equations of Freundlich [23,24], Langmuir [25,26], Temkin [27,28] and Dubinin 
and Radushkevich [29,30], isotherm models. 

Two typical isotherms, as described below in Eq. (1) and (2), were used for fitting the experimental data: 

log qe = log KF +
1

n
log Ce  ---------------------------------------------------------------------------------------------------------------   1 

Ce

qe
=  

1

KL Qmax
+  

Ce

Qmax
      ------------------------------------------------------------------------------------------------------------------ 2 

Where qe is the amount adsorbed at equilibrium (mg/g), and Ce is the equilibrium concentration (mg/L). The other 
parameters are different isotherm constants, which can be determined by the correlation coefficient of the experimental 
data. The value of (n) is a characteristic constant measure of intensity of sorption. The values of (n) computed from the 
slope of the plots of Freundlich equation (Fig. not shown) (1.5 and 1.3 for ferric on both RS and MRS, respectively) and 
the results of kF(mg/g) estimated from the intercept of the linear plots. kF was also 601.3 and 1174.9of both RS and MRS, 
respectively,  indicate better sorption at the experimental conditions. 

A dimensionless constant, separation factor, RL describes the type (RL = 0 irreversible, RL between 0 and 1 favourable 
and unfavourable (RL > 1) of Langmuir isotherm, which is an essential characteristic of Langmuir isotherm and may be 

calculated in the temperature range (301-323K) for cobalt ion, by employing the relationship; 

RL=1/1+KLCi 

Where ‘KL’ is the Langmuir constant (L mol
−1

) and Ci is the initial concentration of sorbate (mg/g). In linear Plots of Ce/qe 
versus Ce(Fig. not shown), the values of Qmax are analyzed from the slope of the linear plots and its values are 188 and 
12.2 mg/g of RS and MRS, respectively, whereas the values of ‘KL’ (1.4×10

-3
and 0.016 mol L

−1
 of RS and MRS, 

respectively) for Fe(III) are computed from the intercepts of the plots. The values of RL are 0.68 and 0.16of RS and MRS, 
respectively; assign a highly favorable sorption at whole solution temperatures studied herein.  

Dubinin–Radushkevich (D–R) isotherm is another adsorption model isothermapplied in the linearized form of the 
equation(3) as, 

Lnqe = lnXm−βε
2
-----------------------------------------------------------------------------------------------------------------------------  3 

Where qe is in (mg/g) (described earlier), Xm ((mg/g)) represents the maximum sorption capacity of sorbent and β 
(kJ

2
 mol

−2
) is a constant with dimensions of energy. The Polanyi sorption potential ɛ, which is the amount of energy 

required to pull a sorbed molecule from its sorption site to infinity may be evaluated by using relationship equation (4) as: 

ε=RT ln(1+1/Ce)  ----------------------------------------------------------------------------------------------------------------------------  4 

Where ‘R’ is a gas constant in kJ mol
−1

 K
−1

, ‘T’ is the temperature in Kelvin, Ce (mg/g) is as mentioned earlier. The plots of 
ln qe versus ɛ

2
 yield a poor coefficients (≈ 97 and 92) and the results of Xm computed from the slope and intercept of the 
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figure 8 The effect of distribution coofficint on adsorption of Fe(III). 
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respective plots (Fig. not shown) (21.1 and 15.8 (mg/g). The values of sorption energy, Ewas 3.4 and 21.9 kJ mol
−1

 of both 
RS and MRS, respectively, for Fe(III)) are calculated[31] using the relationship in equation (5)as: 

ED−R  =  
1

 −2β
------------------------------------------------------------------------------------------------------------------------------5 

These values indicate physical and chemical processes for ferric-RS and –MRS systems, respectively.  The Temkin 
isotherm has been used in the following equation (6):  

qe  = BT ln AT  + BT ln Ce---------------------------------------------------------------------------------------------------------------   6 

Where R is gas constant (8.314 J mol
−1

 K
−1

), T is temperature (K), AT is the equilibrium binding constant (L g
−1

) 

corresponding to the maximum binding energy, and constant BT = (RT bT)  is related to the heat of adsorption. A plot of qe 

versus ln Ce (Fig. not shown) is used to calculate the Temkin isotherm constants AT and BT.  

The values of BT(J/mol) are analysed from the slope of the linear plots and its values are 17.0 and 18.4 mg/g of RS and 

MRS, respectively, whereas the values of AT (1.7×10
-3

 and 1.97×10
-3

L/g) of RS and MRS, respectively, for Fe(III) are 

computed from the intercepts of the plots.  

From our results we can concluded that the experimental data of Fe(III) adsorption on RS sample could be well fitted by 
the isotherms. Clearly, the temkin equation provided better fitting in terms of R

2
 values (0.99082). However, the fitting 

order of the different adsorption models according to R
2
 was as follows; Temkin (0.99082) ˃ Langmuir (0.99037) ˃ 

Freundlich (0.98752) ˃ D – R (0.97017).on the other hand, the adsorption of Fe(III) on MRS provided better fitting of the 
temkin equation in terms of R

2
 values (0.99556). However, the fitting order of the different adsorption models according to 

R
2
 was as follows; Temkin (0.99556) ˃ Langmuir (0.97732) ˃ Freundlich (0.96688) ˃ D – R (0.92946). 

3.7. Adsorption kinetics 

Kinetic studies were carried out using different models, namely, pseudo-first order [32,33], pseudo-second order [34,35], 
Elovich [36] and Fickian diffusion intraparticle [37,38] models to analyze the experimental data. 

The results of the Fe(III) adsorption kinetic experiments at the 28°C show that the majority of Fe(III) adsorption on the 
adsorbents was completed in 3-4 h. For example, after 210 min of adsorption, the Fe(III) adsorbed on the RSandMRS 
was, respectively, 67.8% and 43.7% of that at equilibration time. And the removal percentage of ferric from the solutions 
by RSwas higher than the MRS sample, which can be attributed to the surface structural changes of the material. 

The adsorption kinetics, demonstrating the solute uptake rate, is one of the most important characteristics, which 
represents the adsorption efficiency of the samples. The Fe(III) adsorption kinetic data ((Fig. not shown)) were fitted with 
pseudo-first-order rate equation of Lagergren and pseudo-second-order rate equation of linear equations. 

The pseudo-first-order kinetic model is given equation (7) as: 

log qe– qt  = log qe,1 – k1t------------------------------------------------------------------------------------------------------------- 7 

The pseudo-second-order equation is expressed equation (8,9)as: 

t

qt
 =  

1

k2qe ,2
2 +

t

qe ,2
     ------------------------------------------------------------------------------------------------------------------------   8 

h = k2qe,2
2 ---------------------------------------------------------------------------------------------------------------------------------   9 

Where k1 is the Lagergren adsorption rate constant (min
−1

) and k2 is the pseudo-second-order adsorption rate constant 
(g/(mg h); qe and qt are the amounts of Fe(III) absorbed (mg/g) at equilibrium and time t, respectively. Based on R

2
 

obtained, the kinetics of Fe(III) adsorption on the RS (0.99862) and MRS(0.99873) can be satisfactorily described by the 
pseudo-second-order equations at 301K as in table 2.    

Therefore, the fitting curves resulting from both equations are plotted (Fig. not shown). The high applicability of the 
pseudo-second-order equation for the present kinetic data is generally in agreement with other researchers’ results that 
the pseudo-second-order equation was able to describe properly the kinetics of Fe(III) adsorption [39,40]. On the other 
hand, when the temperature was increased, the initial adsorption rate h (mmol/(g min)) of RS and MRSdecreased from 5.4 
to 0.78 and from 2.6 to 1.4 mg/(g min). The value (h) for RS was higher than that of MRS at low temperature, suggesting 
that RS possesses the fastest kinetics among two adsorbents as in table 2. 

For Fickian diffusion law, all the correlation coefficients were relatively low and the intercept of plots revealed obvious 
boundary layer effect (Fig. not shown). Larger intercept means a greater contribution of surface adsorption as the rate-
controlling step. In addition, it was essential for the plots of qt versus t

0.5
 to go through the origin if the intra-particle 

diffusion was the sole rate-limiting step. However, all the linear portions did not pass through the origin (all intercepts were 
in the range of0.93914 - 0.97118 and 0.87999 - 0.95641 of RS and MRS, respectively), indicating that intra-particle 
diffusion maybe not only the rate-controlling factor [41]. This was further evidence indicating that the active sites of the two 
adsorbents are mainly distributed on the external surface. The adsorption rate of RS was faster than MRS because of its 
higher external surface area. Therefore, the external surface of the adsorbent was the key factor in the rate-controlling as 
in Table 2. 

 

http://www.sciencedirect.com.search.sti.sci.eg:2048/science/article/pii/S0927776509003841#bib42


ISSN 2321-807X 

 

4289 | P a g e                                                       J a n u a r y  2 9 ,  2 0 1 6 

Table  2 : Kinetic parameters for (6 mmol/L) of  Fe(III)  on on RS and MRS in aqueous solution. 

R
ic

e
 S

tra
w

 

T
e

m
p

.K
 

 

Pseudo first-order model Pseudo second-order model 

 

Intraparticle diffusion 
model 

qe,1,cal 

(mg/g) 

K1 

(min
-1

) 
R

2
 

qe,2,cal 

(mg/g) 

K2 

(g/mg 
min) 

h 

(mg/g 
min) 

R
2

 

Kint 

mg/g 
min

-0.5
 

 

C 

(mg/g) 
R

2
 

RS 

 

301 9.50 0.0194 0.96467 28.89 6.4×10
-3

 5.4 0.99862 0.686 19.197 0.93914 

313 16.22 0.0162 0.90001 25.79 9.2×10
-3

 0.16 0.95001 0.934 5.987 0.96538 

323 17.22 0.0171 0.916825 28.99 9.3×10
-3

 0.78 0.95498 0.954 8.492 0.97118 

MRS 

301 7.41 0.0181 0.98212 18.74 7.4×10
-3

 2.6 0.99873 0.612 10.222 0.87999 

313 12.02 0.0170 0.98829 22.07 3.7×10
-3

 1.8 0.99778 0.756 10.107 0.92768 

323 21.38 0.0173 0.95086 29.27 1.6×10
-3

 1.4 0.99299 1.240 8.789 0.95641 

 

3.8. Effect of temperature  

The equilibrium removal of Fe(III) ions as a function of temperature, for experiments conducted at constant concentrations 
of Fe(III) equal to 335.01 mg/L. The adsorption of Fe(III) onto the surface of both RS and MRS place quickly regarding the 
temperature (301–323 K). On the other hand, enhancement of the adsorption capacity of the MRS at higher temperatures 
may be attributed to the activation of the adsorbing surface and increase in the mobility of metal ions. Also, this fact 
demonstrated an endothermic biosorption process. 

The removal percentage of cobalt onto the RS and MRS adsorbents (Fig. not shown) was increased with increase of 
temperatures at low 301 and 313K then decrease at higher temperature (323K)for RS. However, the removal percentage 
by MRS was increases with increase in temperature from 301 to 323 K. This may be due to the formation of new active 
sites in the adsorbents to increase in temperature, activation of the adsorbing surface and increase in the mobility of metal 
ions. An increase of adsorption capacities of Fe(III) on the two adsorbents as the temperature increased, indicating also 
an endothermic process and a possible type of chemical adsorption mechanism occurs. 

3.9. Thermodynamics of sorption 

Thermodynamic parameters, enthalpy ΔH (kJ mol
−1

), entropy ΔS (J mol
−1

 K
−1

) and standard free energy of 
activation ΔG (kJ mol

−1
) were investigated in the range of 301–323 K under the optimized conditions chosen by applying 

the equations(10,11) as: 

ln Kd =
∆S

R
−

∆H

RT
   -------------------------------------------------------------------------------------------------------------------------10 

∆G = ΔH − TΔS  --------------------------------------------------------------------------------------------------------------------------    11 

Where ‘R’ is a gas constant, ‘T’ is the temperature in Kelvin.The plots of ln Kd versus 1/T (K
−1

) are linear throughout the 
investigation and the values of ΔH and ΔS are computed from the respective slopes and intercepts of the plots. The 
calculated thermodynamic parameters are presented in Table 3. ΔH° values were negative, demonstrating an exothermic 
process in ferric-RS system while the ΔH° values were positive, demonstrating an endothermic process in ferric-MRS 
system. The positive ΔG° values accompanied by the negative ΔS° suggested that the sorption reactions are 
nonspontaneous with a low affinity and presence of high energy barrier in case of aqueous ferric-RS system. 

On the other hand, the negative ΔG° values and the positive ΔS° suggested that the sorption reactions are spontaneous 
with a high affinity and alower energy barrier for ferric adsorption using MRS. This is may be due to changes in the surface 
functional groups of the adsorbent [42,43].  
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The positive enthalpy change (∆H°) values for the metal ions adsorption reaction as in table 3 indicate the endothermic 
nature of the present reaction. ∆H

o
 values obtained from adsorption of Fe(III) onto the MRS are lower than that onto RS. 

This result gives clear evidence that the interactions between Fe(III)  and the surface groups of the RS may be weaker 
than that of the surface groups of the MRS. The low value of ∆H° (< 40 kJ mol

-1
) for Fe(III)onto both adsorbents indicated 

that the adsorption process occurs mainly through a physical means. On the other hand, the negative values of Ea(-
13.88kJ/mol) and ∆H° indicate the presence of high an energy barrier in the adsorption process in case of RS, while, the 
positive values of Ea(20.3kJ/mol) and ∆H° indicate the presence of low an energy barrier in the adsorption process in case 
of MRS[44].      

The positive values for these parameters are quite common because the activated complex in the transition state is in an 
excited form. The positive entropy change (∆S°) for this reaction (Table 3) has also indicated the increase in the number of 
species at the solid–liquid interface and, hence the randomness in the interface which is presumably due to the release of 
aqua molecules when aquoted metal ion is adsorbed on the surface of the adsorbent and significant changes occur in the 
internal structure of the adsorbent through the adsorption of the metal ions onto the resin[45]. 

 

In order to further support the assertion that the adsorption is the predominant mechanism, the values of the activation 
energy (Ea) and sticking probability (S*) were estimated from the experimental data. They were calculated using a 
modified Arrhenius type equation related to surface coverage as expressed in equations (12, 13) as: 

θ = 1 −
Ce

C0
  ---------------------------------------------------------------------------------------------------------------------------------   12 

S∗ =  1 − θ  exp −
Ea

RT
     --------------------------------------------------------------------------------------------------------------   13 

The sticking probability, S*, is a function of the adsorbate/adsorbent system under consideration and is dependent on the 
temperature of the system. The parameter S* indicates the measure of the potential of an adsorbate to remain on the 
adsorbent indefinitely. It can be expressed as in Table 3. 

The effect of temperature on the sticking probability was evaluated throughout the temperature range from 301 to 323 K 
by calculating the surface coverage at the various temperatures. Table 3 also indicated that the values of S* ≤ 1 for MRS, 
hence the sticking probability of the Fe(III) ion ontoRS are very high. However, the values of S*> 1 for RS, hence the 
sticking probability of the Fe(III) ion onto RS are very low [46]. 

Table 3 : Thermodynamic parameters for (6 mmol/L) of  Fe(III)  on RS and MRS  in aqueous solution. 

Rice Straw Temp.K 
∆G 

kJ/mol)    )

∆S                
      (J/mol k) 

∆H                 
      (KJ/mol) 

S* 
Ea                 

     (KJ/mol 

RS 

301 26.6 -88.40 -23.00 88.17 -13.88 

313 27.6 - - - - 

323 28.5 - - - - 

MRS 

301 -30.1 100.27 36.38 1.86×10
-4

 20.30 

313 -31.3 - - - - 

323 -32.3 - - - - 
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