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ABSTRACT 

Studies on pH control in process engineering have shown a dramatic increase in the last decades. pH control systems 
were developed and used successfully on various applications of pH process plants in many industries especially in 
chemical processes, biotechnological industries, wastewater treatment and pharmaceuticals. The pH process is 
considered as a benchmark problem. Thus the research is ongoing on identification and control in pH process. In this 
paper, the mathematical model has been developed for a chemical process (pH process) and the conventional controllers 
such as PI and PID, Tyreus-Luyben has been designed and implemented. A control strategy based on tuning of a PID 
controller with Internal model controller (IMC), Direct synthesis method has been designed and implemented in the pH 
process. The experimental and simulation results obtained by various control algorithms are discussed. 

Keywords: pH Process, PI & PID controller, Tyreus-Luyben, IMC and Direct synthesis. 

1. INTRODUCTION 

An extensive research in the identification of pH process has been done by many relative experts for many years. The 
ionic product of H2O is given by HCl+NaOH=NaCl+H2Oand its pH neutral (ie.7). Since in pure water the concentration of 

H+ ion is equal to the concentration of hydroxide ion OH− any addition of H+ ion will make it acidic and OH−  ion will make 

it base. The addition of H+ may be due to the addition of acids and acidic impurities to the water stream by the industries 

manufacturing acids or industries using acids in one or more of their manufacturing stages. Similarly the OH− may be from 

the industries manufacturing alkalis such as KOH, NaOH, etc. and also from those industries using alkalis in one or more 
of their manufacturing stages. So in order to make the pH within specific limit the acidic water the alkaline should be added 
and vice versa. 

The primary objective is to develop a dynamic nonlinear pH process model, based on physical and chemical principles 
that can represent the specific pH process. The accuracy of this model should be sufficient to allow the development of 
conventional and advanced control systems through simulation for subsequent implementation and testing on the plant 
itself. The pH neutralization process is modelled based on the reaction between strong basic solution (NaOH) and strong 
acidic solution (HCL) in Continuous Stirred Tank Reactor (CSTR).  

A PID controller is most commonly used in industrial control systems. PID controller has three principle control effects. The 
proportional (P) action gives a change in the input (manipulated variable) directly proportional to the error signal. The 
integral (I) action gives a change in the input proportional to the integral of error, and its main purpose is to eliminate 
offset. Whereas the derivative (D) action is used to speed up the response or to stabilize the system and it gives a change 
in the input proportional to the derivative of the error signal. The overall controller output is the sum of the contributions 
from these three terms The general form of the PID controller is given below in equation (1). 

u(t) = KPe(t) + 
1

TI
 e(t)dt

t

0
 + TD

de (t)

d(t)
               (1) 

Where u(t) and e(t) denote the control and the error signals, respectively, and proportional gain (KP) integral time (TI) and 

derivative time (TD) are the parameters to be tuned [1]. 

The Ziegler–Nichols tuning method is a heuristic method of tuning a PID controller. It was developed by John G. Ziegler 
and Nathaniel B. Nichols. It is performed by setting the I (integral) and D (derivative) gains to zero [4]. The Proportional 
gain KP  is then increased (from zero) until it reaches the ultimate gain Ku   at which the output of the control loop oscillates 

with constant amplitude. KU  and the oscillation period TU  are used to set the P, I, and D gains depending on the type of 

controller’s used [7]. 

The Tyreus-Luyben method is also called as online tuning method. They had developed tuning method in closed-loop 
mode. This closed-loop tuning method overcomes the shortcoming of the well-known Ziegler-Nichols continuous cycling 
method and gives consistently better performance and robustness for broad class of processes.[7]. This is a more 
conservative approach than Ziegler-Nicholas method and so it gives better performance with small values for dead time. 
But when the value of dead time is large it gives a sluggish performance [6]. 

This method depends upon internal model principle, which states that control can be attained only if the control system 
encapsulates either implicitly or explicitly. The IMC approach has two important advantages are as it explicitly considers 
model uncertainty and it allows the designer to trade-off control system performance against control system robustness to 
process changes and modelling errors [8]. 
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In the direct synthesis (DS) approach, however, the controller design is based on a desired closed-loop transfer 
function.DS design methods are usually based on specification of the desired closed-loop transfer function for set-point 
changes. Consequently, the resulting DS-d controllers tend to perform well for set-point changes & the disturbance 
response might be satisfactory [9]. 

Mostly every system will have many objectives to be achieved. For designing a controller by satisfying all the 
requirements, algorithms are needed so as to tackle the problems that may arise. The conventional tuning methods which 
works based on fixed parameters will result in lesser performance when system necessitates controller. The next section 
briefly explains about the mathematical modelling and different tuning techniques such as Ziegler-Nichols (ZN), Tyreus-
Luyben (T-L), Direct Synthesis method and Internal Model Controller for designing the PID controllers. From the above 
specified tuning methods, the proportional band, integral time and derivative time can be calculated. By using those values 
one can determine the Proportional constant (KC), Integral constant (KI) and Derivative constant (KD). It also includes the 

PID values [KC ,KI,KD ] of the four tuning method’s and the tuning method’s of Minimum Error Integral Criteria for 

determining the error values of ITAE, ISE and IAE. The time domain specifications and the performance index of different 
PID controller’s are compared. 

2. MATHEMATICAL MODELING OF A pH PROCESS 

The pH is the measure of the acidity or alkalinity of a solution. The pH process consists of neutralization of two 
monophonic reagents of a weak acid and a strong base. The method implemented in this work involves mass balance on 
components called reaction invariants of the continuous stirred tank reactor solution. The model of the pH neutralization 
process used in this work is shown in Figure 1. Assumption of perfect mixing is general in the modeling of pH processes. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1: pH process 

The variables shown in Figure 1 are:  

FA  - Flow rate of the influent stream in the CSTR  

FB  - Flow rate of the titrating stream in the CSTR  

CA  - Concentration of the influent stream in the CSTR  

CB  - Concentration of the titrating stream in the CSTR  

XA  - Concentration of the acid solution in the CSTR  

XB  - Concentration of the basic solution in the CSTR  

V - Volume of the mixture   

 r - Rate of reaction per unit volume  

ρ - Density   

The fundamental dependent quantities are: 

a. Total mass of reacting material in tank. 

b. Mass of components A and B in reacting mixture. 

c. Total concentration of reacting mixture in tank. 

Total mass balance: 

FB CB  

Titration stream 

 FA CA  

Process 

stream 

 

FA FB  

XAXB  

Effluent stream 

 



  I S S N  2 3 2 1 - 8 0 7 X 

  V o l u m e  1 2  N u m b e r 1 5  

   J o u r n a l  o f  A d v a n c e s  i n  c h e m i s t r y    

4874 | P a g e                                        
N o v e m b e r  2 0 1 6                                            w w w . c i r w o r l d . c o m  

 Accumulation  of
total  mass

 

time
=  

 input  of  total
mass

 

time
−
 output  of  total  

mass
 

time
±
 
total  mass  generated  

or  consumed
 

time
  (2) 

d(ρV)

dx
 = ρFA  - ρFB ± 0           (3) 

Total balance of Component A: 

 Accumulation
of  A

 

time
=  

 
Input

of  A
 

time
−
 
Outpu t

of  A
 

time
−
 
Dissapearance  of  A

due  to  reaction
 

time
    (4) 

d(XA )

dx
 = 

d(CA V)

dx
 = CA FA  - CBFB  - rV        (5) 

Total energy balance: 

 
Accumulation  of

total  energy  

time
=  

 
input  of  total

energy  

time
−
 
output  of  total  

energy  

time
−
 
energy  removed   

by  collant
 

time
   (6) 

The shaft work done by the impeller of the stirring mechanism has been neglected. Hence the total energy (E) of the 
reacting mixture is 

E = U + K + Penergy                      ( 7) 

Where    U          - Internal energy 

     K          - Kinetic energy 

  Penergy   - Potential energy 

Characterized total mass: 

The density will be a function of concentration CA  and CB  and the temperature T. Quite often the dependence of d on CA , 

CA  and T is weak and the density can be considered constant as the reaction proceeds. Therefore Equation (3) becomes 

d(ρV)

dt
 = ρ

dV

dt
        (8) 

Characterize the Mass of Component A:   

From Equation (5) the state variables needed are CA  and V. The algebraic manipulation on it gives 

dCA

dx
 = 

FA

V
 (CA − CB ) - k0e

−E1
RT CA       (9) 

where  k0 – constant 

            R – reaction rate 

E1 – energy constant 

R - k0e
−E1

RT CA       (10) 

Characterize the total concentration:  

The obtained equations are 

d(XA )

dt
 = 

d(CA V)

dt
 = CBFB  - CA FA  – rV              (11) 

d(XB )

dt
 = 

d(CB V)

dt
 = 0 - CB F + rV                      (12) 

The formula for determining the pH of a solution is 

pH = -log10[H+]                                      (13) 

where pH has a logarithmic relationship with the molar concentration of [H+], whether acidic or basic and hence [H+] is the 

negative of anti logarithmic value of pH. 

The above mathematical equations describe how the concentration of the acidic and basic components, XA  and XBchange 

dynamically with time subject to the input streams, FA  andFB . 

Linearizing using Taylor series method the obtained transfer function is shown in the Equation (14) 

𝐺𝑝 𝑠 =  
𝑒−𝐿𝑆

 1+𝑠 (1+0.1𝑠)2       (14) 

where L is the delay time in second of the process [2]. 
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3. EXPERIMENTAL SETUP 

This experiment is conducted at the Advanced Process Control Laboratory, Sri Ramakrishna Engineering College, 
Coimbatore, Tamilnadu, India using bench scale pH process station. An acid stream (HCl solution) and an alkaline stream 
(NaOH) with 0.1 normality is fed to a 5 litres constant volume stirrer tank and the pH is measured through pH transmitter 
(glass electrode) which is placed at the tank. The main objective of the system is to maintain the specific pH value by 
variations in base flow rate and keeping the acid flow rate at a constant level.  

The acid flow rate is kept at a constant level and a step change is given to the base flow rate and the computer is interface 
with the data acquisition and control and use the MATLAB simulation toolbox to obtain the first order plus dead time 
transfer function model. 

G(s) = 
Kp e−td s

τs+1
  =  

0.34811 e−0.576 s

0.17416 s+1
      (15) 

where  Kp  - Proportional gain,τ – Integral time, td  – Delay time 

4. CONVENTIONAL CONTROLLERS 

4.1 Proportional - Integral Controller 

PI controller is a conventional controller used in industries. It will eliminate forced oscillations and steady state error 
resulting in operation of on -off controller and proportional controller respectively. It is generally used in the area where 
speed of the system is not an issue. 

C(s) = Kp+ 
K i

s
  = Kp  1 + 

1

Ti s
  

Where Kp- Proportional Gain, Ki - Integral Gain, Ti - Reset Time =Kp  / Ki. 

The main purpose of designing a PI controller is to determine the two gains, such as proportional gain ( Kp), integral gain 

(Ki) [3, 4]. 

 

 

Fig 2:Block Diagram of PI Controller 

The first widely used method for PID tuning was published by Ziegler-Nichols in 1942. Different methods are used for the 
tuning of PI controllers. The two categories of PID tuning methods are Open loop method and Closed loop method. Ziegler 
Nichols closed loop tuning technique was perhaps the first rigorous method to tune PID Controllers. The technique is not 
widely used today because the closed loop behaviour tends to be oscillatory and sensitive to uncertainty. Ziegler Nichols 
also proposed tuning parameter for the process that has been identified as first order plus time delay process have a 
maximum slope of K =  Kp/ τ at t = td  for a unit step input changes [4]. 

The obtained gain values of PI controller based on Ziegler Nichols Closed loop Oscillation methodis  

kc  = 0.157  

τi = 0.146 

The Simulink model for conventional PI controller is shown in Figure 3. 

 

Fig3:Simulink model for conventional PI controller 

PI and PID controller tuned using Ziegler Nichols tuning procedure. The tuning parameters are shown in Table 1 and 2. 
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Table 1. Ziegler Nichols Closed loop Oscillation method tuning parameters 

Controller 𝐤𝐜 𝛕𝐢 𝛕𝐝 

P 0.5Kp  - - 

PI 0.45Kp  
τ

1.2
 - 

PID 0.6Kp  
τ

2
 

τ

8
 

Table 2.Ziegler Nichols Open loop tuning parameters 

Controller 𝐤𝐜 𝛕𝐢 𝛕𝐝 

 

P 

τ

Kptd
 - - 

 

PI 

0.9τ

Kptd
 

 

3.3td  
- 

 

PID 

1.2τ

Kptd
 

 

2td  

 

0.5td  

4.2 Proportional – Integral - Derivative Controller 

The PID form of controller has been used successfully in the process industries since the 1940s and remains the most 
widely used algorithm today for a very wide range of applications.  The success of this type of controller is due to the fact 
that the PID control algorithm is very simple in structure, the controller is relatively easy to design for most applications 
and has properties that make it much more straightforward to understand in simple physical terms than many other forms 
of controller.A proportional integral derivative controller (PID controller) is a control loop feedback mechanism (controller) 
widely used in industrial control systems. A PID controller calculates an error value as the difference between a measured 
process variable and a desired set point. The controller attempts to minimize the error by adjusting the process through us 
of a manipulated variable. The PID controller algorithm involves three separate constant parameters, and is accordingly 
sometimes called three-term control: the proportional, the integral and derivative values, denoted P, I and D. Simply put, 
these values can be interpreted in terms of time: P depends on the present error, I on the accumulation of past errors, and 
D is a prediction of future errors, based on current rate of change [5]. 

 

 

 

 

 

 

Fig 4: Block Diagram of PID Controller 

The obtained gain values of PID controller based on Ziegler Nichols Closed loop Oscillation methodis  

Kc  = 0.208; τi = 0.087; τd  = 0.022 

The Simulink model for conventional PID controller is shown in Figure 5 

 

Fig 5: Simulink model for conventional PID controller 
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4.3 Tyreus – Luyben Method 

This is a more conservative approach than Ziegler-Nicholas method and so it gives better performance with small values 
for dead time. But when the value of dead time is large it gives a sluggish performance. It considers ultimate gain Ku and 
frequency Pu for tuning the controller [6].The Tyreus-Luyben procedure is quite similar to the Ziegler–Nichols method but 
the final controller settings are different. Like Z-N method this method is time consuming and forces the system to margin 
if instability. The tuning parameters for Tyreus-Luyben are shown in Table 3. 

Table 3 Tuning parameters of Tyreus-Luyben 

Controller 𝐤𝐜 𝛕𝐢 𝛕𝐝 

 

PI 

Kp

3.2
 2.2τ - 

 

PID 

Kp

2.2
 2.2τ 

τ

6.3
 

The obtained gain values of PID controller based on Tyreus-Luyben method is  

Kc  = 0.158;   τi  = 0.383;    τd  = 0.028 

The Simulink model for PID controller based on Tyreus Luyben is shown in Figure 6 

 

Fig 6:Simulink model for PID controller based on Tyreus Luyben 

4.4 IMC based tuning for PID controller 

Model based control systems are helpful to achieve desired set points and reject small external disturbances. The internal 
model control (IMC) design is based on the fact that control system contains the process to be controlled then a perfect 
control can be achieved. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7:IMC structure 

A feedback equivalent is developed to IMC from the Figure 7 using block diagram manipulation q(s). The controller 
gp (s)represents the actual process and the g

p
(s)represents the model of the process [3]. 
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r (s) 
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Fig 8: Standard feedback Equivalent to IMC 

The standard feedback controller which is equivalent to IMC is 

gc s =  
q(s)

1−gp (s)q(s)
      (16) 

To derive PID equivalent form for processes with a time-delay, where some approximation to the dead time is made, so 
that first-order Pade approximation for dead time is taken. 

gp s  = 
kp

τs+1
e−td s       (17) 

e−td s = 
1 − 

td s

2

1 + 
td s

2

       (18) 

gp s =
0.34811 (1−0.288s)

 0.17416 s+1 (1+0.288s)
     (19) 

IMC controller transfer function, q(s) 

q(s) = 𝑞(s) f(s) 

q(s) = 
 0.17416s+1 (1+0.288s)

0.34811

1

𝜆𝑠+1
     (20) 

Where 𝑞(s) = 
 0.17416 s+1 (1+0.288s)

0.34811
     (21) 

f(s) = 
1

𝜆𝑠+1
      (22) 

𝜆 = Filter Tuning Parameter 

Equivalent standard feedback controller using the transformation   

gc s =  
q s f(s)

1−gp +(s)f(s)
     (23) 

gc s =
1

0.34811
 

0.05015808 s2+0.46216 s+1

 λ+0.288 s
      (24) 

Here λ> 0.8td  

λ=0.5 

The obtained gain values of tuning PID controller based on IMC method are 

kc  = 1.685 

τi = 0.462 

τd  = 0.108 

The simulink model for IMC based PID controller is shown in Figure 9. 

 

Fig 9:Simulink model for IMC based PID controller 
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4.5 Direct Synthesis method 

In general, both the direct synthesis and IMC methods do not necessarily result in PID controllers. However, by choosing 
the appropriate desired closed-loop response and using either a Pade approximation for the time delay, PID controllers 
can be derived for process models that are commonly used in industrial applications.The direct synthesis methods for PID 
controllers are typically based on a time-domain or frequency-domain performance criterion [10]. The controller design is 
based on a desired closed-loop transfer function. Then, the controller is calculated analytically so that the closed-loop set-
point response matches the desired response. The obvious advantage of the direct synthesis approach is that 
performance requirements are incorporated directly through specification of the closed-loop transfer function [11].  

 

 

 

 

 

 

 

 

 

 

Fig 10: Block diagram for a standard feedback control system 

Y

Ysp
=  

Km Gc Gv Gp

1+Gc Gv Gp Gm
      (25) 

For simplicity let G≜ GvGpGm  

Y

Ysp
=  

Gc G

1+Gc G
      (26) 

Gc = 
1

G
 

Y

Y sp

1−
Y

Y sp

        (27) 

The above equation cannot be used for controller design because the closed-loop transfer function 
Y

Ysp
 is not known a 

priori. Also it is used to distinguish between the actual process G and the model G that provides an approximation of the 

process behaviour. A practical design equation can be derived by replacing the unknown G by G and 
Y

Ysp
 by a desired 

closed loop transfer function  
Y

Ysp
 

d

 

Gc = 
1

G
 

 
Y

Y sp
 

d

1− 
Y

Y sp
 

d

         (28) 

The specification of  
Y

Ysp
 

d

 is the key design decision and will be considered. Note that the controller transfer function in 

Equation (28) contains the inverse of the process model owing to the 
1

G
 term. 

4.5.1 Desired closed loop transfer function 

For process without time delay the first order model in Equation (28) is a reasonable choice. 

 
Y

Ysp
 

d

 = 
1

τc s+1
        (29) 

By substituting Equation (29) in Equation (28) and solving for Gc the controller design equation becomes 

Gc=
1

G

1

τc s
        (30) 

The 
1

τc s
 term provides integral control action and thus eliminates offset. 

Design parameter τc provides a continuous controller tuning parameter that can used to make the controller more 

aggressive (smallτc) or less aggressive (largeτc).  

Y Ysp  

Ym  

Km  

 

Gp  Gc  Gv  

Gm  

Y sp  E P U Yu 

Gd  
D 

Yd 
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If the process transfer function contains a known time delay td  , a reasonable choice for the desired closed-loop transfer 

function is 

 
Y

Ysp
 

d

 = 
e−td s

τc s+1
        (31) 

The time-delay term in Equation (31) is essential because it is physically impossible for the controlled variable to respond 
to a set-point change at t= 0, before t=td. If the time delay is unknown,td must be replaced by an estimate. 

Combining Equation (31) and Equation (28) gives 

 Gc=
1

G

e−td s

τc s+1−e−td s       (32) 

The Equation (32) can be used to derive PID controllers for simple process models. The following derivation is based on 
approximating the time delay term in the denominator of Equation (32) with a truncated Taylor series expansion 

e−tds  = 1-tds       (33) 

Substituting Equation (33) into the denominator of Equation (32) and rearranging gives 

 Gc=
1

G

e−td s

(τc +td )s
       (34) 

4.5.2 First-Order-plus-Time-Delay (FOPTD) Model for Direct Synthesis 

First-Order-plus-Time-Delay (FOPTD) Model, 

G(s)= 
k e−td s

τc s+1
       (35) 

Substituting Equation (35) into Equation (34) and rearranging gives a PID controller, 

 Gc= 
τs+1

k(τc +td )s
       (36) 

The obtained gain values of tuning PID controller based on Direct synthesis method are 

kc = 
τ

kp (τc +td )
  = 

0.17416

0.34811(0.5+0.576)
   = 1.737 

τi  = τ = 0.174 

τd  = 
td

2
             = 

0.576

2
= 0.288 

The Simulink model for Direct Synthesis based PID controller is shown in Figure 11. 

 

Fig 11:Simulink model for Direct Synthesis based PID controller 

5. RESULTS AND DISCUSSIONS  

Investigation of ZN-PI, ZN-PID, Tyreus Luyben-PID, IMC-PID and Direct Synthesis-PID controllers for laboratory scale pH 
neutralization process system is described in this section. For this investigation the acid (HCl) and base (NaOH) is fed in 
to the mixing tank and the flow is controlled through the control valve which is controlled by PID controller. Here the pH 
value of the effluent is maintained at different set values (4, 7 and 11 for acid, neutral and base region respectively) as 
shown in figure 12, 13 and 14 respectively. The comparative closed loop response of proposed controller is shown in the 
Figure 12, 13 and 14 for acid, neutral and base regions based on the controller design. 
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Fig 12:Response of the controllers in Acid region (pH = 4) 

 

Fig 13:Response of the controllers in Neutral region (pH = 7) 

 

Fig 14:Response of the controllers in Base region (pH = 11) 

The comparative analysis of controller performance based on the rise time, settling time, peak time, peak overshoot are 
identified and listed in table 4.The error indices like Integral Absolute Error (IAE) and Integral Square Error (ISE) are also 
calculated and tabulated in Table 4 of the proposed system. 

Table 4. Comparative performance metrics of Conventional PI, PID, Tyreus-Luyben, IMC based PID and Direct 
Synthesis method. 

 

Controller 

 

Region 

Rise time 
(sec) 

Peak time 
(sec) 

Delay time 
(sec) 

Settling time 
(sec) 

 

IAE 

 

ISE 

 Acid 4.05 4.89 2.53 9.90 2.53  2.26  
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Conventional 
PI controller 

 

Neutral 4.05 4.89 2.53 9.90 2.53  2.26  

Base 4.05 4.89 2.53 9.90 2.53  2.26  

 

 

Conventional 
PID 

controller 

 

Acid 3.48 4.24 2.35 8.55 2.30  2.12  

Neutral 3.48 4.24 2.35 8.55 2.30  2.12  

Base 3.48 4.24 2.35 8.55 2.30  2.12  

 

 

Tyreus 

Luyben 

Acid 3.48 4.25 2.34 11.20 2.30  2.12  

Neutral 3.48 4.25 2.34 11.20 2.30  2.12  

Base 3.48 4.25 2.34 11.20 2.30  2.12  

 

 

Internal 
Model 

Controller 

Acid 3.48 4.25 2.34 11.15 2.30  2.12  

Neutral 3.48 4.25 2.34 11.15 2.30  2.12  

Base 3.48 4.25 2.34 11.15 2.30  2.12  

 

 

Direct 
Synthesis 

Acid 3.48 4.24 2.35 11.15 2.30  2.12  

Neutral 3.48 4.24 2.35 11.15 2.30  2.12  

Base 3.48 4.24 2.35 11.15 2.30  2.12  

 

6. CONCLUSION 

The controlling of nonlinear system is a very challenging task to perform. In this work, model is obtained for pH process. 
By using obtained model, proper tuning values are obtained for different controllers. The pH value is controlled in 
simulation using various control schemes such as ZN-PI, ZN-PID, Tyreus Luyben-PID, IMC-PID and Direct Synthesis-PID 
controllers. By the analysing the simulation results all the PID tuning gives the same response. 
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