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Abstract  

Pod grains threshing using mechanical devices is essential in understanding the diversities involved in the 

application of machine–crop parameter combinations towards achieving best quality grain. The integration of 

pod grains’ physical properties in optimizing product quality which is vital to meet the increasing global 

requirement is limited. However, with computing and technological advancements into thresher design and 

evaluation have been found to be capable of meeting these needs which are of interest to researchers. Over the 

past three–four decades, the applications of the technology in reducing impact force through modification of 

peg geometry have attracted researchers’ widespread interest and the future looks promising.  This review 

presents an overview of mechanical thresher development and the applications in the field of pod grain 

production chain. The role of grain physical properties in threshers design, operations and with force sensors to 

reveal the mysteries surrounding the causes of grain damage and how they can be minimised are stressed. The 

current trends and future advances of such studies are also presented. 
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Introduction  

Common beans (Phaseolus vulgaris L.) forms an important part of the global food demand specifically for those 

living in tropical and subtropical areas (Mishra et al. 2016; Siddiq et al. 2010). It is a unique source of nutrient to 

human and livestock in many unindustrialized countries (Yi et al. 2016; Kinyanjui et al. 2014; Njoroge et al.  2015). 

The grains are rich in protein and provide a good nutritional supplement (Murdock and Baoua 2014). The 

commonest beans include black, haricot, kidney, lima, mung, pinto and string (French or snap) beans. Many 

people living in Africa, specifically the northern part of Ghana; and Asia especially China, earn their living directly 

or indirectly through the cultivation of common beans. It has high economic value which makes it the most 

important pod grain in many parts of the world (Kabas et al. 2007). Some pod grains other than cowpea and 

soybeans have also been discovered and used as food over the years. The cultivation and consumption of these 

grains specifically, faba beans have been in existence for at least 5000 years which makes it a domestic crop 

(Altuntas and Yıldız 2007).  

Enhancement in pod grain quality is vital to meet the increasing global requirement of high quality grain (Zhang 

et al. 2014; Fitzgerald et al. 2009) but the difficulty in separating the unwanted inedible glumes such as straw 

and husk from the seed existed at the early stages when man started using grains as food (Irtwange 2009). 

Though, the threshing operation is complex (Yu et al. 2015), it is an integral part in the beans production chain 

because it can affect the quantitative and qualitative loss after harvesting (Chandrajith et al. 2016; Huang et al.  

2013). The process is found out to be a combination of the crop and machine variables for mechanized threshing 

or the combination of the crop and striking stick for traditional threshing (Irtwange 2009). The traditional modes 

of threshing in Africa, especially Ghana, and Asia, specifically India, are time consuming and labor intensive. The 

method exposes the product to losses and adulteration. The manual threshing is done by spreading the dried 
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crop on the floor or putting it in sacks where it is struck with pestle (Singh et al. 2008; Maunde 2011). This is the 

basis for exploitation of women, and child labor leading to grain loss with the finished product containing 

impurities such as chaff and gravel (Maunde 2011). However, mechanized threshing combines both the threshing 

and cleaning (separation of the grain from the chaff) operations together at considerable efficiency. 

In order to increase beans production, and improve upon the quality of the final product, thresher development 

has become essential (Sudajana et al. 2002). Consequently, the global demand for beans has resulted in the 

increase of machine size, with the related energy consumption, and operational cost (Mesquita et al. 2000). The 

impact force received by kernels during threshing operation, lead to various degrees of injuries and subsequent 

damage (Xu et al. 2013; Allen and Watts 1997). The performance of the threshing unit is vital in the effectiveness 

of a mechanical thresher (Sudajana et al. 2002). Despite the few setbacks, mechanical threshers have gained 

high reputation because they can be used for several seasons at a very high feed rate and improve upon the 

quality of the final product for human consumption.  

Therefore, the objective of this paper is to present a comprehensive review on the topic of mechanized threshing 

of pod grain but mainly on soybean and cowpea. The publications are critically reviewed and classified into five 

major sections with the first section forming the introduction. The section 2 describes the working principles of 

the technology and the section 3 covers the control strategies of the technique. The effectiveness of the 

technique with reference to findings of previous researches has been discovered under the soybean threshers 

and cowpea threshers and presented in section 4. Finally, the gaps in the literature have been highlighted as 

well as making projections into the future and presented as the concluding remarks in Section 5. 

2    Working principles of beans threshers. 

Beans threshers are power driven machines developed for the threshing of the seeds after harvesting. The prime 

movers for these machines include electric motors; internal combustion engines and auxiliary power from tractor 

power take off (Kumar et al. 2002). The threshing can be achieved by three methods: Rubbing action, Impact 

and Stripping which take place in the threshing unit (Mohan and Patel 1992). The threshing units are classified 

according to functional components (Drummy, Regular or Through-put, and axial flow) and according to types 

of threshing cylinder (Syndicator, Hammer Mill or Beater type, Spike tooth type and Rasp bar type). The 

functional component type specifically the axial flow thresher achieves threshing when the crop is fed into the 

cylinder through a feeding chute located at one end of the threshing drum. The feeding can be in an axial, 

tangential or oblique direction and the movement of the crop between the threshing drum and concave is spiral 

(Miu and Kutzbach 2007). Due to the rushing of crop material during feeding, the grains are removed from the 

ears or the pod which marks the beginning of the threshing process (Miu and Kutzbach 2008a). Subsequently, 

several complete turning of the cylinder provides repeated impact on the grain (Sessiz and Ulger 2003). The 

threshed crop passing through the concave is cleaned by a set of sieves and a blower. The process results in 

high output and cleaning efficiency. Axial flow of the crop is facilitated by the use of louvers provided on the 

upper concave (Sessiz and Ulger 2003; Manes et al. 2015). The straw is then thrown out of the threshing unit by 

paddles. In the case of the threshing cylinder type, specifically the Spike tooth cylinder, the threshing drum is a 

hollow cylinder, made out of mild steel (MS) flat. The spikes or pegs which are made from square or round bars 

or flat iron pieces are welded or bolted over its entire periphery. However, round peg with adjustable length are 

used for the pegs in most threshers. The crop is fed along with the direction of motion of the rotating drum 

(Neale et al. 2003).   

A typical thresher is fitted with a feeding chute at a slope of 10–15% at the input end of the threshing drum 

(Kumar et al. 2002). This slope facilitates easy flow of the crop into the threshing mechanism. The threshing 

process by which the grains are removed from the straw effectively begins at the feeding zone due to a sudden 

acceleration of material. Subsequently, a higher number of grains are threshed due to initial impact (Petkevichius 

et al. 2008). However, the degree of threshed seed depends on the straw placement with respect to the drum 

and rotor peg position (Miu and Kutzbach 2008b; Asli-Ardeh and Abbaspour-Gilandeh 2008).  

During the past few decades, several researchers have attempted to develop and evaluate beans threshers (see 

Table 1). The technique ranges from manual to powered thresher development, assessment, and determination 

of the machine–crop parameter combinations for optimal performance. The future looks promising for such 
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applications which are often carried out based on the rotor or cylinder speed, grain moisture content, cylinder–

concave clearance and the impact force generated resulting from the geometry of the impacting body (Utaku 

2006). In the following, a control strategy, advantages and limitation of mechanical threshers, the role of physical 

properties in thresher design and an overview of the designs and applications of threshers on soybean and 

cowpea using different parameters are presented. 

Figure 1: (a) A setup of high speed camera to capture the process of opening the pod to free the seed in the 

threshing chamber, and (b) the captured image showing how the rotor peg impacts the pod to free the seed. 

Table 1: Summary of selected research papers on cowpea and soybeans threshing. 

Author  Year  Crop Objective  

Cain and Holmes 1977 Soybeans  The effect of impact velocity on soybean seed quality  

Paulsen et al. 1981 Soybeans  Effect of soybean seed moisture content on its resistance to 

impact damage. 

Singh and Singh   1981 Soybeans  Assessment of crop and machine parameters combination on the 

threshing effectiveness and seed quality of soybean. 

Bartsch et al. 1986 Soybeans Effect of a single high-speed collision on soybean seed damage. 

Mesquita and 

Hanna  

1993  Soybeans   Evaluating the effectiveness of two belt system soybean thresher  

Mesquita et al. 2000 Soybeans  To compare threshing efficiencies, damage and energy required 

to thresh soybeans at four different speeds. 

Ukatu 2006 Soybeans  Combine safe impact velocities with appropriate clearances to 

maximise threshing efficiency.  

Azadbakht et al. 2012 Soybeans  Effects of initial moisture content, impact and friction energy on 

threshing of soybean pods.  

Sharma and 

Devnani 

1980 Cowpea The effect of operating parameters on cowpea threshing losses 

Dauda 2001 Cowpea Development of cowpea threshing equipment to improve on the 

quality, reduce damage and fast track the process. 

Irtwange  2009  Cowpea   To alleviate the challenges that farmers face in relation to manual 

threshing 

Maunde  2011 Cowpea Performance evaluation of the threshing efficiency and seed 

damage of manual thresher 
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Maunde 2014 Cowpea Alleviating the problem of separation and cleaning in the case of 

manual cowpea threshers 

Asante et al. 2017 Cowpea  Assessment of the minimum duration of open air drying and best 

machine-crop parameters combination for optimum 

performance. 

Fraser et al. 1978 faba beans Some physical properties of faba beans  

Singh and 

Goswami  

1998 cumin seed Assessment of compressive loading and grain moisture content 

effect on seed rupture force.  

Allen and Watts 1997 Beans  To determine mechanical and aerodynamic properties of both 

beans and pods necessary to design thresher cleaning system. 

Ogunjimi et al.  2002 locust bean Assessing the mechanical properties of locust bean seed under 

loading. 

Olajide and Ade-

Omowaye  

1999 Locust bean To design equipment for handling, processing and storing locust 

bean  

Baryeh and 

Mangope  

2002 Pigeon peas Evaluation of the physical properties of QP-38 variety of pigeon 

peas as a function of seed moisture content 

Kabas et al. 2007  Cowpea   Some physical and nutritional properties of cowpea seed  

Yalcın 2007 Cowpea  Investigating some moisture-dependent physical properties  

Altuntas and 

Yıldız  

2007 Faba bean Assessment of moisture content influence on the coefficients of 

friction as well as rupture force, and specific deformation  

Isik and Unal   2007 Red kidney 

beans 

To investigate moisture-dependent physical properties, namely, 

axial dimensions, coefficient of friction and shelling resistance  

 

3    Control strategy and guidelines of beans threshing operation  

The threshing unit of an efficient thresher must be able to produce a flawless threshing with maximum crop 

throughput, and highest grain separation, preserving the grain quality in its natural form, and minimizes grain 

loss (Myhan and Jachimczyk 2016). However, this is an ideal case (Miu and Kutzbach 2008b). Therefore, to operate 

a thresher for the purpose of threshing pod grains at a very high efficiency, reduce damage and improve on the 

quality of the final product involve a control strategy. This is because improper threshing of beans mostly results 

in seed loss of up to about 5% of the crop (Bruce et al. 2001).  

Several approaches are available to grain thresher operators and must be employed to achieve the above 

objectives. One of which is the speed of the rotating or the moving components since it determines the impact 

frequency and the magnitude of the force (Mesquita and Hanna 1995; Liu and Leonard 1993). Therefore, it must 

be maintained at a level to produce an impact force that is just enough to break the pod whilst keeping the 

grain in its original shape and must be according to the response of the grain to impact (Mesquita and Hanna 

1995). On the other hand, the clearance between the cylinder or the tip of the rotor peg and the concave must 

be adjusted according to the physical parameters of the crop so as to avoid extreme cracked seeds since it can 

lead to a very low value of the grain (Ukatu 2006). Furthermore, the effectiveness can be affected by the grain 

moisture content and feeding method (Yalcın 2007). One way to bring these challenges to acceptable level is to 

determine the required moisture content for a given rotor speed (Ukatu 2006). This is because the effectiveness 

of threshing does not only depend on the performance of the thresher itself, but also on the crop–machine 

parameters combination (Miu and Kutzbach 2008b). The speed of the crop during feeding must be very slow to 

avoid excessive breakage. This is because the grain velocity just before impact is one of the major causes of 

seed damage (Vejasit and Salokhe 2004).   
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Overall, it is required that the whole threshing process is carried out under optimal conditions (Myhan and 

Jachimczyk 2016). These should include quantitative assessment of the throughput and quality of the grain (Abdi 

and Jalali 2013). The quantitative assessment enables an operator to determine the duration of the operation 

whereas, the qualitative assessment help to ascertain whether or not the grain purity, seed damage and losses 

are within the acceptable levels (Myhan and Jachimczyk 2016). However, the extent of loss is influenced by the 

design characteristics, the prevailing operational conditions, and the physical properties of the crop (Craessaerts 

et al. 2007). Finally, automation of the threshing process is required because, when the losses are approaching 

unacceptable levels, the sensors will trigger the system to readjust. This can be made possible with availability 

of more sophisticated sensors and electronics which can monitor the separation and damage losses (Coen et al. 

2008; Zhao et al. 2011).  Continuous improvement in the control strategies of the technique are needed for 

effective research to serve as a leading threshing skill in the coming decades.  

4    Advantages and limitation of mechanical threshers 

Pod grains are basic products for human being worldwide. The challenges in threshing the pod has existed since 

the early stages when man started using grains as food (Irtwange 2009). In ancient days, people process beans 

by tearing the pod open and taking off the kernel by hand or simple tools. However, as society industrialized, 

with the increase in demand of high quality grains, mechanical threshers have been introduced. It started with 

hand operated threshers but has evolved over the years to the current engine powered threshers as well as the 

combine harvester. The current state of thresher development has several advantages which include: 

The threshers reduced dependence on labor and increased efficiency. They help in meeting the growing 

demands of urban dwellers and the export market which requires the bringing of virgin lands under cultivation. 

Threshers allow large scale farmers to swiftly clear large tracts of crops, and prepare the ground for the next 

cultivation (Paulsen et al. 2015). Harvesting, threshing and winnowing are done at a time and no space is required 

for threshing and winnowing (Hossain et al. 2015). It saves the crop from natural calamities as well as shattering 

loss due to over maturity. In the case of combine harvesters, there is a reduction in grain loss compared to 

conventional harvesting, threshing and winnowing methods (Veerangouda et al. 2010). Harvesting cost is also 

lower than those of manual harvesting, threshing and winnowing of crops. However, there are some 

disadvantages which include; to the poor farmers, machines brought misery because it renders them jobless. 

Machines reduced dependency on labour leading to unemployment. The cost of using combine harvester is too 

high and not affordable to the small holder farmer (Veerangouda et al. 2010). Harvesting by combine harvester 

is difficult on small plots. Threshers are sometimes not readily available during the peak harvesting season. Spare 

parts and skill mechanic are scarce in the rural areas for repair and maintenance of complex threshers. Trained 

operators can be lacking for efficient field operation. 

Figure 2: Schematic section of a pod grain thresher showing crop material flow and separation 

5. The role of physical properties in thresher design and operation 

The availability of the physical properties of pod grains is critical for the threshing and handling equipment 

design (Altuntas et al. 2005; Baryeh and Mangope 2002). Such information is useful in sizing prime mover 
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requirements, determining the hole size of separating sieves, and selecting the appropriate material for the 

equipment components that handle grain and crop material flow (Al-Mahasneh and Rababah 2007; Ogunjimi 

2002). Other factors that are also essential for effective threshing operations are the mechanical properties of 

the grains which are profoundly influenced by the grain moisture content (Razavi et al. 2007; Yalcın 2007; Baryeh 

and Mangope 2002). Subsequently, the physical and the mechanical properties determine the behaviour of the 

crop when subjected to mechanical loading during threshing.  

The sole objective of the studies on the physical and mechanical properties of grains was to provide a data base 

to aid thresher designers and operators to improve upon the work in such a wonderful industry. For instance, 

empirical information on the angle of repose is useful to consider the flowability of the grain during threshing 

(Balasubramanian and Viswanathan 2010; Al-Mahasneh and Rababah 2007; Fraser et al. 1978). The terminal 

velocity of grains is useful in the design of pneumatic conveyor and separation systems (Baryeh 2002; Sacilik et 

al. 2003). Furthermore, the friction coefficient between the grain and the structural surface in contact with the 

grain is useful in sizing motor requirements as well as the material for grain handling and transportation from 

one stage of the threshing process to the next (Kabas et al. 2007; Al-Mahasneh and Rababah 2007). The 

mechanical properties and aerodynamic properties of both beans and pods are also necessary to the design of 

threshing machine cleaning system (Allen and Watts 1997). Finally, the major axial sizes of seeds are valuable 

data than can enhance the selection of sieve sizes for separation during threshing (Amin et al. 2004).  

Despite the fact that there are several factors that contribute to the above mentioned physical and mechanical 

properties of pod grains, many studies have discovered grain moisture content as the major factor. This is 

because it extremely influences the behavior of the crop when subjected to mechanical loading during threshing 

which are the most important physical parameters required for the design of grain handling equipment (Razavi 

et al. 2007; Akaaimo and Raji 2006). As a result, there has been increasing interest among scientists to perform 

empirical research in order to quantify the relationship between grain moisture content and such properties (Al-

Mahasneh and Rababah 2007). The current trend in the demand for high quality grains makes studying into such 

properties the largest areas of interest and the future looks promising in terms of the utilization of such data for 

innovative grain handling equipment design and threshing. A key work by Fraser et al. (1978) made significant 

contributions to the research into the physical properties of pod grains. The authors developed a protocol to 

quantify faba beans physical properties and reported an increase in the static coefficients of friction of the faba 

beans with the increase in grain moisture content. In another study, Olajide and Ade-Omowaye (1999) assessed 

the static coefficient of friction of locust beans on the surfaces of three structural materials and published an 

interesting report of an average decreasing trend with the highest in the case of plywood, followed by galvanized 

steel while it is lowest for glass perpendicular to the grain. Similarly, Kabas et al. (2007) quantified the coefficient 

of static friction of cowpea seeds and obtained a decreasing trend against the surfaces tested with the highest 

in the case of rubber, followed by plywood while it is lowest for galvanized sheet.  

Information on the influence of crop moisture content variation on coefficient of friction against structural 

material surfaces, rupture energy and shelling resistance enables the understanding of the behavior of the crop 

during threshing at different drum speeds and cylinder-concave clearance (ElMasry et al. 2009; Aydin 2007).  

Baryeh and Mangope (2002) showed how the variation of crop moisture affects the above mentioned properties. 

In their study, the authors assessed the physical properties of pigeon pea as a function of the grain moisture 

content and reported that the terminal velocity had a linear correlation with the moisture content. However, the 

coefficient of static friction increased nonlinearly from 0.28–0.51 for plywood, 0.23–0.38 for galvanised steel and 

0.18–0.31 for aluminium. The authors then recommended that low moisture content is a necessary condition for 

the design of pneumatic equipment to handle the grain so as to reduce energy input. In a similar approach, 

Unal et al (2006) quantified the effect of seed moisture content on the physical properties of black-eyed pea 

and reported that the terminal velocity increased linearly with the increase in moisture content. The authors 

further reported an increase of 0.380–0.434 for rubber, 0.355-0.399 for galvanised iron, 0.346-0.383 aluminium, 

0.333-0.375 for stainless steel, 0.323-0.374 for glass and 0.278-0.342 medium density fibreboard in the static 

coefficient of friction as the moisture content increase. The shelling resistance of black-eyed pea decreased as 

the moisture content increased with the highest force obtained while loading along the Z-axis (thickness). In a 

similar technique, Isik and Unal (2007) quantified the shelling resistance of red kidney bean and reported a 
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decrease from 98.26 to 53.67 N as the moisture content increased. Other studies by Yalcın (2007) on cowpea, 

Altuntas and Yıldız (2007) on faba beans and Isik and Unal (2007) on red kidney beans proved similar linear 

relationship between the seed moisture content and the coefficient of static friction for the various structural 

materials surfaces investigated. Work by Altuntas and Yıldız (2007) provided an astute procedure as to how the 

effect of seed moisture on specific deformation and rupture energy can be investigated. Subsequently, they 

reported a general increase in magnitude of the specific deformation and rupture energy with increasing 

moisture content after applying the procedure on faba beans. 

The diligently complete information covered by the authors gives a good indication of the role physical 

properties of pod grains play in thresher design and elucidating their response to impact during threshing. It is 

now clear that the rupture strength, coefficient of friction, terminal velocity, and the shelling resistance of pod 

grains were highly dependent on moisture content. The seeds became brittle at high-moisture content and 

required less force to rupture (Karababa and Coskuner 2013; Paksoy and Aydin 2004). Furthermore, an increase 

in the moisture contents of all pod grains leads to an increase in friction coefficient on all structural surfaces 

(Yalcin 2007; Altuntas and Yıldız 2007). Several methods were formulated and the authors recommended low 

moisture content of the crop as a necessary condition to have reliable physical property required for effective 

pod grain handling.  Considering the literature and harmonizing methods to investigate the effect of moisture 

content on physical and mechanical properties, quite a number of them only focus on the behavior of the crop 

during mechanical handling. However, the authors failed to critically make use of the full potential of such 

studies to unravel the amazing influence of crop water content dynamics on mechanical impact damage during 

threshing. This calls for in-depth studies to help in filling these research gaps.  

6    Development and evaluations of pod grains threshers 

6.1    Soybeans  

The major concern of beans traders and farmers is the damage caused to the seed due to impacts of the moving 

parts of crop threshing units and incorrect clearances between the stationary and moving component. Therefore, 

developing beans threshers with a part that can impact the grain with less force and reduce seed damage to an 

acceptable level is the focus of current researchers (Ukatu 2006). Based on literature, in the field of beans 

threshing technology, some good research outcome as well as inconsistencies in the analysis about the 

effectiveness, have been found. For instance, one of the ground-breaking works to unravel the main cause of 

grain damage which results in low quality of the final product was done by Cain and Holmes (1977). The authors 

tested an impact force device on soybean and reported that the damage depends on impact velocity as well as 

the seed moisture content.  Consequently, a further research to assess the quality of soybean seed as a result of 

single high speed collision was carried out by Paulsen et al. (1981). The outcome convinced the authors to 

conclude that the impact velocity and seed moisture content are the primary sources that contribute to seed 

quality. The relationship between soybean moisture and impact velocity was also investigated by Bartsch et al. 

(1986) and reported that an impact velocity of 15 m/s, was enough to crack a seed at 8% moisture content. The 

authors further concluded that the seed damage due to impact increases with decreasing moisture. 

High efficiency of grain threshing is another interesting research area in the development and evaluation of 

threshers. Although it is mostly challenging to quantify machine-crop parameters for a reliable threshing, 

perseverance of some researchers has led to many remarkable findings. An important aspect of the excellent 

assessment of a two belt system soybean thresher by Mesquita and Hanna (1993) revealed that the effectiveness 

reduces with increasing moisture. The authors further recommended that the energy needed to thresh the pod 

is 0.12 J. Further reduction in crop material processing other than grain is also a key source of high quality beans 

and can lead to a more efficient use of energy (Miu 1999). In view of the above, Mesquita et al. (2000) developed 

an experimental device that uses nylon cords for the impact force to thresh uncut soybean crops and achieved 

99 % efficiency. However, the authors stated that the performance largely depends on the ground speed.   

The qualitative and quantitative loss of seed during threshing is another area of interest to many researchers 

and grain merchants. Besides considering the impact force as the main determinant of the grain loss, other 

factors such as moisture content and threshing speed are crucial for optimal performance of the threshing 

mechanism (Azadbakht et al. 2012). Singh and Singh (1981) investigated the effect of machine-crop parameters 
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on threshing effectiveness on the quality of two varieties of soybean and reported a linear relationship between 

pod moisture content and unthreshed grain. Consequently, the authors stated that the threshing speed had 

only little effect on the germination percentage of both varieties. Another area of interest is the relationship 

between the geometrical shape of the rotor peg and the related impact force which also determines the damage 

of the seed. In view of the high need of reducing perpetual damage to grains, Utaku (2006) modified the 

threshing fingers of a rotor, compared the performance with that of the conventional pegs on soybeans seed, 

and reported a significance decrease in seed damage. This research has significantly contributed to the search 

for geometrical shapes of impacting bodies that would produce less force and consequently reduce seed 

damage. However, the author failed to practically quantify the impact force which is necessary for developing 

curved working surfaces. In another study Azadbakht et al. (2012) verified whether or not seed moisture content 

and energy play important roll on the threshing percentage, and reported that both parameters had significant 

effects with the maximum threshing percentage occurring at the minimum moisture content. This was after the 

authors investigated the effect of three initial seed moisture content levels, impact and friction energy on 

threshing of soybean pods. They then concluded that impact threshing requires lower energy levels, while higher 

energy levels are required for the threshing of pods done by friction. All the above studies have contributed 

significantly in the fight to improve soybean threshing at an affordable cost. To have detail information about 

the above reviewed studies, the authors entreat the readers to refer to the full articles online.   

6.2    Cowpea 

The challenges related to effective cowpea threshing have existed for many years. However, many attempts have 

been made in the development of cowpea threshing equipment to improve on the quality of the final product, 

reduce damage and fast track the process. To elevate the efficiency of manual cowpea threshing, Maunde (2011) 

developed and evaluated the performance of a manually operated cowpea thresher and reported 90 % threshing 

efficiency. However, the thresher could not carry out separation and cleaning operations which are the major 

limitations to the performance of manual threshers (Omid et al. 2010). Consequently, the author recommended 

a possibility of motorizing it, and making provision to address the limitations. In view of these, motorized 

threshers were also introduced to alleviate the above-mentioned challenges that farmers face. One of the typical 

studies to address these problems was carried out by Irtwange (2009) and obtained overwhelming average 

threshing efficiency of 96.29%. This was after the researcher fabricated a motorized cowpea thresher and tested 

it using recommended beater and fan speeds of 500 rpm and 1,400 rpm respectively. Subsequently, Maunde 

(2014) developed a motorized thresher to solve the problem of separation and cleaning in the case of manual 

cowpea threshers, and achieved 97% threshing efficiency.  All the above studies have provided significant 

information towards effective threshing of cowpea and soybeans. However, gaps exist for new research 

direction. These include quantifying the impact force that are developed by rotor pegs or any other machine 

parts that come in contact with the grain during threshing. Determination of the best curved peg geometry that 

will significantly reduce impact force and to large extent decrease grain damage must be the focus of current 

researchers. Data on the actual speeds of the moving components relating to specific moisture contents of the 

crop for optimal performance have not been fully determined. Details on these projections into the future are 

highlighted in the section 7.  

  

(a) (b) 

 

Figure 3: Schematic section of pod grain thresher mechanisms showing (a) Traditional peg and (b) Curved peg  
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7    Additional issues and concluding remarks 

It is now obvious that mechanized threshing technique is a valuable tool in cowpea and soybeans production 

chain due to the massive usage in fast tracking the qualitative and quantitative demand of farmers and 

consumers. Although presently, there are several on-going studies in the area of more efficient thresher design, 

and machine-crop parameters combination for optimal performance, there is still a lot of work that needs to be 

done with this technology. Continuous improvement in the techniques and methodologies are needed for 

effective mechanized threshing research to serve as a leading technology in the coming decades. Theoretical 

model development, simulation and validation of such works with experimental results are expanding areas of 

research interest.  

The use of modelling as a research tool in combination with practical assessment for critical analysis of the role 

grain moisture content play on the physical features, feeding rate as well as mechanical properties, presents an 

excellent opportunity for studying the effect on the impact damage during the threshing process. This is because 

the above-mentioned parameters are directly linked to the performance of the threshing unit. In that 

circumstance, a strong database for linking the role of the above-mentioned parameters with the drum speed, 

geometry of the impacting body and the feeding rate could be obtained. It could also be exciting in the future 

to incorporate more studies on material kinematics in axial threshing units since only few published research 

results are available (Miu and Kutzbach, 2007). This area is fairly unexplored and so could pave the way for 

providing the information needed to understand the effect of rotor speed, spirals angle, feeding rate and 

material moisture on the performance of such threshers. With much improvement in system design and 

configuration, the provision of further insights into the threshing processes could be discovered. Thus, pave the 

way for the optimization of the axial flow thresher performance as a measure towards ensuring availability of 

high quality soybean, cowpea and other pod grains in the coming decades. An understanding into grain 

structural stresses responses to compressed and impact mechanical loading is the key to developing threshing 

models for different varieties of pod grains. Further research into the above-mentioned properties is also 

essential for the design of the threshing equipment.  

Another area of interest which is essential for a rational design of efficient thresher and optimization of the 

threshing process is the knowledge of fracture characteristics of the seed (Saiedirad et al. 2008). Although, some 

few research results on grain rupture have been published, only few are current. In one of such studies, Allen 

and Watts (1997) determine the mechanical and aerodynamic properties of both beans and pods. The aim was 

to obtain the necessary information for effective design of the threshing and cleaning system. The results 

showed that the average energy required to cause fracture of a single bean under quasi-static load was higher 

than that for impact loading and an average terminal velocity of 9 m/s from the aerodynamic tests. However, 

the authors recommended 6 m/s as the required average terminal velocity for effective separation of the 

threshed pods. Another step towards quantification of mechanical properties instigated Singh and Goswami 

(1998), to subject cumin seed to compressive loading under variable seed moisture. The authors then confirmed 

that the rupture force increased with increasing deformation and decreasing moisture content in the horizontal 

and vertical orientations. Similarly, Ogunjimi et al. (2002), assessed the mechanical properties of locust bean 

seed under loading and established that the seed orientation that provided the highest resistance to cracking 

is in the vertical axis with the thickness having the least resistance to cracking. The above published results have 

proven that the influence of seed moisture on the seed coat rupture and subsequent deformation in response 

to mechanical loading varies with the variety of the crop and orientation of the seed. There is, however, little 

information on the exact grain moisture content, drum speed, and the geometrical shape of the impacting body 

which is critical to the crop–machine parameters combination for optimizing the threshing process. Furthermore, 

there is scanty data on the feeding mechanism that leads to better orientation of the pods before impact. Hence, 

much needs to be done in making data on the above-mentioned parameters available to enhance effective 

thresher design and manufacturing. Though, several attempts have been made to measure the impact force 

developed from the working surface of impacting bodies, it appears that there is a major challenge in obtaining 

the exact impact force. This is because to date there is no agreement among researchers as to the standard 

approach for such measurements for different working surfaces originating from different geometrical shapes. 

The way forward to bridge this gap and harmonise the system is to identify and shared among researchers, 
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suitable computer simulation software and codes through an open source libraries and educational forums to 

enhance pioneering research into the evaluation of impact force.  

Further research attention must be focused on measuring the impact force practically for the various geometrical 

shapes of the impacting thresher parts. Over the years, most researches into grain resistance to cracking and 

subsequent deformation in response to mechanical loading, focused on single impact. However, this technique 

does not provide the impact force received by all possible contact points along the working surface of the rotor 

peg. Furthermore, several points on the working surface of the rotor peg serve as grain contact point during 

drum rotation. Consequently, the impact force close to the rotor-peg joint is less than that at the tip of the peg 

regardless of the peg geometry. Therefore, there is variation in the impact force along the working surface. The 

entire impact force can be obtained if multiple impact force sensors are fixed on the working surfaces of the 

peg or on the concave and connected to the data logger to take readings of the impacts received by the grain. 

In this regard, all impact forces generated by all contact points along the working surface can be assessed for 

the various peg geometries.     

To achieve all of these, it requires that researchers dedicate more time, and effort to overcome the challenges 

ahead which also goes with cost. However, gigantic progress in this direction could be made through effective 

collaboration among industry players, government institutions and research institutions. In conclusion, this 

review has brought to light the prospects of the techniques and an attempt to set up a standard for the 

improvement of soybean, cowpea and other pod grains quality. It is therefore crucial for future research to focus 

more on exploring how the technology could be used to provide relevant data for the benefit of the scientific 

community.  
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