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Abstract 

A teaching-learning proposal is described for the treatment of optimization problems in the pre-university 

student. The theoretical-methodological elements fall into the heuristic principles and resources and the use of 

GeoGebra software, on this basis is conceived the identification, selection and formalization of the way of 

solution, control and assessment as fundamental stages. This work contributes to a proposal to approach the 

treatment of the study of the variation of the functions, prior to the classic presentation of the mathematical 

content using the derivative. 
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1. Introduction  

The problem of teaching and learning mathematics, in particular calculus, has been studied from different 

theoretical and methodological frameworks. Research on this topic show that students have problems with 

understanding, constructing and interpreting the basics concepts of calculus, such as the concept of function, 

increasing and decreasing function, maximum and minimum, among others (Pineda, 2013; Delgado, 2013; Ruiz, 

Gutiérrez, & Garay, 2018; Caves & Delgado, 2016; Valencia & Valenzuela, 2017). These identified problems on 

teaching and learning of calculus in high school and college have motivated the development of research with 

the aim of influencing proposals that contribute to the improvement of these situations. Problems with teaching 

and learning of calculus may be due to different reasons, within them, we can find mathematical and didactic 

knowledge of the professors, the influence that textbooks and other professors exert in relation to the 

organization of their class, the characteristics of the students in terms of levels of knowledge development, 

among others.  

With the purpose of influencing the solution to the problem raised, it is described a teaching-learning proposal 

for the treatment of the problems of optimization in the pre-university student. The theoretical and 

methodological elements of the proposal fall into the heuristic principles and resources, the GeoGebra software 

and the basis of methodologies for problem solving a proposal is conceived with the following structure: 

identification of the problem, selection and formalization of the way of solution, control and assessment, with 

this work we contribute with a proposal of approaching the treatment of the study of the variation of the 

functions and be the starting point for the treatment of optimization problems through the use of the derivative 

that is proposed at the levels of education mentioned above .  
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2. Theoretical foundation 

While it is true that mathematical knowledge structured and systematized under the scientific Interest of the 

discipline is the source to which it comes for incorporation in teaching, it suffers transformations that through 

transposition exercises didactics is arranged as an object of reachable teaching for students, whose purpose and 

objective is not that of discipline, but knowledge and its use in the resolution of problems of life, context and 

those of an intramathematical nature that encourage the development of creative, logical and heuristic skills, 

thus enhancing the rational use of school mathematical knowledge.  

It should be appreciated that this does not mean a rupture with formalization, but that the emphasis on teaching 

of school mathematics is put in the intuitive processes during the construction of knowledge by students, 

starting from putting into play the application of various heuristic procedures, making arguments grow until 

they have access to formalization (Marmolejo & Moreno, 2018). 

Heuristic resources 

Torres (2013) states that the heuristic instruction of mathematics, implies knowledge and conscious employment 

of three fundamental types of heuristic resources: the auxiliary heuristic means, the heuristic procedures and the 

general heuristic program. Here we emphasize the heuristic procedures, which constitute mental resources of 

search that allow orientation and to obtain the route of solution during the process of resolution of a 

mathematical problem. In this respect Jungk (1981) classifies these such heuristic procedures in principles, rules 

and heuristic strategies. The heuristic principles constitute suggestions for directly finding the idea of the main 

solution of resolution; they make it possible to determine, therefore, the means and the way of solution. Within 

these heuristic principles are identified: analogy, reduction and induction.  

Software as a heuristic resource in the teaching and learning activity of mathematics  

Problems of teaching and learning mathematics at different levels, have motivated researchers as well as 

teachers towards the search for new tools to influence favorably on the teaching and learning processes of the 

discipline. Current trends in the teaching of mathematics have emphasized the importance of the use of 

educational technology as a tool that favor such processes. Researchers such as (Marmolejo & Campos, 2012; 

Arango, Gavirria & Valencia, 2015) highlight the importance of incorporating the use of technologies at work in 

the classroom, as these resources allow students to explore other environments that favor the resolution of 

teaching activities that are proposed to them and that, with only the use of pencil and paper, or the information 

of the Textbooks, class notes, among others, would be difficult for them to obtain. (Morales, Locia & Marmolejo, 

2014; Morales, Locia & Salmerón, 2016) point out that Geogebra software is a heuristic resource that allows, via 

visualization and manipulation: to identify patterns of behaviors, properties and relationships between 

mathematical objects. They also emphasize that the heuristic procedures of analogy, reduction, induction and 

generalization are favored. These conclusions were identified from the analysis of proposals based on the 

software that researchers have done for the treatment of problems related to perimeters, areas, about the 

concept of median and the study of transformations of translation and rotation in the teaching of geometry in 

the pre-university student. 

3.  Methodology  

The strategy presented here took as a basis the methodologies on resolution of problems that are based on the 

historical-cultural approach and on the stages that structure it, describes the role of Geogebra software as a 

fundamental heuristic resource. In the development induction is favored by the dynamic-visual, then the 

generalization is allowed, a first scenario propiates the study of the behavior of curves through their tangents 

(mathematical models built), that they realize their stability and instability.  
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Didactic strategy 

The strategy described consists of the following steps: Identification of the problem, selection and formalization 

of the route, execution and control.  

Stage 1. Identification of the problem. Some issues are proposed that favor the understanding of the problem, 

the identification of the information given and the requirement. To that end, some didactic impulses are 

fundamental, such as: what is the incognita, what are the data? What is the condition? Is the condition sufficient 

to determine the incognita? Is it insufficient? Redundant? Contradictory? 

Stage 2. Selection and formalization of the via. Some way of proceeding is conceived, and the fundamental 

actions are described, that guide the activity towards the solution. For this stage, the following didactic impulses 

are fundamental: analogous problems, variants in the conditions, identification of concepts and properties in 

the situation, identification of the incognita, and it is a matter of remembering a problem that is familiar and 

has the same incognita or a similar incognita. 

Stage 3. Execution and control. The indicated actions are carried out and the use of the variables, in addition, to 

verify the correct use of the variables, the structure of built model, the mathematical model, the relationship 

with the solution of the situation raised. 

Implementation of the strategy: analysis and discussions 

Problem 1. Divide into two parts, not necessarily equal, a segment of 7 units of length, in such a way that the 

product of the lengths of the two sub-segments that divide it is the maximum. 

Stage 1.  

Depending on the conditions and the demand in the problem, it is asked to determine the length dimensions 

of the 7 main segment division length units; in such a way that the product of these lengths is the maximum. In 

a pen-and-paper environment, we would have to do infinite trials to construct the division sub-subsegments for 

each position of a point in the segment, then estimate the measurements of the lengths of these sub-segments 

and finally make the products. With the information determined by trial an estimation is achieved of the value 

of the maximum product, and therefore the appropriate lengths. After the identification of the requirement in 

the problem from trial procedures in a pen-and-paper environment, a pathway is now conceived, in a dynamic 

geometry environment that enables Geogebra software. 

Stage 2.  

a. A 7 unit length segment is plotted. A point is located on it (not fixed) that runs through the segment and 

the two sub-segments of division are plotted. 

b. It is identified, that as the movable point runs through the main segment, the product of the lengths of the 

division sub-segments varies, and it is intuited that the proper position of the movable point must be in the 

vicinity of the center of the main segment, to make the product the maximum. This visualization is also 

supported by building and observing the behavior of the area of a rectangle whose dimensions are the 

lengths of the sub-segments. It is observed that the point approaches the center of the main segment, the 

figure tends to be a square, and the product associated with the area is the maximum. 

c. The area’s geometric place is built as the movable point runs through the segment. At first the manual work 

is done with the software, and the general behavior is induced from this activity. 

d. Finally, it is discovered that the measurements of the lengths of the sub-segments that make their product 

the maximum are the same.  
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e. Generalization principle: the mathematical model is constructed (quadratic function) of the situation. This is 

possible because the three points are known: (0, 0), (7, 0) and (a, c1) where a is a slider that runs through 

the AB̅̅ ̅̅   segment of 7 units, and c1 indicates the product of the lengths of the sub-segments.  

• A point is located in the curve, and a tangent is constructed by that point. This activity is done in order 

to relate the intuitive work that is being performing with the tools offered by analytical geometry. 

• It is observed that as the abscissa of the point of tangency is approached by the left to the midpoint of 

the main segment, the tangent has an abscissa increased behavior, in a midpoint neighborhood the 

tangent tends to have a horizontal behavior, if the abscissa of the tangency point is on the right of the 

abscissa of the point in the main segment the tangent has a decreasing behavior. This identifation is 

done by using the software, and a criterion is induced for the investigation of the maximum of a function, 

based on the criterion of the first derivative.it should be noted that the relevant process is the potential 

of the Geogebra software as the heuristic source that helps to rediscover mathematical knowledge and 

help to generalize behaviors of mathematical model associated with problem situations, such as that 

which is object of study of the work. 

Actions using software GeoGebra 

a. Point C has been located on the segment, the division sub-segments are AC̅̅̅̅  and CB̅̅̅̅ . The product of the 

lengths of the sub-segments is indicated by c1= (AC̅̅̅̅ ) (CB̅̅̅̅ ) = 11.54 as shown in figure 1. 

 

 

 

Figure 1. Source: own elaboration 

b. The value of c1 changes as point C traverses the main segment, as it was said in the previous stage, as the 

movable approaches the center, the product increase   at its maximum value and tends to decrease as the point 

approaches the right end of the segment. With the idea of identifying and conjecturing on the segments of the 

sub-segments that satisfy the conditions of the problem, a rectangle was built when taking action pairs (consider 

that the pairs of measurements are variable because they are conditioned in this case by the route of point A in 

the segment  BC̅̅̅̅  ), and thus by varying point A; the area measurements change as shown in Figure 2.  

 

 

 

 

 

 

 

 

Figure 2. Source: own elaboration 
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c. Locus of the situation 

In figure a) it is observed that by making the point A traverse the BC̅̅̅̅  segment it is described in the plane the 

locus. In figure b) a locus has been formally constructed, and it is identified that the greatest image is reached 

when point A is in a neighborhood of the center of the segment, and makes the figure tend to be a square. 

d. with the previous analysis, it is concluded that the lengths of the sub-segments that make the product the 

maximum must be the same. 

e. construction of the mathematical model (two-degree model) passing through three points: f(x) = −x2 + 7x, 

its graph, and tangent to it, at the shown point, Figure 4. 

Figure 4. Source: own elaboration 

- Tangent variation and identification of the relative maximum. 

 

 

 

 

 

 

 

Figure 5. Source: own elaboration 

In figure d), it is observed that the tangent tends to have a horizontal behavior when the abscissa of the tangency 

point tends to the vicinity of the center of the main segment. That is to say, that the behavior of the tangent 
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helps to discover and to systematize the maximum value of the function, therefore, the measurements of the 

lengths of the sub-segments that make the product maximum. 

Stage 3. 

To use the Geogebra software, the identifation of the movable point was favored in the segment that allowed 

to determine the lengths of the two sub-segments of division, and ensure that the product is the maximum. We 

could also identify the behavior of the tangent over the curve that represented the area of the rectangle, as the 

point varied, it was observed that the tangency point changed position in the curve, and therefore the tangent. 

Of this last behavior, it was identified that in the maximum point in the abscissas grew and then decreased. This 

identification allowed two situations: 

i. To identify a first approach to the derivative criterion to investigate the relative maximum and/or 

minimum of a function.  

ii. To give input the analysis of the variation of the functions. 

Problem 2. Given a circle of radius 5 units, a rectangle is inscribed on it. It is desired to determine the 

dimensions of rectangle of maximum area. 

Stage 1. 

In a pen-and-paper environment, they would be motivated to build particular cases and trial and error 

calculations can be made to intuit or pose a conjecture about the adequate dimensions of the rectangle that 

make the product the maximum. The essential thing at this stage is the identification of the requirement: to 

maximize the area, and it is identified that the information given is necessary. 

Stage 2.  

After proceeding by trial and error in a pen-and-paper environment (Stage 1) it is allowed to intuit that another 

way of conjecturing and approaching the solution of the problem is using the dynamic-visual resource offered 

by Geogebra software. Therefore, the following actions are carried out.  

a) By using the software, a 5 unit ratio circle is built. A non-fixed rectangle is in inscribed on it. 

b) Manually with the software the dimensions of the rectangle are modified, being inscribed in the circle, and 

the changes are displayed to the extent of their area. The following figure shows some variations. 

 

Figure 6. Source: own elaboration 
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c) It is observed that a good approximation to the solution of the problem is illustrated by figures 6), fI), and 

apparently it is a square (particular case of the rectangle). That is to say, using the software it is identified 

that the square in the figure of higher area, and the length if its side is 3.4 units. As shown in the following 

figure. 

 

 

 

 

 

 

 

Figure 7. Source: own elaboration 

Stage 3.  

d) In order to systematize and test the conjecture 

- The point of coordinates was graphed, the slider value vs. the value of the area of each rectangle as the 

slider is activated.  

- The locus is constructed as the slider increases, making the journey from -5 to 5 units.  

- The construction of the mathematical model is now sought to represent the situation, to this end, we use 

knowledge of geometry and trigonometry, essentially. Therefore, the mathematical model associated with  

Figure 8. Source: own elaboration 

-  

- this situation is:  A(x) = ±2x√100 − 4x2. 
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Figure 9. Source: own elaboration 

With all intent we graphed on the curved, which describes the locus of the situation, and we can establish 

relationships, and explain some others. Taking into account that there are no areas of negative value, that makes 

the chart of the locus is above the horizontal axis. Actually, the branch of the graph of the built function, which 

is down of the horizontal axis is the reflection of the graph of the locus that is in the third quadrant. Well, the 

built graph can be traced to the tangent and its variation and analysis allows the identification of the role of the 

derivative in the investigation of the maximum, and therefore the determination of the appropriate lengths of 

the rectangle inscribed in the circumference, and that this has a maximum area. 

 

 

 

 

 

 

Figure 10. Source: own elaboration 

When moving the point in the curve tangent variations are identified, this way, the maximum value of the graph 

(and/or minimum) the tangent is horizontal. In an analogous way to the study carried out in problem 1, the 

following situations are identified: 

i. An approximation to the criterion of the first derivative to investigate maximum and relative minimums.  

ii. The determination of the measure of the rectangle being inscribed in the circunference, has a maximum 

area, as it is the square.  

Conclusions 

The proposal of theoretical-didactic cut here described for the introduction to problems that require the 

determination of the relative maximum through the GeoGebra software is essential to support the teaching 

activity of the teacher of pre-university student. The classical scheme close to the teacher for planning teaching 

and learning of variation of functions is the introduction of the concept of derivative, derivation formulas, and 

introduction of concepts such as: function increasing, decreasing, maximum, minimum and first and second 

derivative criteria for the investigation of relative extremes, among others. On rare occasions it raises the need 



International Journal of Research In Education Methodology Vol 14 (2019) ISSN: 2278-5612       https://rajpub.com/index.php/ijrem 

3376 

to ensure minimum starting conditions for the understanding and awareness of the importance of studying the 

problem of optimization.  

In the opposite sense, the description of the strategy is fundamental for the understanding and meaning of 

mathematical concepts that allows the study of variation of functions, within them, the maximization, and in 

which, it is highlighted the usefulness of GeoGebra software as a heuristic resource, which through the activity 

of the dynamic-visual allows to rediscover knowledge, induction and generalization of behaviors. 
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